Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T helper type 17 cells in immune-mediated glomerular disease

Key Points

  • The IL-17/T helper type 17 (TH17) axis is a key mediator of renal tissue injury in models of renal immune-mediated disease

  • In patients with autoimmune kidney diseases, such as anti-neutrophil cytoplasmic antibody-associated glomerulonephritis or lupus nephritis, IL-17 serum levels correlate with disease activity; moreover, TH17 cells are abundant in kidneys of these patients

  • In experimental crescentic glomerulonephritis, intestinal TH17 cells can migrate into the kidney where they contribute to renal pathology

  • TH17 cells in the gut are induced by intestinal microbiota; microbial depletion with antibiotics reduces the renal TH17 response and tissue injury in experimental crescentic glomerulonephritis

  • IL-17 and IL-23-specific antibody treatment are remarkably effective in psoriasis, but their role in immune-mediated kidney disease has not been studied

Abstract

CD4+ T cells are important drivers of tissue damage in immune-mediated renal diseases, such as anti-glomerular basement membrane glomerulonephritis, anti-neutrophil cytoplasmic antibody-associated glomerulonephritis, and lupus nephritis. The discovery of a distinct, IL-17-producing CD4+ T-cell lineage termed T helper type 17 (TH17) cells has markedly advanced current understanding of the pathogenic mechanisms of organ-specific immunity and the pathways that lead to target organ damage. TH17 cells are characterized by the expression of the transcription factor RORγt, the production of the pro-inflammatory cytokines IL-17A, IL-17F, IL-22, and high expression of the chemokine receptor C-C-motif chemokine receptor 6 (CCR6). An emerging body of evidence from experimental models and human studies supports a key role for these cells in the development of renal damage, and has led to the identification of targets to inhibit the production of TH17 cells in the intestine, their migration, or their actions within the kidney. Here, we describe the identification, regulation, and function of TH17 cells and their associated pathways in immune-mediated kidney diseases, with a particular focus on the mechanisms underlying renal tissue injury. We also discuss the rationale for the translation of these findings into new therapeutic approaches in patients with autoimmune kidney disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differentiation of naive T cells into T helper type 17 (TH17) cells.
Figure 2: Potential mechanisms of T helper type 17 (TH17) cell-driven tissue injury in glomerulonephritis.
Figure 3: IL-17 signalling pathways.
Figure 4: The fate of renal IL-17-producing cells in glomerulonephritis.
Figure 5: Relationship between intestinal microbiota and kidney infiltrating T helper type 17 (TH17) cells.
Figure 6: Potential therapeutic targets of the TH17 immune response in the kidney.

Similar content being viewed by others

References

  1. O'Shea, J. J. & Paul, W. E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Raphael, I., Nalawade, S., Eagar, T. N. & Forsthuber, T. G. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74, 5–17 (2015).

    CAS  PubMed  Google Scholar 

  3. Ueno, H., Banchereau, J. & Vinuesa, C. G. Pathophysiology of T follicular helper cells in humans and mice. Nat. Immunol. 16, 142–152 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  5. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Gaffen, S. L., Jain, R., Garg, A. V. & Cua, D. J. The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14, 585–600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murphy, C. A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Atarashi, K. et al. Th17 cell Induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, Y. et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510, 152–156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Codarri, L. et al. RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 12, 560–567 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Zenewicz, L. A. et al. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27, 647–659 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hirota, K. et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med. 204, 2803–2812 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Burkett, P. R., Meyer zu Horste, G. & Kuchroo, V. K. Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity. J. Clin. Invest. 125, 2211–2219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Iezzi, G. et al. CD40–CD40L cross-talk integrates strong antigenic signals and microbial stimuli to induce development of IL-17-producing CD4+ T cells. Proc. Natl Acad. Sci. USA 106, 876–881 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Mease, P. J. et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N. Engl. J. Med. 373, 1329–1339 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Gordon, K. B. et al. Phase 3 trials of ixekizumab in moderate-to-severe plaque psoriasis. N. Engl. J. Med. 375, 345–356 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03129100 (2017).

  24. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01965132 (2017).

  25. Patel, D. D. & Kuchroo, V. K. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity 43, 1040–1051 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Van Kooten, C. et al. Interleukin-17 activates human renal epithelial cells in vitro and is expressed during renal allograft rejection. J. Am. Soc. Nephrol. 9, 1526–1534 (1998).

    CAS  PubMed  Google Scholar 

  27. Woltman, A. M. et al. Interleukin-17 and CD40-ligand synergistically enhance cytokine and chemokine production by renal epithelial cells. J. Am. Soc. Nephrol. 11, 2044–2055 (2000).

    CAS  PubMed  Google Scholar 

  28. Strehlau, J. et al. Quantitative detection of immune activation transcripts as a diagnostic tool in kidney transplantation. Proc. Natl Acad. Sci. USA 94, 695–700 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dong, X., Bachman, L. A., Miller, M. N., Nath, K. A. & Griffin, M. D. Dendritic cells facilitate accumulation of IL-17 T cells in the kidney following acute renal obstruction. Kidney Int. 74, 1294–1309 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paust, H. J. et al. The IL-23/Th17 axis contributes to renal injury in experimental glomerulonephritis. J. Am. Soc. Nephrol. 20, 969–979 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ooi, J. D., Phoon, R. K., Holdsworth, S. R. & Kitching, A. R. IL-23, not IL-12, directs autoimmunity to the Goodpasture antigen. J. Am. Soc. Nephrol. 20, 980–989 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Steinmetz, O. M. et al. The Th17-defining transcription factor RORγt promotes glomerulonephritis. J. Am. Soc. Nephrol. 22, 472–483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Summers, S. A. et al. Th1 and Th17 cells induce proliferative glomerulonephritis. J. Am. Soc. Nephrol. 20, 2518–2524 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tulone, C., Giorgini, A., Freeley, S., Coughlan, A. & Robson, M. G. Transferred antigen-specific TH17 but not TH1 cells induce crescentic glomerulonephritis in mice. Am. J. Pathol. 179, 2683–2690 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hunemorder, S. et al. TH1 and TH17 cells promote crescent formation in experimental autoimmune glomerulonephritis. J. Pathol. 237, 62–71 (2015).

    Article  PubMed  CAS  Google Scholar 

  36. Ramani, K. et al. An essential role of interleukin-17 receptor signaling in the development of autoimmune glomerulonephritis. J. Leukoc. Biol. 96, 463–472 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Pisitkun, P. et al. Interleukin-17 cytokines are critical in development of fatal lupus glomerulonephritis. Immunity 37, 1104–1115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paust, H. J. et al. Chemokines play a critical role in the cross-regulation of Th1 and Th17 immune responses in murine crescentic glomerulonephritis. Kidney Int. 82, 72–83 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Krebs, C. F. et al. MicroRNA-155 drives TH17 immune response and tissue injury in experimental crescentic GN. J. Am. Soc. Nephrol. 24, 1955–1965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, R. et al. Regulation of pathogenic Th17 cell differentiation by IL-10 in the development of glomerulonephritis. Am. J. Pathol. 183, 402–412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, H. et al. Cln 3-requiring 9 is a negative regulator of Th17 pathway-driven inflammation in anti-glomerular basement membrane glomerulonephritis. Am. J. Physiol. Renal Physiol. 311, F505–F519 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Jennette, J. C. & Falk, R. J. Small-vessel vasculitis. N. Engl. J. Med. 337, 1512–1523 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Gan, P. Y. et al. Th17 cells promote autoimmune anti-myeloperoxidase glomerulonephritis. J. Am. Soc. Nephrol. 21, 925–931 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Summers, S. A. et al. Toll-like receptor 2 induces Th17 myeloperoxidase autoimmunity while Toll-like receptor 9 drives Th1 autoimmunity in murine vasculitis. Arthritis Rheum. 63, 1124–1135 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Chavele, K. M. et al. Regulation of myeloperoxidase-specific T cell responses during disease remission in antineutrophil cytoplasmic antibody-associated vasculitis: the role of Treg cells and tryptophan degradation. Arthritis Rheum. 62, 1539–1548 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Ludviksson, B. R. et al. Active Wegener's granulomatosis is associated with HLA-DR+ CD4+ T cells exhibiting an unbalanced Th1-type T cell cytokine pattern: reversal with IL-10. J. Immunol. 160, 3602–3609 (1998).

    CAS  PubMed  Google Scholar 

  47. Abdulahad, W. H., Stegeman, C. A., Limburg, P. C. & Kallenberg, C. G. Skewed distribution of Th17 lymphocytes in patients with Wegener's granulomatosis in remission. Arthritis Rheum. 58, 2196–2205 (2008).

    Article  PubMed  Google Scholar 

  48. Saito, H., Tsurikisawa, N., Tsuburai, T., Oshikata, C. & Akiyama, K. Cytokine production profile of CD4+ T cells from patients with active Churg–Strauss syndrome tends toward Th17. Int. Arch. Allergy Immunol. 149 (Suppl. 1), 61–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Nogueira, E. et al. Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells are elevated in patients with ANCA-associated vasculitis. Nephrol. Dial. Transplant. 25, 2209–2217 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Wilde, B. et al. Th17 expansion in granulomatosis with polyangiitis (Wegener's): the role of disease activity, immune regulation and therapy. Arthritis Res. Ther. 14, R227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rani, L. et al. Predominance of PR3 specific immune response and skewed TH17 versus T-regulatory milieu in active granulomatosis with polyangiitis. Cytokine 71, 261–267 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Krebs, C. F. et al. Autoimmune renal disease is exacerbated by S1P-receptor-1-dependent intestinal Th17 cell migration to the kidney. Immunity 45, 1078–1092 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bomback, A. S. & Appel, G. B. Updates on the treatment of lupus nephritis. J. Am. Soc. Nephrol. 21, 2028–2035 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Weening, J. J. et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. J. Am. Soc. Nephrol. 15, 241–250 (2004).

    Article  PubMed  Google Scholar 

  55. Okamoto, A., Fujio, K., Tsuno, N. H., Takahashi, K. & Yamamoto, K. Kidney-infiltrating CD4+ T-cell clones promote nephritis in lupus-prone mice. Kidney Int. 82, 969–979 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Steinmetz, O. M. et al. CXCR3 mediates renal Th1 and Th17 immune response in murine lupus nephritis. J. Immunol. 183, 4693–4704 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, Z., Kyttaris, V. C. & Tsokos, G. C. The role of IL-23/IL-17 axis in lupus nephritis. J. Immunol. 183, 3160–3169 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Haas, C., Ryffel, B. & Le Hir, M. IFN-γ is essential for the development of autoimmune glomerulonephritis in MRL/Ipr mice. J. Immunol. 158, 5484–5491 (1997).

    CAS  PubMed  Google Scholar 

  59. Kikawada, E., Lenda, D. M. & Kelley, V. R. IL-12 deficiency in MRL-Fas(lpr) mice delays nephritis and intrarenal IFN-γ expression, and diminishes systemic pathology. J. Immunol. 170, 3915–3925 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Schmidt, T. et al. Function of the Th17/interleukin-17A immune response in murine lupus nephritis. Arthritis Rheumatol. 67, 475–487 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Crispin, J. C. et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J. Immunol. 181, 8761–8766 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Kyttaris, V. C., Zhang, Z., Kuchroo, V. K., Oukka, M. & Tsokos, G. C. Cutting edge: IL-23 receptor deficiency prevents the development of lupus nephritis in C57BL/6-lpr/lpr mice. J. Immunol. 184, 4605–4609 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Summers, S. A. et al. Endogenous interleukin (IL)-17A promotes pristane-induced systemic autoimmunity and lupus nephritis induced by pristane. Clin. Exp. Immunol. 176, 341–350 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Amarilyo, G., Lourenco, E. V., Shi, F. D. & La Cava, A. IL-17 promotes murine lupus. J. Immunol. 193, 540–543 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Riedel, J. H. et al. IL-17F promotes tissue injury in autoimmune kidney diseases. J. Am. Soc. Nephrol. 27, 3666–3677 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kluger, M. A. et al. Treg17 cells are programmed by Stat3 to suppress Th17 responses in systemic lupus. Kidney Int. 89, 158–166 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Wong, C. K., Ho, C. Y., Li, E. K. & Lam, C. W. Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus 9, 589–593 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Wong, C. K. et al. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. Clin. Immunol. 127, 385–393 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Doreau, A. et al. Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat. Immunol. 10, 778–785 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Yang, J. et al. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum. 60, 1472–1483 (2009).

    Article  PubMed  Google Scholar 

  71. Abdel Galil, S. M., Ezzeldin, N. & El-Boshy, M. E. The role of serum IL-17 and IL-6 as biomarkers of disease activity and predictors of remission in patients with lupus nephritis. Cytokine 76, 280–287 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Zhao, X. F. et al. Increased serum interleukin 17 in patients with systemic lupus erythematosus. Mol. Biol. Rep. 37, 81–85 (2010).

    Article  PubMed  CAS  Google Scholar 

  73. Koga, T. et al. Calcium/calmodulin-dependent kinase iv facilitates the recruitment of interleukin-17-producing cells to target organs through the CCR6/CCL20 axis in Th17 cell-driven inflammatory diseases. Arthritis Rheumatol. 68, 1981–1988 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Turner, J. E. et al. CCR6 recruits regulatory T cells and Th17 cells to the kidney in glomerulonephritis. J. Am. Soc. Nephrol. 21, 974–985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Odobasic, D. et al. Interleukin-17A promotes early but attenuates established disease in crescentic glomerulonephritis in mice. Am. J. Pathol. 179, 1188–1198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Disteldorf, E. M. et al. CXCL5 drives neutrophil recruitment in TH17-mediated GN. J. Am. Soc. Nephrol. 26, 55–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Petermann, F. et al. γδ T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 33, 351–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Michel, M. L. et al. Identification of an IL-17-producing NK1.1neg iNKT cell population involved in airway neutrophilia. J. Exp. Med. 204, 995–1001 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim, H. Y. et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat. Med. 20, 54–61 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Kluger, M. A. et al. RORγt+Foxp3+ cells are an independent bifunctional regulatory T cell lineage and mediate crescentic GN. J. Am. Soc. Nephrol. 27, 454–465 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Li, L. et al. IL-17 produced by neutrophils regulates IFN-γ-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J. Clin. Invest. 120, 331–342 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Fan, X. & Rudensky, A. Y. Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Turner, J. E. et al. IL-17A production by renal γδ T cells promotes kidney injury in crescentic GN. J. Am. Soc. Nephrol. 23, 1486–1495 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Riedel, J. H. et al. IL-33-mediated expansion of type 2 innate lymphoid cells protects from progressive glomerulosclerosis. J. Am. Soc. Nephrol. 28, 2068–2080 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Velden, J. et al. Renal IL-17 expression in human ANCA-associated glomerulonephritis. Am. J. Physiol. Renal Physiol. 302, F1663–F1673 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Ghali, J. R., O'Sullivan, K. M., Eggenhuizen, P. J., Holdsworth, S. R. & Kitching, A. R. Interleukin-17RA promotes humoral responses and glomerular injury in experimental rapidly progressive glomerulonephritis. Nephron 135, 207–223 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Haak, S. et al. IL-17A and IL-17F do not contribute vitally to autoimmune neuro-inflammation in mice. J. Clin. Invest. 119, 61–69 (2009).

    CAS  PubMed  Google Scholar 

  88. Wolf, D. et al. CD4+CD25+ regulatory T cells inhibit experimental anti-glomerular basement membrane glomerulonephritis in mice. J. Am. Soc. Nephrol. 16, 1360–1370 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Paust, H. J. et al. Regulatory T cells control the Th1 immune response in murine crescentic glomerulonephritis. Kidney Int. 80, 154–164 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ostmann, A. et al. Regulatory T cell-derived IL-10 ameliorates crescentic GN. J. Am. Soc. Nephrol. 24, 930–942 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Steinmetz, O. M., Turner, J. E. & Panzer, U. Staying on top of things right from the start: the obsessive–compulsive disorder of regulatory T cells. J. Am. Soc. Nephrol. 21, 6–7 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Josefowicz, S. Z. & Rudensky, A. Control of regulatory T cell lineage commitment and maintenance. Immunity 30, 616–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kluger, M. A. et al. Stat3 programs Th17-specific regulatory T cells to control GN. J. Am. Soc. Nephrol. 25, 1291–1302 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brucklacher-Waldert, V., Carr, E. J., Linterman, M. A. & Veldhoen, M. Cellular plasticity of CD4+ T cells in the intestine. Front. Immunol. 5, 488 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Bending, D. et al. Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J. Clin. Invest. 119, 565–572 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Harbour, S. N., Maynard, C. L., Zindl, C. L., Schoeb, T. R. & Weaver, C. T. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc. Natl Acad. Sci. USA 112, 7061–7066 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jager, A., Dardalhon, V., Sobel, R. A., Bettelli, E. & Kuchroo, V. K. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J. Immunol. 183, 7169–7177 (2009).

    Article  PubMed  CAS  Google Scholar 

  99. Koenen, H. J. et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112, 2340–2352 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Lee, Y. K. et al. Late developmental plasticity in the T helper 17 lineage. Immunity 30, 92–107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lohning, M. et al. Long-lived virus-reactive memory T cells generated from purified cytokine-secreting T helper type 1 and type 2 effectors. J. Exp. Med. 205, 53–61 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Luthje, K. et al. The development and fate of follicular helper T cells defined by an IL-21 reporter mouse. Nat. Immunol. 13, 491–498 (2012).

    Article  PubMed  CAS  Google Scholar 

  103. Yang, X. O. et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29, 44–56 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hirota, K. et al. Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses. Nat. Immunol. 14, 372–379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gagliani, N. et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221–225 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Krebs, C. F. et al. Plasticity of Th17 cells in autoimmune kidney diseases. J. Immunol. 197, 449–457 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Esplugues, E. et al. Control of TH17 cells occurs in the small intestine. Nature 475, 514–518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pelczar, P. et al. A pathogenic role for T cell-derived IL-22BP in inflammatory bowel disease. Science 354, 358–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Cosmi, L. et al. Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J. Exp. Med. 205, 1903–1916 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sano, T. et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 163, 381–393 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4615–4622 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen, M. & Kallenberg, C. G. The environment, geoepidemiology and ANCA-associated vasculitides Autoimmun. Rev. 9, A293–A298 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Stegeman, C. A. et al. Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener granulomatosis. Ann. Intern. Med. 120, 12–17 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Salmela, A. et al. Chronic nasal Staphylococcus aureus carriage identifies a subset of newly diagnosed granulomatosis with polyangiitis patients with high relapse rate. Rheumatology (Oxford) 56, 965–972 (2017).

    Article  CAS  Google Scholar 

  118. Stegeman, C. A., Tervaert, J. W., de Jong, P. E. & Kallenberg, C. G. Trimethoprim-sulfamethoxazole (co-trimoxazole) for the prevention of relapses of Wegener's granulomatosis. Dutch Co-Trimoxazole Wegener Study Group. N. Engl. J. Med. 335, 16–20 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Peng, Z. et al. Increased number of Th22 cells and correlation with Th17 cells in peripheral blood of patients with IgA nephropathy. Hum. Immunol. 74, 1586–1591 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Rosenkranz, A. R. et al. Regulatory interactions of αβ and γδ T cells in glomerulonephritis. Kidney Int. 58, 1055–1066 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Falk, M. C. et al. Infiltration of the kidney by αβ and γδ T cells: effect on progression in IgA nephropathy. Kidney Int. 47, 177–185 (1995).

    Article  CAS  PubMed  Google Scholar 

  122. Riedel, J. H. et al. Immature renal dendritic cells recruit regulatory CXCR6+ invariant natural killer T cells to attenuate crescentic GN. J. Am. Soc. Nephrol. 23, 1987–2000 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to all colleagues whose work could not be cited or discussed in greater detail due to space restrictions. Our work described in this Review was supported by grants from the Deutsche Forschungsgemeinschaft (SFB 1192: to C.F.K. and U.P.), and grants from the Deutsche Nierenstiftung and Deutsche Gesellschaft für Nephrologie to C.F.K. We thank Oliver M. Steinmetz and Jan-Eric Turner, Universitätsklinikum Hamburg-Eppendorf, for critical reading of the manuscript before submission.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, discussion of the content, and writing the article. C.F.K. and U.P. revised and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Christian F. Krebs or Ulf Panzer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

T regulatory (Treg) cells

An immunosuppressive T-cell subset that controls the inflammatory reaction. Distinct subsets of Treg cells have been identified (for example, Foxp3+ Treg cells and FoxP3IL-10+ type 1 Treg (TR1) cells)

T follicular helper (TFH) cells

A subset of CD4+ T cells that facilitate B-cell activation in the germinal centre and the differentiation of long-lived plasma cells

Delayed type hypersensitivity

(DTH). DTH or type IV hypersensitivity is a form of T cell-mediated immune reaction that is triggered by antigen in the skin and appears hours to days after antigen challenge.

γδ T cells

A subset of T cells that develop in the thymus and express a γδ heterodimeric T-cell receptor. These cells have more innate-like functions than do conventional αβ T cells.

Peyer's patches

A structure localized in the intestinal wall that consists of organized lymphoid follicles. As a part of the gut associated lymphoid tissue (GALT) they contribute to homeostasis at sites of food-derived antigens and microbiota.

Nanobody

A single-domain antibody derived from camelid heavy chain antibodies that is 10-fold smaller than conventional antibodies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krebs, C., Schmidt, T., Riedel, JH. et al. T helper type 17 cells in immune-mediated glomerular disease. Nat Rev Nephrol 13, 647–659 (2017). https://doi.org/10.1038/nrneph.2017.112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing