Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Predicting responders to therapies for multiple sclerosis

Abstract

Therapies for relapsing–remitting multiple sclerosis (RRMS) are only partially effective, and, in most patients receiving such treatment, clinical activity persists. Accurately assessing the treatment response to disease-modifying agents enables non-responder patients to be identified at an early stage into therapy. Patients can then be switched to another, potentially more effective, therapy before too much neurological damage has occurred. Several criteria based on relapses, disability progression or both have been proposed for clinical evaluation of the treatment response to disease-modifying agents. These criteria have not been independently validated, however, and no consensus over which are the best to use currently exists among investigators. MRI can also be employed to detect disease activity in patients treated with disease-modifying agents. Changes on MRI can provide subclinical data relating to disease activity that can be of great benefit in patients monitoring, as inflammatory events occur more often than clinical events. Pharmacogenomic approaches are in the early stages of development for MS, but hold great promise for the eventual development of individually tailored therapies. In this Review, we discuss the proposed approaches for monitoring and predicting treatment responses to disease-modifying agents in patients with RRMS. We evaluate the roles of clinical measures, MRI and pharmacogenomics in these processes.

Key Points

  • Relapses and progression of disability are the clinical features of relapsing–remitting multiple sclerosis (RRMS) that are monitored when determining a patient's clinical response to treatment

  • The proportion of non-responders varies depending on the definition of treatment response used

  • Criteria based on relapse measures have poor sensitivity and poor positive predictive value for assessing treatment response

  • Accumulation of new lesions on serial MRI might be a good marker of a poor response to treatment

  • Combining clinical measures of disease activity (relapses and/or progression of disability) with MRI assessment might improve our ability to identify patients who respond poorly to treatment

  • Pharmacogenomics holds great promise for developing individually tailored therapies for patients with RRMS

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationship between active lesions on MRI and treatment response.
Figure 2: Proposed algorithm for evaluating the treatment response in patients with relapsing–remitting multiple sclerosis.

Similar content being viewed by others

References

  1. [No authors listed] Interferon β1b is effective in relapsing–remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. Neurology 43, 655–661 (1993).

  2. Jacobs, L. D. et al. Intramuscular interferon β1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann. Neurol. 39, 285–294 (1996).

    Article  CAS  Google Scholar 

  3. [No authors listed] Randomised double-blind placebo-controlled study of interferon β1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon β1a Subcutaneously in Multiple Sclerosis) Study Group. Lancet 352, 1498–1504 (1998).

  4. Johnson, K. P. et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45, 1268–1276 (1995).

    Article  CAS  Google Scholar 

  5. Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Eng. J. Med. 354, 899–910 (2006).

    Article  CAS  Google Scholar 

  6. Paty, D. W. & Li, D. K. Interferon β1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology 43, 662–667 (1993).

    Article  CAS  Google Scholar 

  7. Simon, J. H. et al. Magnetic resonance studies of intramuscular interferon β1a for relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group. Ann. Neurol. 43, 79–87 (1998).

    Article  CAS  Google Scholar 

  8. Li, D. K. & Paty, D. W. Magnetic resonance imaging results of the PRISMS trial: a randomized, double-blind, placebo-controlled study of interferon β1a in relapsing-remitting multiple sclerosis. Ann. Neurol. 46, 197–206 (1999).

    Article  CAS  Google Scholar 

  9. Río, J. et al. Assessment of different treatment failure criteria in a cohort of relapsing-remitting multiple sclerosis patients treated with interferon β: implications for clinical trials. Ann. Neurol. 52, 400–406 (2002).

    Article  Google Scholar 

  10. Río, J. et al. Defining the response to interferon β in relapsing–remitting multiple sclerosis patients. Ann. Neurol. 59, 344–352 (2006).

    Article  Google Scholar 

  11. Baranzini, S. E. et al. Transcription-based prediction of response to IFN-β using supervised computational methods. PloS Biol. 3, e2 (2005).

    Article  Google Scholar 

  12. Panitch, H. et al. Randomized, comparative study of interferon β1a treatment regimens in MS: The EVIDENCE Trial. Neurology 59, 1496–1506 (2002).

    Article  CAS  Google Scholar 

  13. Durelli, L. et al. Every-other-day interferon β1b versus once-weekly interferon 1a for multiple sclerosis: Results of a 2-year prospective randomised multicentre study (INCOMIN). Lancet 359, 1453–1460 (2002).

    Article  CAS  Google Scholar 

  14. Troyano, M. et al. Interferon β in relapsing–remitting multiple sclerosis: an independent postmarketing study in southern Italy. Mult. Scler. 9, 451–457 (2003).

    Article  Google Scholar 

  15. Waubant, E. et al. Clinical characteristics of responders to interferon therapy for relapsing MS. Neurology 61, 184–189 (2003).

    Article  CAS  Google Scholar 

  16. Río, J. et al. Interferon β in RRMS. An eight years experience in a specialist multiple sclerosis centre. J. Neurol. 252, 795–800 (2005).

    Article  Google Scholar 

  17. Wiendl, H. et al. Basic and escalating immunomodulatory treatments in multiple sclerosis: current therapeutic recommendations. J. Neurol. 255, 1449–1463 (2008).

    Article  CAS  Google Scholar 

  18. Río, J. et al. Factors related with treatment adherence to interferon β and glatiramer acetate therapy in multiple sclerosis. Mult. Scler. 11, 306–309 (2005).

    Article  Google Scholar 

  19. Goodin, D. S. et al. Disease modifying therapies in multiple sclerosis: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the MS Council for Clinical Practice Guidelines. Neurology 58, 169–178 (2002)

    Article  CAS  Google Scholar 

  20. Schumacher, G. A. et al. Problems of experimental trials of therapies in multiple sclerosis: report by the panel on the evaluation of experimental trials of therapies in multiple sclerosis. Ann. NY Acad. Sci. 122, 552–568 (1965).

    Article  CAS  Google Scholar 

  21. Weinshenker, B. G. et al. The natural history of multiple sclerosis: a geographically based study. 2. Predictive value of the early clinical course. Brain 112, 1419–1428 (1989).

    Article  Google Scholar 

  22. Confavreux, C., Vucosic, S. & Adeleine, P. Early clinical predictors and progression of irreversible disability in multiple sclerosis: an amnesic process. Brain 126, 770–782 (2003).

    Article  Google Scholar 

  23. Kantarci, O. et al. Survival and predictors of disability in Turkish MS patients. Turkish Multiple Sclerosis Study Group (TMSSG). Neurology 51, 765–772 (1998).

    Article  CAS  Google Scholar 

  24. Eriksson, M., Andersen, O. & Runmarker, B. Long-term follow-up of patients with clinically isolated syndromes, relapsing–remitting and secondary progressive multiple sclerosis. Mult. Scler. 9, 260–274 (2003).

    Article  Google Scholar 

  25. Runmarker, B. & Andersen, O. Prognostic factors in a multiple sclerosis cohort with twenty-five years follow-up. Brain 116, 117–134 (1993).

    Article  Google Scholar 

  26. Amato, M. P. & Ponziani, G. A prospective study on the prognosis of multiple sclerosis. Neurol. Sci. 21 (4 Suppl. 2), S831–S838 (2000).

    Article  CAS  Google Scholar 

  27. Miller, D. H., Hornabrook, P. W. & Purdie, G. The natural history of multiple sclerosis: a regional study with some longitudinal data. J. Neurol. Neurosurg. Psychiatry 55, 341–346 (1992).

    Article  CAS  Google Scholar 

  28. O'Rourke, K., Walsh, C., Antonelli, G. & Hutchinson, M. Predicting β-interferon failure in relapsing-remitting multiple sclerosis. Mult. Scler. 13, 336–342 (2007).

    Article  CAS  Google Scholar 

  29. Martínez-Yélamos, S. et al. Regression to the mean in multiple sclerosis. Mult. Scler. 12, 826–829 (2006).

    Article  Google Scholar 

  30. Fog, T. & Linnemann, F. The course of multiple sclerosis in 73 cases with computer-designed curves. Acta Neurol. Scand. 47, 9–11 (1970).

    Google Scholar 

  31. Lhermitte, F., Marteau, R., Gazengel, J., Dordain, G. & Deloche, G. The frequency of relapse in multiple sclerosis: a study based on 245 cases. J. Neurol. 205, 47–59 (1973).

    Article  CAS  Google Scholar 

  32. Patzold, U. & Pocklington, P. R. Course of multiple sclerosis: first results of a prospective study carried out of 102 MS patients from 1976–1980. Acta Neurol. Scand. 65, 248–266 (1982).

    Article  CAS  Google Scholar 

  33. Thygesen, P. Prognosis in initial stage of disseminated primary demyelinating disease of central nervous system. Arch. Neurol. Psychiatry 61, 339–351 (1949).

    Article  CAS  Google Scholar 

  34. Miller, D. H. Guidelines for MRI monitoring of the treatment of multiple sclerosis: recommendations of the US Multiple Sclerosis Society's task force. Mult. Scler. 1, 335–338 (1996).

    Article  CAS  Google Scholar 

  35. Noseworthy, J. H., Vandervoort, M. K., Wong, C. J. & Ebers, G. C. Interrater variability with the Expanded Disability Status Scale (EDSS) and Functional Systems (FS) in a multiple sclerosis clinical trial. The Canadian Cooperation MS Study Group. Neurology 40, 971–975 (1990).

    Article  CAS  Google Scholar 

  36. Albrecht, H. et al. Day-to-day variability of maximum walking distance in MS patients can mislead to relevant changes in the Expanded Disability Status Scale (EDSS): average walking speed is a more constant parameter. Mult. Scler. 7, 105–109 (2001).

    Article  CAS  Google Scholar 

  37. Liu, C. & Blumhardt, L. D. Disability outcome measures in therapeutic trials of relapsing-remitting multiple sclerosis: effects of heterogeneity of disease course in placebo cohorts. J. Neurol. Neurosurg. Psychiatry 68, 450–457 (2000).

    Article  CAS  Google Scholar 

  38. Fusco, C. et al. HLA-DRB1*1501 and response to copolymer-1 therapy in relapsing–remitting multiple sclerosis. Neurology 57, 1976–1979 (2001).

    Article  CAS  Google Scholar 

  39. Kappos, L. et al. Final analysis of the European multicenter trial on IFN β-1b in secondary progressive MS. Neurology 57, 1969–1975 (2001).

    Article  CAS  Google Scholar 

  40. Kracke, A. et al. Mx proteins in blood leukocytes for monitoring interferon β-1b therapy in patients with MS. Neurology 54, 193–199 (2000).

    Article  CAS  Google Scholar 

  41. Stürzebecher, S. et al. Expression profiling identifies responder and non-responder phenotypes to interferon β in multiple sclerosis. Brain 126, 1419–1429 (2003).

    Article  Google Scholar 

  42. Villoslada, P., Oksenberg, J. R., Río, J. & Montalban, X. Clinical characteristics of responders to interferon therapy for relapsing MS. Neurology 62, 1653 (2004).

    Article  Google Scholar 

  43. Wandinger, K. P. et al. TNF-related apoptosis inducing ligand (TRAIL) as a potential response marker for interferon β treatment in multiple sclerosis. Lancet 361, 2036–2043 (2003).

    Article  CAS  Google Scholar 

  44. Waubant, E. et al. Clinical characteristics of responders to interferon therapy for relapsing MS. Neurology 61, 184–189 (2003).

    Article  CAS  Google Scholar 

  45. Petzold, A. et al. Treatment response in relation to inflammatory and axonal surrogate marker in multiple sclerosis. Mult. Scler. 10, 281–283 (2004).

    Article  CAS  Google Scholar 

  46. Rudick, R., Lee, J., Simon, J., Ransohoff, R. M. & Fisher, E. Defining interferon β response status in multiple sclerosis patients. Ann. Neurol. 56, 548–555 (2004).

    Article  CAS  Google Scholar 

  47. Portaccio, E., Zipoli, V., Siracusa, G., Sorbi, S. & Amato, M. P. Response to interferon β therapy in relapsing–remitting multiple sclerosis: a comparison of different clinical criteria. Mult. Scler. 12, 281–286 (2006).

    Article  CAS  Google Scholar 

  48. Freedman, M. S. & Forrestal, F. G. Canadian treatment optimization recommendations (TOR) as a predictor of disease breakthrough in patients with multiple sclerosis treated with interferon β1a: analysis of the PRIMS study. Mult. Scler. 14, 1234–1241 (2008).

    Article  CAS  Google Scholar 

  49. Barkhof, F. et al. Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain 120, 2059–2069 (1997).

    Article  Google Scholar 

  50. Tintoré, M. et al. Isolated demyelinating syndromes: comparison of different MR imaging criteria to predict conversion to clinically definite multiple sclerosis. AJNR 21, 702–706 (2000).

    PubMed  Google Scholar 

  51. Chiu, A. W. et al. Heterogeneity in response to interferon β in patients with multiple sclerosis. Arch. Neurol. 66, 39–43 (2009).

    Article  Google Scholar 

  52. Sormani, M. P. et al. Magnetic resonance imaging as a potential surrogate for relapses in multiple sclerosis: a meta-analytic approach. Ann. Neurol. 65, 268–275 (2009).

    Article  Google Scholar 

  53. Río, J. et al. Relationship between MRI lesion activity and response to IFN-β in relapsing–remitting multiple sclerosis patients. Mult. Scler. 14, 479–484 (2008).

    Article  Google Scholar 

  54. Freedman, M. S. et al. Treatment optimization in multiple sclerosis. Can. J. Neurol. Sci. 31, 157–168 (2004).

    Article  Google Scholar 

  55. Sormani, M. P., Rovaris, M., Comi, G. & Filippi, M. A composite score to predict short-term disease activity in patients with relapsing–remitting MS. Neurology 69, 1230–1235 (2007).

    Article  Google Scholar 

  56. Río, J. et al. Clinical and magnetic resonance imaging measures in the assessment of the response to interferon β. Mult. Scler. 15, 848–853 (2009).

    Article  Google Scholar 

  57. Wolf, C. R., Smith, G. & Smith, R. L. Science, medicine, and the future: pharmacogenetics. BMJ 320, 987–990 (2000).

    Article  CAS  Google Scholar 

  58. Comabella, M. & Martin, R. Genomics in multiple sclerosis—current state and future directions. J. Neuroimmunol. 187, 1–8 (2007).

    Article  CAS  Google Scholar 

  59. Singh, M. K. et al. Gene expression changes in peripheral blood mononuclear cells from multiple sclerosis patients undergoing β-interferon therapy. J. Neurol. Sci. 258, 52–59 (2007).

    Article  CAS  Google Scholar 

  60. van Baarsen, L. G. et al. Pharmacogenomics of interferon β therapy in multiple sclerosis: baseline IFN signature determines pharmacological differences between patients. PLoS One 3, e1927 (2008).

    Article  Google Scholar 

  61. Villoslada, P. et al. The HLA locus and multiple sclerosis in Spain. Role in disease susceptibility, clinical course and response to interferon β. J. Neuroimmunol. 130, 194–201 (2002).

    Article  CAS  Google Scholar 

  62. Sriram, U. et al. Pharmacogenomic analysis of interferon receptor polymorphisms in multiple sclerosis. Genes Immun. 4, 147–152 (2003).

    Article  CAS  Google Scholar 

  63. Fernández, O. et al. HLA class II and response to interferon β in multiple sclerosis. Acta Neurol. Scand. 112, 391–394 (2005).

    Article  Google Scholar 

  64. Cunningham, S. et al. Pharmacogenomics of responsiveness to interferon IFN-β treatment in multiple sclerosis: a genetic screen of 100 type I interferon-inducible genes. Clin. Pharmacol. Ther. 78, 635–646 (2005).

    Article  CAS  Google Scholar 

  65. Leyva, L. et al. IFNAR1 and IFNAR2 polymorphisms confer susceptibility to multiple sclerosis but not to interferon β treatment response. J. Neuroimmunol. 163, 165–171 (2005).

    Article  CAS  Google Scholar 

  66. Martínez, A. et al. An IFNG polymorphism is associated with interferon β response in Spanish MS patients. J. Neuroimmunol. 173, 196–199 (2006).

    Article  Google Scholar 

  67. Weinstock-Guttman, B., Tamaño-Blanco, M., Bhasi, K., Zivadinov, R. & Ramanathan, M. Pharmacogenetics of MXA SNPs in interferon β treated multiple sclerosis patients. J. Neuroimmunol. 182, 236–239 (2007).

    Article  CAS  Google Scholar 

  68. Comabella, M. et al. HLA class I and II alleles and response to treatment with interferon β in relapsing–remitting multiple sclerosis. J. Neuroimmunol. 210, 116–119 (2009).

    Article  CAS  Google Scholar 

  69. Grossman, I. et al. Pharmacogenetics of glatiramer acetate therapy for multiple sclerosis reveals drug-response markers. Pharmacogenet. Genomics 17, 657–666 (2007).

    Article  CAS  Google Scholar 

  70. Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).

    Article  CAS  Google Scholar 

  71. Hartung, H. P. et al. Neutralising antibodies to interferon β in multiple sclerosis: expert panel report. J. Neurol. 254, 827–837 (2007).

    Article  CAS  Google Scholar 

  72. Byun, E. et al. Genome-wide pharmacogenomic analysis of the response to interferon β therapy in multiple sclerosis. Arch. Neurol. 65, 337–344 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Montalban.

Ethics declarations

Competing interests

X. Montalban has acted as a consultant and on the speaker's bureau for Almirall, Bayer Schering Pharma, Biogen Idec, Merck Serono, Novartis, Sanofi-aventis, Teva and UCB Pharma. He has also received research support from these companies. J. Río and M. Comabella have received honoraria for speaking from Bayer Schering Pharma, Biogen Idec, Merck Serono, Novartis, Sanofi-aventis and Teva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Río, J., Comabella, M. & Montalban, X. Predicting responders to therapies for multiple sclerosis. Nat Rev Neurol 5, 553–560 (2009). https://doi.org/10.1038/nrneurol.2009.139

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2009.139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing