Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Complement in ANCA-associated vasculitis: mechanisms and implications for management

Key Points

  • Activation of the complement system through the alternative pathway is necessary for the development of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) in animal models

  • C5a has a key role in AAV, linking inflammation and the coagulation system

  • Neutrophils, ANCA and the complement system form a positive feedback loop in the development of AAV

  • Inhibition of the complement system, particularly by targeting C5a, is a potential therapeutic approach for AAV

Abstract

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a group of potentially life-threatening autoimmune diseases. The main histological feature in the kidneys of patients with AAV is pauci-immune necrotizing crescentic glomerulonephritis with little immunoglobulin and complement deposition in the glomerular capillary walls. The complement system was not, therefore, initially thought to be associated with the development of AAV. Accumulating evidence from animal models and clinical observations indicate, however, that activation of the complement system — and the alternative pathway in particular — is crucial for the development of AAV, and that the complement activation product C5a has a central role. Stimulation of neutrophils with C5a and ANCA not only results in the neutrophil respiratory burst and degranulation, but also activates the coagulation system and generates thrombin, thus bridging the inflammation and coagulation systems. In this Review, we provide an overview of the clinical, in vivo and in vitro evidence for a role of complement activation in the development of AAV and discuss how targeting the complement system could provide opportunities for therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways of complement activation.
Figure 2: Expression of complement activation products in renal samples from patients with anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV).
Figure 3: Proposed model for the interaction of anti-neutrophil cytoplasmic antibody (ANCA), neutrophils and complement activation in the pathogenesis of ANCA-associated vasculitis.

Similar content being viewed by others

References

  1. Jennette, J. C. et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 65, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Hagen, E. C. et al. Diagnostic value of standardized assays for anti-neutrophil cytoplasmic antibodies in idiopathic systemic vasculitis. EC/BCR Project for ANCA Assay Standardization. Kidney Int. 53, 743–753 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Walport, M. J. Complement. First of two parts. N. Engl. J. Med. 344, 1058–1066 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Walport, M. J. Complement. Second of two parts. N. Engl. J. Med. 344, 1140–1144 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Amara, U. et al. Molecular intercommunication between the complement and coagulation systems. J. Immunol. 185, 5628–5636 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Conway, E. M. Reincarnation of ancient links between coagulation and complement. J. Thromb. Haemost. 13 (Suppl. 1), S121–S132 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Nataf, S., Davoust, N., Ames, R. S. & Barnum, S. R. Human T cells express the C5a receptor and are chemoattracted to C5a. J. Immunol. 1950, 4018–4023 (1999).

    Google Scholar 

  8. Ricklin, D., Reis, E. S. & Lambris, J. D. Complement in disease: a defence system turning offensive. Nat. Rev. Nephrol. 12, 383–401 (2016). Comprehensive review that summarizes the complement system, including key activating mechanisms, crosstalk, the involvement of complement in clinical conditions and promising therapeutic approaches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xiao, H. et al. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J. Clin. Invest. 110, 955–963 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schreiber, A., Xiao, H., Falk, R. J. & Jennette, J. C. Bone marrow-derived cells are sufficient and necessary targets to mediate glomerulonephritis and vasculitis induced by anti-myeloperoxidase antibodies. J. Am. Soc. Nephrol. 17, 3355–3364 (2006).

    Article  PubMed  Google Scholar 

  11. Little, M. A. et al. Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte–microvascular interactions in vivo. Blood 106, 2050–2058 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kettritz, R. How anti-neutrophil cytoplasmic autoantibodies activate neutrophils. Clin. Exp. Immunol. 169, 220–228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jayne, D. R. et al. Randomized trial of plasma exchange or high-dosage methylprednisolone as adjunctive therapy for severe renal vasculitis. J. Am. Soc. Nephrol. 18, 2180–2188 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. de Lind van Wijngaarden, R. A. et al. Chances of renal recovery for dialysis-dependent ANCA-associated glomerulonephritis. J. Am. Soc. Nephrol. 18, 2189–2197 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Xiao, H. et al. The role of neutrophils in the induction of glomerulonephritis by anti-myeloperoxidase antibodies. Am. J. Pathol. 167, 39–45 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kessenbrock, K. et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15, 623–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Sangaletti, S. et al. Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood 120, 3007–3018 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Xiao, H., Schreiber, A., Heeringa, P., Falk, R. J. & Jennette, J. C. Alternative complement pathway in the pathogenesis of disease mediated by antineutrophil cytoplasmic autoantibodies. Am. J. Pathol. 170, 52–64 (2007). This is the first study that highlighted the crucial role of the complement system in the pathogenesis of ANCA-associated vasculitis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huugen, D. et al. Inhibition of complement factor C5 protects against antimyeloperoxidase antibody-mediated glomerulonephritis in mice. Kidney Int. 71, 646–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Schreiber, A. et al. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J. Am. Soc. Nephrol. 20, 289–298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xiao, H. et al. C5a receptor (CD88) blockade protects against MPO-ANCA GN. J. Am. Soc. Nephrol. 25, 225–231 (2014). This paper identified the role of the central complement component, C5a, in the pathogenesis of ANCA-associated vasculitis.

    Article  CAS  PubMed  Google Scholar 

  23. Haas, M. & Eustace, J. A. Immune complex deposits in ANCA-associated crescentic glomerulonephritis: a study of 126 cases. Kidney Int. 65, 2145–2152 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Yu, F. et al. Clinical and pathological features of renal involvement in propylthiouracil-associated ANCA-positive vasculitis. Am. J. Kidney Dis. 49, 607–614 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, M., Xing, G. Q., Yu, F., Liu, G. & Zhao, M. H. Complement deposition in renal histopathology of patients with ANCA-associated pauci-immune glomerulonephritis. Nephrol. Dial. Transplant. 24, 1247–1252 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Xing, G. Q. et al. Complement activation is involved in renal damage in human antineutrophil cytoplasmic autoantibody associated pauci-immune vasculitis. J. Clin. Immunol. 29, 282–291 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Gou, S. J., Yuan, J., Wang, C., Zhao, M. H. & Chen, M. Alternative complement pathway activation products in urine and kidneys of patients with ANCA-associated GN. Clin. J. Am. Soc. Nephrol. 8, 1884–1891 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hilhorst, M. et al. Complement in ANCA-associated glomerulonephritis. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfv288 (2015).

  29. Yuan, J. et al. C5a and its receptors in human anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Arthritis Res. Ther. 14, R140 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huey, R. & Hugli, T. E. Characterization of a C5a receptor on human polymorphonuclear leukocytes (PMN). J. Immunol. 135, 2063–2068 (1985).

    CAS  PubMed  Google Scholar 

  31. Gou, S. J., Yuan, J., Chen, M., Yu, F. & Zhao, M. H. Circulating complement activation in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Kidney Int. 83, 129–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Manenti, L. et al. Association of serum C3 concentration and histologic signs of thrombotic microangiopathy with outcomes among patients with ANCA-associated renal vasculitis. Clin. J. Am. Soc. Nephrol. 10, 2143–2151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, S. F. et al. Clinicopathologic characteristics and outcomes of renal thrombotic microangiopathy in anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis. Clin. J. Am. Soc. Nephrol. 10, 750–758 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Noris, M. & Remuzzi, G. Atypical hemolytic-uremic syndrome. N. Engl. J. Med. 361, 1676–1687 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Ferreira, V. P. et al. The binding of factor H to a complex of physiological polyanions and C3b on cells is impaired in atypical hemolytic uremic syndrome. J. Immunol. 182, 7009–7018 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Servais, A. et al. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int. 82, 454–464 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, S. F. et al. Plasma complement factor H is associated with disease activity of patients with ANCA-associated vasculitis. Arthritis Res. Ther. 17, 129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hao, J., Meng, L. Q., Xu, P. C., Chen, M. & Zhao, M. H. p38MAPK, ERK and PI3K signaling pathways are involved in C5a-primed neutrophils for ANCA-mediated activation. PLoS ONE 7, e38317 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hao, J., Chen, M. & Zhao, M. H. Involvement of protein kinase C in C5a-primed neutrophils for ANCA-mediated activation. Mol. Immunol. 54, 68–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Kalant, D. et al. C5L2 is a functional receptor for acylation-stimulating protein. J. Biol. Chem. 280, 23936–23944 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Gao, H. et al. Evidence for a functional role of the second C5a receptor C5L2. FASEB J. 19, 1003–1005 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, N. J. et al. C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a. Nature 446, 203–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Rittirsch, D. et al. Functional roles for C5a receptors in sepsis. Nat. Med. 14, 551–557 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hao, J., Wang, C., Yuan, J., Chen, M. & Zhao, M. H. A pro-inflammatory role of C5L2 in C5a-primed neutrophils for ANCA-induced activation. PLoS ONE 8, e66305 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, R., Coulthard, L. G., Wu, M. C., Taylor, S. M. & Woodruff, T. M. C5L2: a controversial receptor of complement anaphylatoxin, C5a. FASEB J. 27, 855–864 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Niessen, F. et al. Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. Nature 452, 654–658 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Choi, J. W. et al. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc. Natl Acad. Sci. USA 108, 751–756 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Samy, E. T. et al. Cutting edge: modulation of intestinal autoimmunity and IL-2 signaling by sphingosine kinase 2 independent of sphingosine 1-phosphate. J. Immunol. 179, 5644–5648 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Bachmaier, K., Guzman, E., Kawamura, T., Gao, X. & Malik, A. B. Sphingosine kinase 1 mediation of expression of the anaphylatoxin receptor C5L2 dampens the inflammatory response to endotoxin. PLoS ONE 7, e30742 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hao, J., Huang, Y. M., Zhao, M. H. & Chen, M. The interaction between C5a and sphingosine-1-phosphate in neutrophils for antineutrophil cytoplasmic antibody mediated activation. Arthritis Res. Ther. 16, R142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Seong, S. Y. & Matzinger, P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 4, 469–478 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, C. et al. Association of circulating level of high mobility group box 1 with disease activity in antineutrophil cytoplasmic autoantibody–associated vasculitis. Arthritis Care Res. 65, 1828–1834 (2013).

    Article  CAS  Google Scholar 

  53. Ma, T. T. et al. Urinary levels of high mobility group box-1 are associated with disease activity in antineutrophil cytoplasmic autoantibody-associated vasculitis. PLoS ONE 10, e0123586 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, C. et al. High mobility group box 1 contributes to anti-neutrophil cytoplasmic antibody-induced neutrophils activation through receptor for advanced glycation end products (RAGE) and Toll-like receptor 4. Arthritis Res. Ther. 17, 64 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ma, Y. H. et al. High-mobility group box 1 potentiates antineutrophil cytoplasmic antibody-inducing neutrophil extracellular traps formation. Arthritis Res. Ther. 18, 2 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, C. et al. Involvement of high mobility group box 1 in the activation of C5a-primed neutrophils induced by ANCA. Clin. Immunol. 159, 47–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Stassen, P. M., Derks, R. P., Kallenberg, C. G. & Stegeman, C. A. Venous thromboembolism in ANCA-associated vasculitis — incidence and risk factors. Rheumatology (Oxford) 47, 530–534 (2008).

    Article  CAS  Google Scholar 

  58. Merkel, P. A. et al. Brief communication: high incidence of venous thrombotic events among patients with Wegener granulomatosis: the Wegener's Clinical Occurrence of Thrombosis (WeCLOT) Study. Ann. Intern. Med. 142, 620–626 (2005).

    Article  PubMed  Google Scholar 

  59. Ma, T. T., Huang, Y. M., Wang, C., Zhao, M. H. & Chen, M. Coagulation and fibrinolysis index profile in patients with ANCA-associated vasculitis. PLoS ONE 9, e97843 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang, Y. M., Wang, H., Wang, C., Chen, M. & Zhao, M. H. Promotion of hypercoagulability in antineutrophil cytoplasmic antibody-associated vasculitis by C5a-induced tissue factor-expressing microparticles and neutrophil extracellular traps. Arthritis Rheumatol. 67, 2780–2790 (2015). This paper found that C5a links the inflammation and coagulation process in AAV.

    Article  PubMed  Google Scholar 

  61. Camous, L. et al. Complement alternative pathway acts as a positive feedback amplification of neutrophil activation. Blood 117, 1340–1349 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Leffler, J. et al. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J. Immunol. 188, 3522–3531 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, H., Wang, C., Zhao, M. H. & Chen, M. Neutrophil extracellular traps can activate alternative complement pathways. Clin. Exp. Immunol. 181, 518–527 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pfister, H. et al. Antineutrophil cytoplasmic autoantibodies against the murine homolog of proteinase 3 (Wegener autoantigen) are pathogenic in vivo. Blood 104, 1411–1418 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. van der Geld, Y. M. et al. Rats and mice immunised with chimeric human/mouse proteinase 3 produce autoantibodies to mouse Pr3 and rat granulocytes. Ann. Rheum. Dis. 66, 1679–1682 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kambas, K. et al. Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease. Ann. Rheum. Dis. 73, 1854–1863 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Ritis, K. et al. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J. Immunol. 177, 4794–4802 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Huber-Lang, M. et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat. Med. 12, 682–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Ekdahl, K. N. et al. Dangerous liaisons: complement, coagulation, and kallikrein/kinin cross-talk act as a linchpin in the events leading to thromboinflammation. Immunol. Rev. 274, 245–269 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Speth, C. et al. Complement and platelets: mutual interference in the immune network. Mol. Immunol. 67, 108–118 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Lood, C. et al. Platelet activation and anti-phospholipid antibodies collaborate in the activation of the complement system on platelets in systemic lupus erythematosus. PLoS ONE 9, e99386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Martel, C. et al. Requirements for membrane attack complex formation and anaphylatoxins binding to collagen-activated platelets. PLoS ONE 6, e18812 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sims, P. J. & Wiedmer, T. Induction of cellular procoagulant activity by themem-brane attack complex of complement. Semin. Cell Biol. 6, 275–282 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Del Conde, I., Crúz, M. A., Zhang, H., López, J. A. & Afshar-Kharghan, V. Platelet activation leads to activation and propagation of the complement system. J. Exp. Med. 201, 871–879 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Willeke, P. et al. Platelet counts as a biomarker in ANCA-associated vasculitis. Scand. J. Rheumatol. 44, 302–308 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Mogensen, T. H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22, 240–273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015). This comprehensive review discusses the emerging principles of innate control of adaptive immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Raby, A. C. et al. TLR activation enhances C5a-induced pro-inflammatory responses by negatively modulating the second C5a receptor, C5L2. Eur. J. Immunol. 41, 2741–2752 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zou, L. et al. Complement factor B is the downstream effector of TLRs and plays an important role in a mouse model of severe sepsis. J. Immunol. 191, 5625–5635 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huugen, D. et al. Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacterial lipopolysaccharide: role of tumor necrosis factor-alpha. Am. J. Pathol. 167, 47–58 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, H., Gou, S. J., Zhao, M. H. & Chen, M. The expression of Toll-like receptors 2, 4 and 9 in kidneys of patients with anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Clin. Exp. Immunol. 177, 603–610 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, C. et al. Emerging role of high mobility group box 1 in ANCA-associated vasculitis. Autoimmun. Rev. 14, 1057–1065 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Woodruff, T. M., Nandakumar, K. S. & Tedesco, F. Inhibiting the C5-C5a receptor axis. Mol. Immunol. 48, 1631–1642 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Hillmen, P. et al. Effect of eculizumab on hemolysis and transfusion requirements in patients with paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 350, 552–559 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Hillmen, P. et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 355, 1233–1243 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Legendre, C. M. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 368, 2169–2181 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Vivarelli, M. & Emma, F. Treatment of C3 glomerulopathy with complement blockers. Semin. Thromb. Hemost. 40, 472–477 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Rosenblad, T. et al. Eculizumab treatment for rescue of renal function in IgA nephropathy. Pediatr. Nephrol. 29, 2225–2228 (2014).

    Article  PubMed  Google Scholar 

  89. Pickering, M. C. et al. Eculizumab as rescue therapy in severe resistant lupus nephritis. Rheumatology (Oxford) 54, 2286–2288 (2015).

    Google Scholar 

  90. Shapira, I., Andrade, D., Allen, S. L. & Salmon, J. E. Brief report: induction of sustained remission in recurrent catastrophic antiphospholipid syndrome via inhibition of terminal complement with eculizumab. Arthritis Rheum. 64, 2719–2723 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Castellano, G. et al. Therapeutic targeting of classical and lectin pathways of complement protects from ischemia-reperfusion-induced renal damage. Am. J. Pathol. 176, 1648–1659 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  92. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01147302 (2015).

  93. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01134510 (2015).

  94. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02134314 (2017).

  95. Paixão-Cavalcante, D. et al. A humanized antibody that regulates the alternative pathway convertase: potential for therapy of renal disease associated with nephritic factors. J. Immunol. 192, 4844–4851 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, Y. et al. Soluble CR1 therapy improves complement regulation in C3 glomerulopathy. J. Am. Soc. Nephrol. 24, 1820–1829 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01363388 (2016).

  98. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02222155 (2016).

Download references

Acknowledgements

The authors' work is supported by three grants of the National Natural Science Fund (No. 81425008, No. 81621092 and No. 81370829) and a grant from the National Key Research and Development Program (No. 2016YFC0906102). We are very grateful to Dr. Chen Wang for drawing the first draft of figures for this article. David Jayne is supported by the Cambridge Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Ming-Hui Zhao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Polyangiitis

Inflammation involving multiple blood vessels.

Vasculitides

A group of disorders that destroy blood vessels by inflammation. Both arteries and veins are affected.

Fluid phase

In the context of complement activation, fluid phase refers to activation in the circulation, rather than on the surface of cells.

Properdin

The only known positive regulator of complement activation that stabilizes the alternative pathway convertases.

Glomerular capillary tuft infarction

Occlusion of the lumen of glomerular capillaries by micro-thrombi.

Opsonize

To make bacteria or other cells more susceptible to the action of phagocytes via a mechanism involving binding of an opsonin, such as IgG or C3b

Plasma exchange

Removal, treatment and return or exchange of blood plasma or components from and to the circulation; often used to treat severe autoimmune diseases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Jayne, D. & Zhao, MH. Complement in ANCA-associated vasculitis: mechanisms and implications for management. Nat Rev Nephrol 13, 359–367 (2017). https://doi.org/10.1038/nrneph.2017.37

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.37

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing