Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of neutrophils and NETosis in autoimmune and renal diseases

Key Points

  • Neutrophils may have critical roles in the pathogenesis of autoimmune diseases by forming neutrophil extracellular traps (NETs), secreting proinflammatory cytokines and by directly causing tissue damage

  • NET formation externalizes autoantigens that might contribute to the pathophysiology and clinical manifestations of autoimmune diseases, either directly or by modulating other components of the immune system

  • An imbalance in NET formation and degradation might increase the half-life of NET products and augment the immune response

  • Novel therapies that target key pathways in neutrophil function and NET formation might improve the treatment of autoimmune diseases.

Abstract

Systemic autoimmune diseases are a group of disorders characterized by a failure in self-tolerance to a wide variety of autoantigens. In genetically predisposed individuals, these diseases occur as a multistep process in which environmental factors have key roles in the development of abnormal innate and adaptive immune responses. Experimental evidence collected in the past decade suggests that neutrophils — the most abundant type of white blood cell — might have an important role in the pathogenesis of these diseases by contributing to the initiation and perpetuation of immune dysregulation through the formation of neutrophil extracellular traps (NETs), synthesis of proinflammatory cytokines and direct tissue damage. Many of the molecules externalized through NET formation are considered to be key autoantigens and might be involved in the generation of autoimmune responses in predisposed individuals. In several systemic autoimmune diseases, the imbalance between NET formation and degradation might increase the half-life of these lattices, which could enhance the exposure of the immune system to modified autoantigens and increase the capacity for NET-induced organ damage. This Review details the role of neutrophils and NETs in the pathophysiology of systemic autoimmune diseases, including their effect on renal damage, and discusses neutrophil targets as potential novel therapies for these diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NETosis pathways and potential therapeutic targets.
Figure 2: NETs in low-density granulocytes.
Figure 3: Neutrophils and NETosis in the pathogenesis of autoimmune and renal diseases.

Similar content being viewed by others

References

  1. Nauseef, W. M. & Borregaard, N. Neutrophils at work. Nat. Immunol. 15, 602–611 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Bardoel, B. W., Kenny, E. F., Sollberger, G. & Zychlinsky, A. The balancing act of neutrophils. Cell Host Microbe 15, 526–536 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Keshari, R. S. et al. Cytokines induced neutrophil extracellular traps formation: implication for the inflammatory disease condition. PLoS ONE 7, e48111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schorn, C. et al. Monosodium urate crystals induce extracellular DNA traps in neutrophils, eosinophils, and basophils but not in mononuclear cells. Front. Immunol. 3, 277 (2012).

    PubMed  PubMed Central  Google Scholar 

  6. Yalavarthi, S. et al. Antiphospholipid antibodies promote the release of neutrophil extracellular traps: a new mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 67, 2990–3003 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Behnen, M. et al. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRIIIB and Mac-1. J. Immunol. 193, 1954–1965 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Mantovani, A., Cassatella, M. A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Scapini, P., Bazzoni, F. & Cassatella, M. A. Regulation of B-cell-activating factor (BAFF)/B lymphocyte stimulator (BLyS) expression in human neutrophils. Immunol. Lett. 116, 1–6 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Huard, B. et al. APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa. J. Clin. Invest. 118, 2887–2895 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tvinnereim, A. R., Hamilton, S. E. & Harty, J. T. Neutrophil involvement in cross-priming CD8+ T cell responses to bacterial antigens. J. Immunol. 173, 1994–2002 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Fazio, J., Kalyan, S., Wesch, D. & Kabelitz, D. Inhibition of human γδ T cell proliferation and effector functions by neutrophil serine proteases. Scand. J. Immunol. 80, 381–389 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Megiovanni, A. M. et al. Polymorphonuclear neutrophils deliver activation signals and antigenic molecules to dendritic cells: a new link between leukocytes upstream of T lymphocytes. J. Leukoc. Biol. 79, 977–988 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Yang, C. W., Strong, B. S., Miller, M. J. & Unanue, E. R. Neutrophils influence the level of antigen presentation during the immune response to protein antigens in adjuvants. J. Immunol. 185, 2927–2934 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Semeraro, F. et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 118, 1952–1961 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rahman, A. & Isenberg, D. A. Systemic lupus erythematosus. N. Engl. J. Med. 358, 929–939 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Jennette, J. C. et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 65, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Giannakopoulos, B. & Krilis, S. A. The pathogenesis of the antiphospholipid syndrome. N. Engl. J. Med. 368, 1033–1044 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Pillay, J. et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116, 625–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Summers, C. et al. Neutrophil kinetics in health and disease. Trends Immunol. 31, 318–324 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Colotta, F., Re, F., Polentarutti, N., Sozzani, S. & Mantovani, A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80, 2012–2020 (1992).

    CAS  PubMed  Google Scholar 

  25. Herter, J. & Zarbock, A. Integrin regulation during leukocyte recruitment. J. Immunol. 190, 4451–4457 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Henson, P. M. Pathologic mechanisms in neutrophil-mediated injury. Am. J. Pathol. 68, 593–612 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Borregaard, N. & Cowland, J. B. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89, 3503–3521 (1997).

    CAS  PubMed  Google Scholar 

  28. Lominadze, G. et al. Proteomic analysis of human neutrophil granules. Mol. Cell. Proteomics 4, 1503–1521 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Faurschou, M. & Borregaard, N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 5, 1317–1327 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Kobayashi, S. D. & DeLeo, F. R. Role of neutrophils in innate immunity: a systems biology-level approach. Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 309–333 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fossati, G. et al. The mitochondrial network of human neutrophils: role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis. J. Immunol. 170, 1964–1972 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Fransen, M., Nordgren, M., Wang, B. & Apanasets, O. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim. Biophys. Acta 1822, 1363–1373 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez, P. C. et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64, 5839–5849 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Bowers, N. L. et al. Immune suppression by neutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. PLoS Pathog. 10, e1003993 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Puga, I. et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat. Immunol. 13, 170–180 (2012).

    Article  CAS  Google Scholar 

  36. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tillack, K., Breiden, P., Martin, R. & Sospedra, M. T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses. J. Immunol. 188, 3150–3159 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Fuchs, T. A. et al. Extracellular DNA traps promote thrombosis. Proc. Natl Acad. Sci. USA 107, 15880–15885 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Massberg, S. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 16, 887–896 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13, 463–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. von Bruhl, M. L. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 209, 819–835 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barrientos, L. et al. Neutrophil extracellular traps downregulate lipopolysaccharide-induced activation of monocyte-derived dendritic cells. J. Immunol. 193, 5689–5698 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Schauer, C. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20, 511–517 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Fuchs, T. A. et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231–241 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pilsczek, F. H. et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J. Immunol. 185, 7413–7425 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Buchanan, J. T. et al. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr. Biol. 16, 396–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Ramos-Kichik, V. et al. Neutrophil extracellular traps are induced by Mycobacterium tuberculosis. Tuberculosis (Edinb.) 89, 29–37 (2009).

    Article  Google Scholar 

  48. Bruns, S. et al. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog. 6, e1000873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abi Abdallah, D. S. et al. Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps. Infect. Immun. 80, 768–777 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saitoh, T. et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12, 109–116 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Gupta, A. K., Giaglis, S., Hasler, P. & Hahn, S. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A. PLoS ONE 9, e97088 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Metzler, K. D., Goosmann, C., Lubojemska, A., Zychlinsky, A. & Papayannopoulos, V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 8, 883–896 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Palmer, L. J. et al. Hypochlorous acid regulates neutrophil extracellular trap release in humans. Clin. Exp. Immunol. 167, 261–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tessarz, P. & Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703–708 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Yipp, B. G. et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med. 18, 1386–1393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yousefi, S., Mihalache, C., Kozlowski, E., Schmid, I. & Simon, H. U. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 16, 1438–1444 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Hakkim, A. et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl Acad. Sci. USA 107, 9813–9818 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Farrera, C. & Fadeel, B. Macrophage clearance of neutrophil extracellular traps is a silent process. J. Immunol. 191, 2647–2656 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Canas, C. A., Canas, F., Bonilla-Abadia, F., Ospina, F. E. & Tobon, G. J. Epigenetics changes associated to environmental triggers in autoimmunity. Autoimmunity 49, 1–11 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Davidson, A. & Diamond, B. Autoimmune diseases. N. Engl. J. Med. 345, 340–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Cocca, B. A., Cline, A. M. & Radic, M. Z. Blebs and apoptotic bodies are B cell autoantigens. J. Immunol. 169, 159–166 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Tait, S. W., Ichim, G. & Green, D. R. Die another way — non-apoptotic mechanisms of cell death. J. Cell Sci. 127, 2135–2144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39, 482–495 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Abou-Raya, A. & Abou-Raya, S. Inflammation: a pivotal link between autoimmune diseases and atherosclerosis. Autoimmun. Rev. 5, 331–337 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Tektonidou, M. G., Laskari, K., Panagiotakos, D. B. & Moutsopoulos, H. M. Risk factors for thrombosis and primary thrombosis prevention in patients with systemic lupus erythematosus with or without antiphospholipid antibodies. Arthritis Rheum. 61, 29–36 (2009).

    Article  PubMed  Google Scholar 

  66. Merkel, P. A. et al. Brief communication: high incidence of venous thrombotic events among patients with Wegener granulomatosis: the Wegener's Clinical Occurrence of Thrombosis (WeCLOT) Study. Ann. Intern. Med. 142, 620–626 (2005).

    Article  PubMed  Google Scholar 

  67. Sokolove, J. et al. Brief report: citrullination within the atherosclerotic plaque: a potential target for the anti-citrullinated protein antibody response in rheumatoid arthritis. Arthritis Rheum. 65, 1719–1724 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Smith, C. K. et al. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheumatol. 66, 2532–2544 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kambas, K., Mitroulis, I. & Ritis, K. The emerging role of neutrophils in thrombosis the journey of TF through NETs. Front. Immunol. 3, 385 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mayadas, T. N., Rosetti, F., Ernandez, T. & Sethi, S. Neutrophils: game changers in glomerulonephritis? Trends Mol. Med. 16, 368–378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Crow, M. K. Type I interferon in the pathogenesis of lupus. J. Immunol. 192, 5459–5468 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Hacbarth, E. & Kajdacsy-Balla, A. Low density neutrophils in patients with systemic lupus erythematosus, rheumatoid arthritis, and acute rheumatic fever. Arthritis Rheum. 29, 1334–1342 (1986).

    Article  CAS  PubMed  Google Scholar 

  73. Denny, M. F. et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J. Immunol. 184, 3284–3297 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–552 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Leffler, J. et al. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J. Immunol. 188, 3522–3531 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Carmona-Rivera, C., Zhao, W., Yalavarthi, S. & Kaplan, M. J. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann. Rheum. Dis. 74, 1417–1424 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kahlenberg, J. M., Carmona-Rivera, C., Smith, C. K. & Kaplan, M. J. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J. Immunol. 190, 1217–1226 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Knight, J. S. et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ. Res. 114, 947–956 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Knight, J. S. et al. Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Ann. Rheum. Dis. 74, 2199–2206 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Knight, J. S. et al. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J. Clin. Invest. 123, 2981–2993 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Campbell, A. M., Kashgarian, M. & Shlomchik, M. J. NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci. Transl. Med. 5, 157ra141 (2012).

    Google Scholar 

  84. Winkelstein, J. A. et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79, 155–169 (2000).

    Article  CAS  Google Scholar 

  85. Falk, R. J. & Jennette, J. C. Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N. Engl. J. Med. 318, 1651–1657 (1988).

    Article  CAS  PubMed  Google Scholar 

  86. Niles, J. L., McCluskey, R. T., Ahmad, M. F. & Arnaout, M. A. Wegener's granulomatosis autoantigen is a novel neutrophil serine proteinase. Blood 74, 1888–1893 (1989).

    CAS  PubMed  Google Scholar 

  87. Jennette, J. C. & Falk, R. J. Pathogenesis of antineutrophil cytoplasmic autoantibody-mediated disease. Nat. Rev. Rheumatol. 10, 463–473 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Charles, L. A., Caldas, M. L., Falk, R. J., Terrell, R. S. & Jennette, J. C. Antibodies against granule proteins activate neutrophils in vitro. J. Leukoc. Biol. 50, 539–546 (1991).

    Article  CAS  PubMed  Google Scholar 

  89. Falk, R. J., Terrell, R. S., Charles, L. A. & Jennette, J. C. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc. Natl Acad. Sci. USA 87, 4115–4119 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Freeley, S. J., Coughlan, A. M., Popat, R. J., Dunn-Walters, D. K. & Robson, M. G. Granulocyte colony stimulating factor exacerbates antineutrophil cytoplasmic antibody vasculitis. Ann. Rheum. Dis. 72, 1053–1058 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Huugen, D. et al. Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacterial lipopolysaccharide: role of tumor necrosis factor-α. Am. J. Pathol. 167, 47–58 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schreiber, A. et al. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J. Am. Soc. Nephrol. 20, 289–298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, H., Wang, C., Zhao, M. H. & Chen, M. Neutrophil extracellular traps can activate alternative complement pathways. Clin. Exp. Immunol. 181, 518–527 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kambas, K. et al. Tissue factor expression in neutrophil extracellular traps and neutrophil derived microparticles in antineutrophil cytoplasmic antibody associated vasculitis may promote thromboinflammation and the thrombophilic state associated with the disease. Ann. Rheum. Dis. 73, 1854–1863 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Huang, Y. M., Wang, H., Wang, C., Chen, M. & Zhao, M. H. C5a inducing tissue factor expressing microparticles and neutrophil extracellular traps promote hypercoagulability in ANCA-associated vasculitis. Arthritis Rheumatol. 67, 2780–2790 (2015).

    Article  PubMed  Google Scholar 

  96. Kessenbrock, K. et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15, 623–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tang, S. et al. Neutrophil extracellular trap formation is associated with autophagy-related signalling in ANCA-associated vasculitis. Clin. Exp. Immunol. 180, 408–418 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pepper, R. J. et al. Leukocyte and serum S100A8/S100A9 expression reflects disease activity in ANCA-associated vasculitis and glomerulonephritis. Kidney Int. 83, 1150–1158 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Soderberg, D. et al. Increased levels of neutrophil extracellular trap remnants in the circulation of patients with small vessel vasculitis, but an inverse correlation to anti-neutrophil cytoplasmic antibodies during remission. Rheumatology 54, 2085–2094 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Yoshida, M., Sasaki, M., Sugisaki, K., Yamaguchi, Y. & Yamada, M. Neutrophil extracellular trap components in fibrinoid necrosis of the kidney with myeloperoxidase-ANCA-associated vasculitis. Clin. Kidney J. 6, 308–312 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nakazawa, D. et al. Abnormal conformation and impaired degradation of propylthiouracil-induced neutrophil extracellular traps: implications of disordered neutrophil extracellular traps in a rat model of myeloperoxidase antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 64, 3779–3787 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Sangaletti, S. et al. Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood 120, 3007–3018 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Nakazawa, D. et al. Enhanced formation and disordered regulation of NETs in myeloperoxidase-ANCA-associated microscopic polyangiitis. J. Am. Soc. Nephrol. 25, 990–997 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Vinicki, J. P. et al. Analysis of 65 renal biopsies from patients with rheumatoid arthritis: change in treatment strategies decreased frequency and modified histopathological findings. J. Clin. Rheumatol. 21, 335–340 (2015).

    Article  PubMed  Google Scholar 

  105. Makrygiannakis, D. et al. Citrullination is an inflammation-dependent process. Ann. Rheum. Dis. 65, 1219–1222 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kidd, B. A. et al. Epitope spreading to citrullinated antigens in mouse models of autoimmune arthritis and demyelination. Arthritis Res. Ther. 10, R119 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra140 (2013).

    Article  CAS  Google Scholar 

  108. van Beers, J. J. et al. The rheumatoid arthritis synovial fluid citrullinome reveals novel citrullinated epitopes in apolipoprotein E, myeloid nuclear differentiation antigen, and β-actin. Arthritis Rheum. 65, 69–80 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Spengler, J. et al. Release of active peptidyl arginine deiminases by neutrophils can explain production of extracellular citrullinated autoantigens in rheumatoid arthritis synovial fluid. Arthritis Rheumatol. 67, 3135–3145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jones, J. E., Causey, C. P., Knuckley, B., Slack-Noyes, J. L. & Thompson, P. R. Protein arginine deiminase 4 (PAD4): current understanding and future therapeutic potential. Curr. Opin. Drug Discov. Devel. 12, 616–627 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Foulquier, C. et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum. 56, 3541–3553 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Pratesi, F. et al. Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps. Ann. Rheum. Dis. 73, 1414–1422 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Miyakis, S. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 4, 295–306 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Sciascia, S., Cuadrado, M. J., Khamashta, M. & Roccatello, D. Renal involvement in antiphospholipid syndrome. Nat. Rev. Nephrol. 10, 279–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Brill, A. et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J. Thromb. Haemost. 10, 136–144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Leffler, J. et al. Degradation of neutrophil extracellular traps is decreased in patients with antiphospholipid syndrome. Clin. Exp. Rheumatol. 32, 66–70 (2014).

    PubMed  Google Scholar 

  117. van den Hoogen, L. L. et al. Low-density granulocytes are increased in antiphospholipid syndrome and are associated with anti-β2-glycoprotein I antibodies: comment on the article by Yalavarthi et al. Arthritis Rheumatol. http://dx.doi.org/10.1002/art.39576 (2016).

  118. Atkinson, M. A., Eisenbarth, G. S. & Michels, A. W. Type 1 diabetes. Lancet 383, 69–82 (2014).

    Article  PubMed  Google Scholar 

  119. Bjornstad, P., Cherney, D. & Maahs, D. M. Early diabetic nephropathy in type 1 diabetes: new insights. Curr. Opin. Endocrinol. Diabetes Obes. 21, 279–286 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Diana, J. et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat. Med. 19, 65–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Valle, A. et al. Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes 62, 2072–2077 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Harsunen, M. H. et al. Reduced blood leukocyte and neutrophil numbers in the pathogenesis of type 1 diabetes. Horm. Metab. Res. 45, 467–470 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Wang, Y. et al. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with β-cell autoimmunity in patients with type 1 diabetes. Diabetes 63, 4239–4248 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Wong, S. L. et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 21, 815–819 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fadini, G. P. et al. NETosis delays diabetic wound healing in mice and humans. Diabetes http://dx.doi.org/10.2337/db15-0863 (2016).

  126. Hricik, D. E., Chung-Park, M. & Sedor, J. R. Glomerulonephritis. N. Engl. J. Med. 339, 888–899 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. O'Sullivan, K. M. et al. Renal participation of myeloperoxidase in antineutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis. Kidney Int. 88, 1030–1046 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Leffler, J. et al. Degradation of neutrophil extracellular traps co-varies with disease activity in patients with systemic lupus erythematosus. Arthritis Res. Ther. 15, R84 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Schreiber, A. et al. Neutrophil serine proteases promote IL-1β generation and injury in necrotizing crescentic glomerulonephritis. J. Am. Soc. Nephrol. 23, 470–482 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kanzaki, G. et al. Impact of anti-glomerular basement membrane antibodies and glomerular neutrophil activation on glomerulonephritis in experimental myeloperoxidase-antineutrophil cytoplasmic antibody vasculitis. Nephrol. Dial. Transplant. 31, 574–585 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Pisitkun, P. et al. Interleukin-17 cytokines are critical in development of fatal lupus glomerulonephritis. Immunity 37, 1104–1115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Disteldorf, E. M. et al. CXCL5 drives neutrophil recruitment in TH17-mediated GN. J. Am. Soc. Nephrol. 26, 55–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Odobasic, D., Kitching, A. R., Semple, T. J. & Holdsworth, S. R. Endogenous myeloperoxidase promotes neutrophil-mediated renal injury, but attenuates T cell immunity inducing crescentic glomerulonephritis. J. Am. Soc. Nephrol. 18, 760–770 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Odobasic, D. et al. Suppression of autoimmunity and renal disease in pristane-induced lupus by myeloperoxidase. Arthritis Rheumatol. 67, 1868–1880 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Brennan, M. L. et al. Increased atherosclerosis in myeloperoxidase-deficient mice. J. Clin. Invest. 107, 419–430 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mangold, A. et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ. Res. 116, 1182–1192 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Hirahashi, J. et al. Mac-1 (CD11b/CD18) links inflammation and thrombosis after glomerular injury. Circulation 120, 1255–1265 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ooi, J. D. et al. FcγRIIB regulates T-cell autoreactivity, ANCA production, and neutrophil activation to suppress anti-myeloperoxidase glomerulonephritis. Kidney Int. 86, 1140–1149 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Tsuboi, N., Asano, K., Lauterbach, M. & Mayadas, T. N. Human neutrophil Fcγ receptors initiate and play specialized nonredundant roles in antibody-mediated inflammatory diseases. Immunity 28, 833–846 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Remijsen, Q. et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 21, 290–304 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Patel, S. et al. Nitric oxide donors release extracellular traps from human neutrophils by augmenting free radical generation. Nitric Oxide 22, 226–234 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Garcia, R. J. et al. Attention deficit and hyperactivity disorder scores are elevated and respond to N-acetylcysteine treatment in patients with systemic lupus erythematosus. Arthritis Rheum. 65, 1313–1318 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lai, Z. W. et al. N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 64, 2937–2946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zheng, W. et al. PF-1355, a mechanism-based myeloperoxidase inhibitor, prevents immune complex vasculitis and anti-glomerular basement membrane glomerulonephritis. J. Pharmacol. Exp. Ther. 353, 288–298 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Willis, V. C. et al. N-α-benzoyl-N5-(2-chloro-1-iminoethyl)-l-ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J. Immunol. 186, 4396–4404 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Martinod, K. et al. PAD4-deficiency does not affect bacteremia in polymicrobial sepsis and ameliorates endotoxemic shock. Blood 125, 1948–1956 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li, P. et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853–1862 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sulem, P. et al. Identification of a large set of rare complete human knockouts. Nat. Genet. 47, 448–452 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Sorensen, O. E. et al. Papillon–Lèfevre syndrome patient reveals species-dependent requirements for neutrophil defenses. J. Clin. Invest. 124, 4539–4548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2793–2806 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Stone, J. H. et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N. Engl. J. Med. 363, 221–232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zavada, J. et al. Cyclosporine A or intravenous cyclophosphamide for lupus nephritis: the Cyclofa-Lune study. Lupus 19, 1281–1289 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Lee, Y. H., Lee, H. S., Choi, S. J., Dai Ji, J. & Song, G. G. Efficacy and safety of tacrolimus therapy for lupus nephritis: a systematic review of clinical trials. Lupus 20, 636–640 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Cedervall, J. et al. Neutrophil extracellular traps accumulate in peripheral blood vessels and compromise organ function in tumor-bearing animals. Cancer Res. 75, 2653–2662 (2015).

    Article  CAS  PubMed  Google Scholar 

  155. Sayah, D. M. et al. Neutrophil extracellular traps are pathogenic in primary graft dysfunction after lung transplantation. Am. J. Respir. Crit. Care Med. 191, 455–463 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Macanovic, M. et al. The treatment of systemic lupus erythematosus (SLE) in NZB/W F1 hybrid mice; studies with recombinant murine DNase and with dexamethasone. Clin. Exp. Immunol. 106, 243–252 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Davis, J. C. Jr. et al. Recombinant human Dnase I (rhDNase) in patients with lupus nephritis. Lupus 8, 68–76 (1999).

    Article  PubMed  Google Scholar 

  158. Neeli, I., Dwivedi, N., Khan, S. & Radic, M. Regulation of extracellular chromatin release from neutrophils. J. Innate Immun. 1, 194–201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Xu, Z. et al. Interaction of kindlin-3 and β2-integrins differentially regulates neutrophil recruitment and NET release in mice. Blood 126, 373–377 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Taylor, P. C. & Feldmann, M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 578–582 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Kunwar, S., Dahal, K. & Sharma, S. Anti-IL-17 therapy in treatment of rheumatoid arthritis: a systematic literature review and meta-analysis of randomized controlled trials. Rheumatol. Int. http://dx.doi.org/10.1007/s00296-016-3480-9 (2016).

  162. Wang, Y. et al. Amelioration of lupus-like autoimmune disease in NZB/WF1 mice after treatment with a blocking monoclonal antibody specific for complement component C5. Proc. Natl Acad. Sci. USA 93, 8563–8568 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Furie, R., M. L., Rollins, S. A. & Mojcik, C. F. 64th Annual Scientific Meeting of the American College of Rheumatology (San Francisco, 2001).

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.J.K. and S.G. researched the data for the article, discussed its content and wrote the Review. M.J.K. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Mariana J. Kaplan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Kaplan, M. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol 12, 402–413 (2016). https://doi.org/10.1038/nrneph.2016.71

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.71

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing