Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment of membranous nephropathy: time for a paradigm shift

Key Points

  • Steroids and alkylating agents increase the rate of remission in patients with membranous nephropathy but can cause diabetes mellitus, myelotoxicity, infections, cancer, and other adverse events

  • Calcineurin inhibitors can reduce proteinuria in patients with membranous nephropathy but are nephrotoxic, and these agents should be avoided in patients with abnormal kidney function

  • The discovery of nephritogenic autoantibodies provided a clear rationale for interventions specifically aimed at preventing formation of antigen–antibody immunocomplexes with secondary complement activation, podocyte damage, and proteinuria

  • B cell-targeted therapy with rituximab is at least as effective as steroids and alkylating agents in achieving remission in membranous nephropathy, and available evidence suggests that it is safer and better tolerated

  • In patients with anti-PLA2R-related membranous nephropathy and overt nephrotic syndrome, evaluation of serum autoantibody titre and albumin levels, as well as assessment of proteinuria could guide tailored therapy

  • Traditional immunosuppressive regimens will be replaced by specific, nontoxic agents such as B cell-targeting monoclonal antibodies; modulation of B-cell immunity could lead to a novel therapeutic paradigm in membranous nephropathy

Abstract

In patients with membranous nephropathy, alkylating agents (cyclophosphamide or chlorambucil) alone or in combination with steroids achieve remission of nephrotic syndrome more effectively than conservative treatment or steroids alone, but can cause myelotoxicity, infections, and cancer. Calcineurin inhibitors can improve proteinuria, but are nephrotoxic. Most patients relapse after treatment withdrawal and can become treatment dependent, which increases the risk of nephrotoxicity. The discovery of nephritogenic autoantibodies against podocyte M-type phospholipase A2 receptor (PLA2R) and thrombospondin type-1 domain- containing protein 7A (THSD7A) antigens provides a clear pathophysiological rationale for interventions that specifically target B-cell lineages to prevent antibody production and subepithelial deposition. The anti-CD20 monoclonal antibody rituximab is safe and achieves remission of proteinuria in approximately two-thirds of patients with membranous nephropathy. In those with PLA2R-related disease, remission can be predicted by anti-PLA2R antibody depletion and relapse by antibody re-emergence into the circulation. Thus, integrated evaluation of serology and proteinuria could guide identification of affected patients and treatment with individually tailored protocols. Nonspecific and toxic immunosuppressive regimens will fall out of use. B-cell modulation by rituximab and second-generation anti-CD20 antibodies (or plasma cell-targeted therapy in anti-CD20 resistant forms of disease) will lead to a novel therapeutic paradigm for patients with membranous nephropathy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targets for monoclonal antibodies in B-cell lineages.
Figure 2: Prevention of antigen–antibody immunocomplex deposition on the glomerular basement membrane.
Figure 3: Key findings from the GEMRITUX trial38.
Figure 4: The molecular configuration of the CD20 molecule.
Figure 5: Comparison of outcomes with belimumab or rituximab therapy.

Similar content being viewed by others

References

  1. McQuarrie, E. P., Mackinnon, B., Stewart, G. A. & Geddes, C. C. Membranous nephropathy remains the commonest primary cause of nephrotic syndrome in a northern European Caucasian population. Nephrol. Dial. Transplant. 25, 1009–1010 (2010).

    Article  PubMed  Google Scholar 

  2. Ronco, P. & Debiec, H. Pathophysiological advances in membranous nephropathy: time for a shift in patient's care. Lancet 385, 1983–1992 (2015).

    Article  PubMed  Google Scholar 

  3. Cattran, D. C., Kim, E. D., Reich, H., Hladunewich, M. & Kim, S. J. Membranous nephropathy: quantifying remission duration on outcome. J. Am. Soc. Nephrol. 28, 995–1003 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Ruggenenti, P., Perna, A. & Remuzzi, G. Retarding progression of chronic renal disease: the neglected issue of residual proteinuria. Kidney Int. 63, 2254–2261 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Schieppati, A., Ruggenenti, P., Perna, A. & Remuzzi, G. Nonimmunosuppressive therapy of membranous nephropathy. Semin. Nephrol. 23, 333–339 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Glassock, R. J. The treatment of idiopathic membranous nephropathy: a dilemma or a conundrum? Am. J. Kidney Dis. 44, 562–566 (2004).

    Article  PubMed  Google Scholar 

  7. Schieppati, A. et al. Prognosis of untreated patients with idiopathic membranous nephropathy. N. Engl. J. Med. 329, 85–89 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Garattini, S., Bertani, T. & Remuzzi, G. Steroids and cytotoxic drugs in the treatment of membranous glomerulopathy. Nephron 50, 263–264 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Mirnezami, R., Nicholson, J. & Darzi, A. Preparing for precision medicine. N. Engl. J. Med. 366, 489–491 (2012).

    Article  PubMed  Google Scholar 

  10. KDIGO. KDIGO clinical practice guidelines for glomerulonephritis. Chapter 7: idiopathic membranous nephropathy. Kidney Int. Suppl. 2, 186–197 (2012).

  11. Remuzzi, G., Benigni, A. & Remuzzi, A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J. Clin. Invest. 116, 288–296 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruggenenti, P. et al. ACE inhibition improves glomerular size selectivity in patients with idiopathic membranous nephropathy and persistent nephrotic syndrome. Am. J. Kidney Dis. 35, 381–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Gansevoort, R. T., Heeg, J. E., Vriesendorp, R., de Zeeuw, D. & de Jong, P. E. Antiproteinuric drugs in patients with idiopathic membranous glomerulopathy. Nephrol. Dial. Transplant. 7 (Suppl. 1), 91–96 (1992).

    PubMed  Google Scholar 

  14. Kosmadakis, G., Filiopoulos, V., Georgoulias, C., Tentolouris, N. & Michail, S. Comparison of the influence of angiotensin-converting enzyme inhibitor lisinopril and angiotensin II receptor antagonist losartan in patients with idiopathic membranous nephropathy and nephrotic syndrome. Scand. J. Urol. Nephrol. 44, 251–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. du Buf-Vereijken, P. W., Branten, A. J. & Wetzels, J. F. Idiopathic membranous nephropathy: outline and rationale of a treatment strategy. Am. J. Kidney Dis. 46, 1012–1029 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Troyanov, S., Wall, C. A., Miller, J. A., Scholey, J. W. & Cattran, D. C. Idiopathic membranous nephropathy: definition and relevance of a partial remission. Kidney Int. 66, 1199–1205 (2004).

    Article  PubMed  Google Scholar 

  17. Praga, M. et al. Nephrotic proteinuria without hypoalbuminemia: clinical characteristics and response to angiotensin-converting enzyme inhibition. Am. J. Kidney Dis. 17, 330–338 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Praga, M. et al. Long-term beneficial effects of angiotensin-converting enzyme inhibition in patients with nephrotic proteinuria. Am. J. Kidney Dis. 20, 240–248 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Cravedi, P. et al. Spironolactone plus full-dose ACE inhibition in patients with idiopathic membranous nephropathy and nephrotic syndrome: does it really work? Pharmaceuticals (Basel) 3, 1–9 (2010).

    Article  CAS  Google Scholar 

  20. Pisoni, R. et al. Effect of high dose ramipril with or without indomethacin on glomerular selectivity. Kidney Int. 62, 1010–1019 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Campbell, R. et al. Effects of combined ACE inhibitor and angiotensin II antagonist treatment in human chronic nephropathies. Kidney Int. 63, 1094–1103 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Fervenza, F. C. et al. Rituximab therapy in idiopathic membranous nephropathy: a 2-year study. Clin. J. Am. Soc. Nephrol. 5, 2188–2198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fervenza, F. C. et al. Rituximab treatment of idiopathic membranous nephropathy. Kidney Int. 73, 117–125 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Ruggenenti, P. et al. Diverse effects of increasing lisinopril doses on lipid abnormalities in chronic nephropathies. Circulation 107, 586–592 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Dahan, K. et al. Rituximab for severe membranous nephropathy: a 6-month trial with extended follow-up. J. Am. Soc. Nephrol. 28, 348–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Ruggenenti, P., Schieppati, A. & Remuzzi, G. Progression, remission, regression of chronic renal diseases. Lancet 357, 1601–1608 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Ruggenenti, P., Brenner, B. M. & Remuzzi, G. Remission achieved in chronic nephropathy by a multidrug approach targeted at urinary protein excretion. Nephron 88, 254–259 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Ruggenenti, P. et al. Role of remission clinics in the longitudinal treatment of CKD. J. Am. Soc. Nephrol. 19, 1213–1224 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Perna, A. et al. Immunosuppressive treatment for idiopathic membranous nephropathy: a systematic review. Am. J. Kidney Dis. 44, 385–401 (2004).

    Article  PubMed  Google Scholar 

  30. Davison, A. M., Cameron, J. S., Kerr, D. N., Ogg, C. S. & Wilkinson, R. W. The natural history of renal function in untreated idiopathic membranous glomerulonephritis in adults. Clin. Nephrol. 22, 61–67 (1984).

    CAS  PubMed  Google Scholar 

  31. Chen, Y. et al. Immunosuppression for membranous nephropathy: a systematic review and meta-analysis of 36 clinical trials. Clin. J. Am. Soc. Nephrol. 8, 787–796 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ponticelli, C. et al. A randomized study comparing methylprednisolone plus chlorambucil versus methylprednisolone plus cyclophosphamide in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 9, 444–450 (1998).

    CAS  PubMed  Google Scholar 

  33. Howman, A. et al. Immunosuppression for progressive membranous nephropathy: a UK randomised controlled trial. Lancet 381, 744–751 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ponticelli, C. et al. A 10-year follow-up of a randomized study with methylprednisolone and chlorambucil in membranous nephropathy. Kidney Int. 48, 1600–1604 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Ponticelli, C. et al. A randomized trial of methylprednisolone and chlorambucil in idiopathic membranous nephropathy. N. Engl. J. Med. 320, 8–13 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Essential Medicines and Health Products Information Portal. Guideline for good clinical practice. ICH harmonised tripartite guideline. E6(R1). Current step 4 version, dated 10 June 1996. (including the post step 4 corrections). The International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). http://apps.who.int/medicinedocs/en/m/abstract/Js22154en/ (1996).

  37. Saxena, P. & Saxena, R. Clinical trials: changing regulations in India. Indian J. Community Med. 39, 197–202 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jha, V. et al. A randomized, controlled trial of steroids and cyclophosphamide in adults with nephrotic syndrome caused by idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 18, 1899–1904 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Faurschou, M. et al. Malignancies in Wegener's granulomatosis: incidence and relation to cyclophosphamide therapy in a cohort of 293 patients. J. Rheumatol. 35, 100–105 (2008).

    CAS  PubMed  Google Scholar 

  40. Ruggenenti, P. & Remuzzi, G. Idiopathic membranous nephropathy: back to the future? Lancet 381, 706–708 (2013).

    Article  PubMed  Google Scholar 

  41. van den Brand, J. et al. Safety of rituximab compared with steroids and cyclophosphamide for idiopathic membranous nephropathy. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2016091022 (2017).

  42. Remuzzi, G. et al. Rituximab for idiopathic membranous nephropathy. Lancet 360, 923–924 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Beck, L. H. Jr et al. M-Type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361, 11–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Appel, G. B. Rituximab in membranous nephropathy: is it a first-line treatment? J. Am. Soc. Nephrol. 23, 1280–1282 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. van den Brand, J. A., van Dijk, P. R., Hofstra, J. M. & Wetzels, J. F. Long-term outcomes in idiopathic membranous nephropathy using a restrictive treatment strategy. J. Am. Soc. Nephrol. 25, 150–158 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. van den Brand, J. A., van Dijk, P. R., Hofstra, J. M. & Wetzels, J. F. Cancer risk after cyclophosphamide treatment in idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol. 9, 1066–1073 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van de Logt, A. E., Hofstra, J. M. & Wetzels, J. F. Pharmacological treatment of primary membranous nephropathy in 2016. Expert Rev. Clin. Pharmacol. 9, 1463–1478 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Hofstra, J. M., Fervenza, F. C. & Wetzels, J. F. Treatment of idiopathic membranous nephropathy. Nat. Rev. Nephrol. 9, 443–458 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Jones, D. B. Nephrotic glomerulonephritis. Am. J. Pathol. 33, 313–329 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Heymann, W., Hackel, D. B., Harwood, S., Wilson, S. G. & Hunter, J. L. Production of nephrotic syndrome in rats by Freund's adjuvants and rat kidney suspensions. Proc. Soc. Exp. Biol. Med. 100, 660–664 (1959).

    Article  CAS  PubMed  Google Scholar 

  51. Kerjaschki, D. & Farquhar, M. G. The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc. Natl Acad. Sci. USA 79, 5557–5561 (1982).

    Article  CAS  PubMed  Google Scholar 

  52. Debiec, H. et al. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N. Engl. J. Med. 346, 2053–2060 (2002).

    Article  PubMed  Google Scholar 

  53. Hofstra, J. M. et al. Anti-phospholipase A2 receptor antibodies correlate with clinical status in idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol. 6, 1286–1291 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qin, W. et al. Anti-phospholipase A2 receptor antibody in membranous nephropathy. J. Am. Soc. Nephrol. 22, 1137–1143 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stanescu, H. C. et al. Risk HLA-DQA1 and PLA2R1 alleles in idiopathic membranous nephropathy. N. Engl. J. Med. 364, 616–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Tomas, N. M. et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N. Engl. J. Med. 371, 2277–2287 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Larsen, C. P., Cossey, L. N. & Beck, L. H. THSD7A staining of membranous glomerulopathy in clinical practice reveals cases with dual autoantibody positivity. Mod. Pathol. 29, 421–426 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lv, J. et al. Interaction between PLA2R1 and HLA-DQA1 variants associates with anti-PLA2R antibodies and membranous nephropathy. J. Am. Soc. Nephrol. 24, 1323–1329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Beck, L. H. Jr et al. Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J. Am. Soc. Nephrol. 22, 1543–1550 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oh, Y. J., Yang, S. H., Kim, D. K., Kang, S. W. & Kim, Y. S. Autoantibodies against phospholipase A2 receptor in Korean patients with membranous nephropathy. PLoS ONE 8, e62151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bech, A. P., Hofstra, J. M., Brenchley, P. E. & Wetzels, J. F. Association of anti-PLA2R antibodies with outcomes after immunosuppressive therapy in idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol. 9, 1386–1392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hoxha, E. et al. Phospholipase A2 receptor autoantibodies and clinical outcome in patients with primary membranous nephropathy. J. Am. Soc. Nephrol. 25, 1357–1366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hoxha, E., Harendza, S., Pinnschmidt, H., Panzer, U. & Stahl, R. A. M-Type phospholipase A2 receptor autoantibodies and renal function in patients with primary membranous nephropathy. Clin. J. Am. Soc. Nephrol. 9, 1883–1890 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hoxha, E., Harendza, S., Pinnschmidt, H., Panzer, U. & Stahl, R. A. PLA2R antibody levels and clinical outcome in patients with membranous nephropathy and non-nephrotic range proteinuria under treatment with inhibitors of the renin-angiotensin system. PLoS ONE 9, e110681 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ruggenenti, P. et al. Anti-phospholipase A2 receptor antibody titer predicts post-rituximab outcome of membranous nephropathy. J. Am. Soc. Nephrol. 26, 2545–2558 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hofstra, J. M. et al. Antiphospholipase A2 receptor antibody titer and subclass in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 23, 1735–1743 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Timmermans, S. A., Abdul Hamid, M. A., Cohen Tervaert, J. W., Damoiseaux, J. G. & van Paassen, P. Anti-PLA2R antibodies as a prognostic factor in PLA2R-related membranous nephropathy. Am. J. Nephrol. 42, 70–77 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Kanigicherla, D. et al. Anti-PLA2R antibodies measured by ELISA predict long-term outcome in a prevalent population of patients with idiopathic membranous nephropathy. Kidney Int. 83, 940–948 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Radice, A. et al. Clinical usefulness of autoantibodies to M-type phospholipase A2 receptor (PLA2R) for monitoring disease activity in idiopathic membranous nephropathy (IMN). Autoimmun. Rev. 15, 146–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Hoxha, E. et al. An indirect immunofluorescence method facilitates detection of thrombospondin type 1 domain-containing 7A-specific antibodies in membranous nephropathy. J. Am. Soc. Nephrol. 28, 520–531 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Ancian, P., Lambeau, G., Mattei, M. G. & Lazdunski, M. The human 180-kDa receptor for secretory phospholipases A2. Molecular cloning, identification of a secreted soluble form, expression, and chromosomal localization. J. Biol. Chem. 270, 8963–8970 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Fresquet, M. et al. Identification of a major epitope recognized by PLA2R autoantibodies in primary membranous nephropathy. J. Am. Soc. Nephrol. 26, 302–313 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Seitz-Polski, B. et al. Epitope spreading of autoantibody response to PLA2R associates with poor prognosis in membranous nephropathy. J. Am. Soc. Nephrol. 27, 1517–1533 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. van der Woude, D. et al. Gene-environment interaction influences the reactivity of autoantibodies to citrullinated antigens in rheumatoid arthritis. Nat. Genet. 42, 814–816 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Shah, P., Tramontano, A. & Makker, S. P. Intramolecular epitope spreading in Heymann nephritis. J. Am. Soc. Nephrol. 18, 3060–3066 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Ruggenenti, P. et al. Effects of rituximab on morphofunctional abnormalities of membranous glomerulopathy. Clin. J. Am. Soc. Nephrol. 3, 1652–1659 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cravedi, P., Remuzzi, G. & Ruggenenti, P. Rituximab in primary membranous nephropathy: first-line therapy, why not? Nephron Clin. Pract. 128, 261–269 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. De Vriese, A. S., Glassock, R. J., Nath, K. A., Sethi, S. & Fervenza, F. C. A proposal for a serology-based approach to membranous nephropathy. J. Am. Soc. Nephrol. 28, 421–430 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Debiec, H. & Ronco, P. Immunopathogenesis of membranous nephropathy: an update. Semin. Immunopathol. 36, 381–397 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Cupps, T. R., Edgar, L. C. & Fauci, A. S. Suppression of human B lymphocyte function by cyclophosphamide. J. Immunol. 128, 2453–2457 (1982).

    CAS  PubMed  Google Scholar 

  81. Pescovitz, M. D. Rituximab, an anti-cd20 monoclonal antibody: history and mechanism of action. Am. J. Transplant. 6, 859–866 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Ruggenenti, P. et al. Rituximab in idiopathic membranous nephropathy: a one-year prospective study. J. Am. Soc. Nephrol. 14, 1851–1857 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Bomback, A. S. et al. Rituximab therapy for membranous nephropathy: a systematic review. Clin. J. Am. Soc. Nephrol. 4, 734–744 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Piro, L. D. et al. Extended rituximab (anti-CD20 monoclonal antibody) therapy for relapsed or refractory low-grade or follicular non-Hodgkin's lymphoma. Ann. Oncol. 10, 655–661 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. McLaughlin, P. et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J. Clin. Oncol. 16, 2825–2833 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Ruggenenti, P. et al. Rituximab in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 23, 1416–1425 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Makker, S. P. & Kanalas, J. J. Course of transplanted Heymann nephritis kidney in normal host. Implications for mechanism of proteinuria in membranous glomerulonephropathy. J. Immunol. 142, 3406–3410 (1989).

    CAS  PubMed  Google Scholar 

  88. Cravedi, P. et al. Efficacy and safety of rituximab second-line therapy for membranous nephropathy: a prospective, matched-cohort study. Am. J. Nephrol. 33, 461–468 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Segarra, A. et al. Successful treatment of membranous glomerulonephritis with rituximab in calcineurin inhibitor-dependent patients. Clin. J. Am. Soc. Nephrol. 4, 1083–1088 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bariety, J., Samarcq, P., Lagrue, G., Fritel, D. & Milliez, P. Recovery of normal ultrastructure in 2 cases of primary glomerulonephritis with diffuse extra-membranous deposits [French]. Presse Med. 76, 2179–2182 (1968).

    CAS  PubMed  Google Scholar 

  91. Forland, M. & Spargo, B. H. Clinicopathological correlations in idiopathic nephrotic syndrome with membranous nephropathy. Nephron 6, 498–525 (1969).

    Article  CAS  PubMed  Google Scholar 

  92. Osawa, G., Kinoshita, Y., Morita, T., Soda, T. & Wada, J. Resolution of diffuse membranous changes with remission of nephrotic syndrome. Tohoku J. Exp. Med. 120, 177–190 (1976).

    Article  CAS  PubMed  Google Scholar 

  93. Ambalavanan, S., Fauvel, J. P., Sibley, R. K. & Myers, B. D. Mechanism of the antiproteinuric effect of cyclosporine in membranous nephropathy. J. Am. Soc. Nephrol. 7, 290–298 (1996).

    CAS  PubMed  Google Scholar 

  94. Marasa, M., Cravedi, P., Ruggiero, B. & Ruggenenti, P. Refractory focal segmental glomerulosclerosis in the adult: complete and sustained remissions of two episodes of nephrotic syndrome after a single dose of rituximab. BMJ Case Rep. http://dx.doi.org/10.1136/bcr-2014-205507 (2014).

  95. Meijer, J. M. et al. Effectiveness of rituximab treatment in primary Sjogren's syndrome: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 62, 960–968 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Dass, S. et al. Reduction of fatigue in Sjogren syndrome with rituximab: results of a randomised, double-blind, placebo-controlled pilot study. Ann. Rheum. Dis. 67, 1541–1544 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Merrill, J. T. et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 62, 222–233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stone, J. H. et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N. Engl. J. Med. 363, 221–232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jones, R. B. et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N. Engl. J. Med. 363, 211–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Carson, K. R. et al. Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project. Blood 113, 4834–4840 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Molloy, E. S. & Calabrese, L. H. Progressive multifocal leukoencephalopathy: a national estimate of frequency in systemic lupus erythematosus and other rheumatic diseases. Arthritis Rheum. 60, 3761–3765 (2009).

    Article  PubMed  Google Scholar 

  102. Pugnet, G. et al. Progressive multifocal encephalopathy after cyclophosphamide in granulomatosis with polyangiitis (Wegener) patients: case report and review of literature. Clin. Exp. Rheumatol. 31, S62–64 (2013).

    CAS  PubMed  Google Scholar 

  103. Sellier-Leclerc, A. L., Belli, E., Guerin, V., Dorfmuller, P. & Deschenes, G. Fulminant viral myocarditis after rituximab therapy in pediatric nephrotic syndrome. Pediatr. Nephrol. 28, 1875–1879 (2013).

    Article  PubMed  Google Scholar 

  104. Delbue, S. et al. Investigation of polyomaviruses replication in pediatric patients with nephropathy receiving rituximab. J. Med. Virol. 84, 1464–1470 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Iijima, K. et al. Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet 384, 1273–1281 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Ruggenenti, P. et al. Rituximab in steroid-dependent or frequently relapsing idiopathic nephrotic syndrome. J. Am. Soc. Nephrol. 25, 850–863 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gea-Banacloche, J. C. Rituximab-associated infections. Semin. Hematol. 47, 187–198 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Lanini, S. et al. Risk of infection in patients with lymphoma receiving rituximab: systematic review and meta-analysis. BMC Med. 9, 36 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Tan, C. S. & Koralnik, I. J. Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis. Lancet Neurol. 9, 425–437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. van Vollenhoven, R. F., Fleischmann, R. M., Furst, D. E., Lacey, S. & Lehane, P. B. Longterm safety of rituximab: final report of the rheumatoid arthritis global clinical trial program over 11 years. J. Rheumatol. 42, 1761–1766 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Jemal, A. et al. Cancer statistics, 2006. CA Cancer J. Clin. 56, 106–130 (2006).

    Article  PubMed  Google Scholar 

  112. Feehally, J. Targeted therapies: is there a role for rituximab in nephrotic syndrome? Nat. Rev. Nephrol. 10, 245–247 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Tavazzi, E., Ferrante, P. & Khalili, K. Progressive multifocal leukoencephalopathy: an unexpected complication of modern therapeutic monoclonal antibody therapies. Clin. Microbiol. Infect. 17, 1776–1780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Clifford, D. B. et al. Rituximab-associated progressive multifocal leukoencephalopathy in rheumatoid arthritis. Arch. Neurol. 68, 1156–1164 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kaufman, G. P. et al. Progressive multifocal leukoencephalopathy: a rare infectious complication following allogeneic hematopoietic cell transplantation (HCT). Eur. J. Haematol. 92, 83–87 (2014).

    Article  PubMed  Google Scholar 

  116. Ruggenenti, P., Cravedi, P. & Remuzzi, G. Rituximab for membranous nephropathy and immune disease: less might be enough. Nat. Clin. Pract. Nephrol. 5, 76–77 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Gabardi, S., Martin, S. T., Roberts, K. L. & Grafals, M. Induction immunosuppressive therapies in renal transplantation. Am. J. Health Syst. Pharm. 68, 211–218 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Pepper, R. et al. Rituximab is an effective treatment for lupus nephritis and allows a reduction in maintenance steroids. Nephrol. Dial. Transplant. 24, 3717–3723 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Cravedi, P., Ruggenenti, P., Sghirlanzoni, M. C. & Remuzzi, G. Titrating rituximab to circulating B cells to optimize lymphocytolytic therapy in idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol. 2, 932–937 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Agenzia Italiana del Farmaco [Italian]. Gazzetta Ufficiale http://95.110.157.84/gazzettaufficiale.biz/atti/2012/20120013/12A00419.htm (2011).

  121. Medindia. Drug “cyclophosphamide” price list. Medindia http://www.medindia.net/drug-price/cyclophosphamide.htm (updated 2 Feb 2017).

  122. ASST-PG23. Dialysis costs http://www.asst-pg23.it/component/trasparenza/12 (2017).

  123. Goodrx. Tacrolimus https://www.goodrx.com/tacrolimus (2017).

  124. Cattran, D. C. et al. Cyclosporine in patients with steroid-resistant membranous nephropathy: a randomized trial. Kidney Int. 59, 1484–1490 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Praga, M., Barrio, V., Juarez, G. F. & Luno, J. Tacrolimus monotherapy in membranous nephropathy: a randomized controlled trial. Kidney Int. 71, 924–930 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Kalliakmani, P., Koutroulia, E., Sotsiou, F., Vlachojannis, J. G. & Goumenos, D. S. Benefit and cost from the long-term use of cyclosporine-A in idiopathic membranous nephropathy. Nephrology (Carlton) 15, 762–767 (2010).

    Article  Google Scholar 

  127. Cravedi, P. Rituximab in membranous nephropathy: not all studies are created equal. Nephron 135, 46–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Heijl, C. et al. Incidence of malignancy in patients treated for antineutrophil cytoplasm antibody-associated vasculitis: follow-up data from European Vasculitis Study Group clinical trials. Ann. Rheum. Dis. 70, 1415–1421 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03018535 (2017).

  130. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01180036 (2017).

  131. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01955187 (2016).

  132. Fervenza, F. C. et al. A multicenter randomized controlled trial of rituximab versus cyclosporine in the treatment of idiopathic membranous nephropathy (MENTOR). Nephron 130, 159–168 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Rojas-Rivera, J. et al. A European multicentre and open-label controlled randomized trial to evaluate the efficacy of sequential treatment with tacrolimus-rituximab versus steroids plus cyclophosphamide in patients with primary membranous nephropathy: the STARMEN study. Clin. Kidney J. 8, 503–510 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Moroni, G. et al. Long-term outcome of renal transplantation in patients with idiopathic membranous glomerulonephritis (MN). Nephrol. Dial. Transplant. 25, 3408–3415 (2010).

    Article  PubMed  Google Scholar 

  135. Dabade, T. S., Grande, J. P., Norby, S. M., Fervenza, F. C. & Cosio, F. G. Recurrent idiopathic membranous nephropathy after kidney transplantation: a surveillance biopsy study. Am. J. Transplant. 8, 1318–1322 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. El-Zoghby, Z. M. et al. Recurrent idiopathic membranous nephropathy: early diagnosis by protocol biopsies and treatment with anti-CD20 monoclonal antibodies. Am. J. Transplant. 9, 2800–2807 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Marcen, R. et al. Membranous nephropathy: recurrence after kidney transplantation. Nephrol. Dial. Transplant. 11, 1129–1133 (1996).

    Article  CAS  PubMed  Google Scholar 

  138. Poduval, R. D., Josephson, M. A. & Javaid, B. Treatment of de novo and recurrent membranous nephropathy in renal transplant patients. Semin. Nephrol. 23, 392–399 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Rodriguez, E. F. et al. The pathology and clinical features of early recurrent membranous glomerulonephritis. Am. J. Transplant. 12, 1029–1038 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Grupper, A. et al. Recurrent membranous nephropathy after kidney transplantation: treatment and long-term implications. Transplantation 100, 2710–2716 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Kattah, A. et al. Anti-phospholipase A2 receptor antibodies in recurrent membranous nephropathy. Am. J. Transplant. 15, 1349–1359 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Quintana, L. F. et al. Antiphospholipase A2 receptor antibody levels predict the risk of posttransplantation recurrence of membranous nephropathy. Transplantation 99, 1709–1714 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. El-Zoghby, Z. M. et al. Identifying specific causes of kidney allograft loss. Am. J. Transplant. 9, 527–535 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Sellares, J. et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am. J. Transplant. 12, 388–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Vivarelli, M. et al. Ofatumumab in two pediatric nephrotic syndrome patients allergic to rituximab. Pediatr. Nephrol. 32, 181–184 (2017).

    Article  PubMed  Google Scholar 

  146. Hiepe, F. & Radbruch, A. Plasma cells as an innovative target in autoimmune disease with renal manifestations. Nat. Rev. Nephrol. 12, 232–240 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Barbari, A. et al. Bortezomib as a novel approach to early recurrent membranous glomerulonephritis after kidney transplant refractory to combined conventional rituximab therapy. Exp. Clin. Transplant. 15, 350–354 (2017).

    PubMed  Google Scholar 

  148. Hiepe, F. et al. Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat. Rev. Rheumatol. 7, 170–178 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Uchiyama, S. et al. Development of novel humanized anti-CD20 antibodies based on affinity constant and epitope. Cancer Sci. 101, 201–209 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Tedder, T. F. & Engel, P. CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol. Today 15, 450–454 (1994).

    Article  CAS  PubMed  Google Scholar 

  151. Grillo-Lopez, A. J. Rituximab (Rituxan/MabThera): the first decade (1993–2003). Expert Rev. Anticancer Ther. 3, 767–779 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Salama, A. D. & Pusey, C. D. Drug insight: rituximab in renal disease and transplantation. Nat. Clin. Pract. Nephrol. 2, 221–230 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Jain, P. & O'Brien, S. Anti-CD20 monoclonal antibodies in chronic lymphocytic leukemia. Expert Opin. Biol. Ther. 13, 169–182 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. van Imhoff, G. W. et al. Ofatumumab versus rituximab salvage chemoimmunotherapy in relapsed or refractory diffuse large B-cell lymphoma: the ORCHARRD study. J. Clin. Oncol. 35, 544–551 (2016).

    Article  PubMed  Google Scholar 

  155. Cang, S., Mukhi, N., Wang, K. & Liu, D. Novel CD20 monoclonal antibodies for lymphoma therapy. J. Hematol. Oncol. 5, 64 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Robak, T. & Robak, E. New anti-CD20 monoclonal antibodies for the treatment of B-cell lymphoid malignancies. BioDrugs 25, 13–25 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Wierda, W. G. et al. Ofatumumab is active in patients with fludarabine-refractory CLL irrespective of prior rituximab: results from the phase 2 international study. Blood 118, 5126–5129 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Taylor, P. C. et al. Ofatumumab, a fully human anti-CD20 monoclonal antibody, in biological-naive, rheumatoid arthritis patients with an inadequate response to methotrexate: a randomised, double-blind, placebo-controlled clinical trial. Ann. Rheum. Dis. 70, 2119–2125 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Basu, B. Ofatumumab for rituximab-resistant nephrotic syndrome. N. Engl. J. Med. 370, 1268–1270 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Frieri, M., Heuser, W. & Bliss, J. Efficacy of novel monoclonal antibody belimumab in the treatment of lupus nephritis. J. Pharmacol. Pharmacother. 6, 71–76 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Willcocks, L. et al. Effect of belimumab on proteinuria and anti-PLA2R autoantibody in idiopathic membranous nephropathy — 6 months data. Nephrol. Dial. Transplant. 30, iii32–iii33 (2015).

    Article  Google Scholar 

  162. Gong, Q. et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J. Immunol. 174, 817–826 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Debiec, H. & Ronco, P. Immune response against autoantigen PLA2R is not gambling: implications for pathophysiology, prognosis, and therapy. J. Am. Soc. Nephrol. 27, 1275–1277 (2016).

    Article  PubMed  Google Scholar 

  164. Ellebrecht, C. T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353, 179–184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mei, H. E. et al. A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood 125, 1739–1748 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. van de Donk, N. W. et al. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol. Rev. 270, 95–112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Meister, S. et al. Extensive immunoglobulin production sensitizes myeloma cells for proteasome inhibition. Cancer Res. 67, 1783–1792 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Bontscho, J. et al. Myeloperoxidase-specific plasma cell depletion by bortezomib protects from anti-neutrophil cytoplasmic autoantibodies-induced glomerulonephritis. J. Am. Soc. Nephrol. 22, 336–348 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Neubert, K. et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat. Med. 14, 748–755 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Alexander, T. et al. The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann. Rheum. Dis. 74, 1474–1478 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Novikov, P., Moiseev, S., Bulanov, N. & Shchegoleva, E. Bortezomib in refractory ANCA-associated vasculitis: a new option? Ann. Rheum. Dis. 75, e9 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Ejaz, N. S. et al. Review of bortezomib treatment of antibody-mediated rejection in renal transplantation. Antioxid. Redox Signal. 21, 2401–2418 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Hartono, C., Chung, M., Kuo, S. F., Seshan, S. V. & Muthukumar, T. Bortezomib therapy for nephrotic syndrome due to idiopathic membranous nephropathy. J. Nephrol. 27, 103–106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Popow, I. et al. A comprehensive and quantitative analysis of the major specificities in rabbit antithymocyte globulin preparations. Am. J. Transplant. 13, 3103–3113 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Alexander, T. et al. Depletion of autoreactive immunologic memory followed by autologous hematopoietic stem cell transplantation in patients with refractory SLE induces long-term remission through de novo generation of a juvenile and tolerant immune system. Blood 113, 214–223 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Evaluate. Alexion reports presentation of membranous nephritis clinical trials. http://www.evaluategroup.com/Universal/View.aspx?type=Story&id=33783 (2002).

  177. Ma, H., Sandor, D. G. & Beck, L. H. Jr. The role of complement in membranous nephropathy. Semin. Nephrol. 33, 531–542 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Takano, T., Elimam, H. & Cybulsky, A. V. Complement-mediated cellular injury. Semin. Nephrol. 33, 586–601 (2013).

    Article  CAS  PubMed  Google Scholar 

  179. Cattran, D. C. et al. Validation of a predictive model of idiopathic membranous nephropathy: its clinical and research implications. Kidney Int. 51, 901–907 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Luca Perico, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy, helped to revise the paragraph on PLA2R epitope spreading and Fig. 2.

Author information

Authors and Affiliations

Authors

Contributions

P.R. and F.C.F. researched data for the article. All authors contributed to discussion of the article's content, writing and review/editing the manuscript before submission.

Corresponding author

Correspondence to Giuseppe Remuzzi.

Ethics declarations

Competing interests

F.C.F. has received unrestricted research grants from Genentech/Roche, the maker of rituximab. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggenenti, P., Fervenza, F. & Remuzzi, G. Treatment of membranous nephropathy: time for a paradigm shift. Nat Rev Nephrol 13, 563–579 (2017). https://doi.org/10.1038/nrneph.2017.92

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.92

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing