Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biologics for the treatment of autoimmune renal diseases

Key Points

  • The introduction of biologics that are safer and less toxic than conventional immunosuppressive therapies has markedly improved patient outcomes for many common autoimmune diseases

  • Good evidence suggests that many biologics will be effective in autoimmune renal diseases, but their development and introduction into clinical practice has been remarkably slow

  • Clinical and basic research is required to define the dominant disease-promoting molecules that underlie autoimmune renal diseases and could be targeted by current and evolving biologics

  • An increase in the size of patient cohorts and the assembly of clinician networks will facilitate the design and execution of multicentre, multinational, randomized controlled trials for new biologics

  • A strategic approach must be adopted to define the appropriate patient subgroups that will help prioritize which biologics should be tested, based on the available evidence of likely efficacy

Abstract

Biological therapeutics (biologics) that target autoimmune responses and inflammatory injury pathways have a marked beneficial impact on the management of many chronic diseases, including rheumatoid arthritis, psoriasis, inflammatory bowel disease, and ankylosing spondylitis. Accumulating data suggest that a growing number of renal diseases result from autoimmune injury — including lupus nephritis, IgA nephropathy, anti-neutrophil cytoplasmic antibody-associated glomerulonephritis, autoimmune (formerly idiopathic) membranous nephropathy, anti-glomerular basement membrane glomerulonephritis, and C3 nephropathy — and one can speculate that biologics might also be applicable to these diseases. As many autoimmune renal diseases are relatively uncommon, with long natural histories and diverse outcomes, clinical trials that aim to validate potentially useful biologics are difficult to design and/or perform. Some excellent consortia are undertaking cohort studies and clinical trials, but more multicentre international collaborations are needed to advance the introduction of new biologics to patients with autoimmune renal disorders. This Review discusses the key molecules that direct injurious inflammation and the biologics that are available to modulate them. The opportunities and challenges for the introduction of relevant biologics into treatment protocols for autoimmune renal diseases are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biologics that target critical molecular pathways in the development of B-cell and T-cell autoimmunity.
Figure 2: Biologics that target CD4+ T helper (TH)-cell subsets.
Figure 3: Biologics that attenuate effector responses in the kidney.

Similar content being viewed by others

References

  1. Furst, D. E. et al. Updated consensus statement on biological agents for the treatment of rheumatic diseases, 2012. Ann. Rheum. Dis. 72 (Suppl. 2), ii2–ii34 (2013).

    CAS  PubMed  Google Scholar 

  2. Couser, W. G. Basic and translational concepts of immune-mediated glomerular diseases. J. Am. Soc. Nephrol. 23, 381–399 (2012).

    CAS  PubMed  Google Scholar 

  3. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    CAS  PubMed  Google Scholar 

  4. Couser, W. G. & Johnson, R. J. The etiology of glomerulonephritis: roles of infection and autoimmunity. Kidney Int. 86, 905–914 (2014).

    CAS  PubMed  Google Scholar 

  5. Yeo, S. C. & Liew, A. Biologic agents in the treatment of glomerulonephritides. Nephrology (Carlton) 20, 767–787 (2015).

    Google Scholar 

  6. Naik, A. et al. Complement regulation in renal disease models. Semin.. Nephrol. 33, 575–585 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Emancipator, S. N. Animal models of IgA nephropathy. Curr. Protoc. Immunol. 15, 15.11 (2001).

    Google Scholar 

  8. Du, Y., Sanam, S., Kate, K. & Mohan, C. Animal models of lupus and lupus nephritis. Curr. Pharm. Des. 21, 2320–2349 (2015).

    CAS  PubMed  Google Scholar 

  9. Borza, D. B. et al. Mouse models of membranous nephropathy: the road less travelled by. Am. J. Clin. Exp. Immunol. 2, 135–145 (2013).

    PubMed  PubMed Central  Google Scholar 

  10. Ooi, J. D., Gan, P. Y., Odobasic, D., Holdsworth, S. R. & Kitching, A. R. T cell mediated autoimmune glomerular disease in mice. Curr. Protoc. Immunol. 107, 15.27.1–15.27.19 (2014).

    Google Scholar 

  11. Odobasic, D., Ghali, J. R., O'Sullivan, K. M., Holdsworth, S. R. & Kitching, A. R. Glomerulonephritis induced by heterologous anti-GBM globulin as a planted foreign antigen. Curr. Protoc. Immunol. 106, 15.26.1–15.26.20 (2014).

    Google Scholar 

  12. Gutcher, I. & Becher, B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J. Clin. Invest. 117, 1119–1127 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Holdsworth, S. R., Kitching, A. R. & Tipping, P. G. Th1 and Th2 T helper cell subsets affect patterns of injury and outcomes in glomerulonephritis. Kidney Int. 55, 1198–1216 (1999).

    CAS  PubMed  Google Scholar 

  14. Kitching, A. R. & Holdsworth, S. R. The emergence of Th17 cells as effectors of renal injury. J. Am. Soc. Nephrol. 22, 235–238 (2011).

    CAS  PubMed  Google Scholar 

  15. Browning, J. L. B cells move to centre stage: novel opportunities for autoimmune disease treatment. Nat. Rev. Drug Discov. 5, 564–576 (2006).

    CAS  PubMed  Google Scholar 

  16. Dorner, T. et al. Current status on B-cell depletion therapy in autoimmune diseases other than rheumatoid arthritis. Autoimmun. Rev. 9, 82–89 (2009).

    PubMed  Google Scholar 

  17. Iwata, Y. et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117, 530–541 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Janeway, C. A., Travers, P., Walport, M. & Schlomchick, M. J. Immunobiology: The immune System in Health and Disease 5th edn (Garland Science, 2001).

    Google Scholar 

  19. Tipping, P. G. & Holdsworth, S. R. Cytokines in glomerulonephritis. Semin. Nephrol. 27, 275–285 (2007).

    CAS  PubMed  Google Scholar 

  20. Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    CAS  PubMed  Google Scholar 

  21. Rudick, R. A. et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N. Engl. J. Med. 354, 911–923 (2006).

    CAS  PubMed  Google Scholar 

  22. Deshmane, S. L., Kremlev, S., Amini, S. & Sawaya, B. E. Monocyte chemoattractant protein-1 (MCP-1): an overview. J. Interferon Cytokine Res. 29, 313–326 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kalinowska, A. & Losy, J. Investigational C-C chemokine receptor 2 antagonists for the treatment of autoimmune diseases. Expert Opin. Investig. Drugs 17, 1267–1279 (2008).

    CAS  PubMed  Google Scholar 

  24. Brodmerkel, C. M. et al. Discovery and pharmacological characterization of a novel rodent-active CCR2 antagonist, INCB3344. J. Immunol. 175, 5370–5378 (2005).

    CAS  PubMed  Google Scholar 

  25. Kulkarni, O. et al. Spiegelmer inhibition of CCL2/MCP-1 ameliorates lupus nephritis in MRL-(Fas)lpr mice. J. Am. Soc. Nephrol. 18, 2350–2358 (2007).

    CAS  PubMed  Google Scholar 

  26. Gong, J. H., Ratkay, L. G., Waterfield, J. D. & Clark-Lewis, I. An antagonist of monocyte chemoattractant protein 1 (MCP-1) inhibits arthritis in the MRL-lpr mouse model. J. Exp. Med. 186, 131–137 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Legendre, C. M. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 368, 2169–2181 (2013).

    CAS  PubMed  Google Scholar 

  28. Rathbone, J. et al. A systematic review of eculizumab for atypical haemolytic uraemic syndrome (aHUS). BMJ Open 3, e003573 (2013).

    PubMed  PubMed Central  Google Scholar 

  29. Tillmanns, S. et al. SM101, a novel recombinant, soluble, human FcγIIB receptor, in the treatment of systemic lupus erythematosus: results of a double-blline, placebo-controlled multicenter study. Am. Coll. Rheumatol. 66, S1238 (2014).

    Google Scholar 

  30. van de Wiel, B. A. et al. Interference of Wegener's granulomatosis autoantibodies with neutrophil proteinase 3 activity. Clin. Exp. Immunol. 90, 409–414 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jennette, J. C. & Falk, R. J. Small-vessel vasculitis. N. Engl. J. Med. 337, 1512–1523 (1997).

    CAS  PubMed  Google Scholar 

  32. Lyons, P. A. et al. Genetically distinct subsets within ANCA-associated vasculitis. N. Engl. J. Med. 367, 214–223 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Xiao, H. et al. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J. Clin. Invest. 110, 955–963 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Huugen, D. et al. Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacterial lipopolysaccharide: role of tumor necrosis factor-α. Am. J. Pathol. 167, 47–58 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Stone, J. H. et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N. Engl. J. Med. 363, 221–232 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Jones, R. B. et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N. Engl. J. Med. 363, 211–220 (2010).

    CAS  PubMed  Google Scholar 

  37. Guillevin, L. et al. Rituximab versus azathioprine for maintenance in ANCA-associated vasculitis. N. Engl. J. Med. 371, 1771–1780 (2014).

    PubMed  Google Scholar 

  38. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  39. Oflazoglu, E. & Audoly, L. P. Evolution of anti-CD20 monoclonal antibody therapeutics in oncology. MAbs 2, 14–19 (2010).

    PubMed  PubMed Central  Google Scholar 

  40. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  41. Schneeweis, C. et al. Increased levels of BLyS and sVCAM-1 in anti-neutrophil cytoplasmatic antibody (ANCA)-associated vasculitides (AAV). Clin. Exp. Rheumatol. 28, 62–66 (2010).

    PubMed  Google Scholar 

  42. Krumbholz, M. et al. BAFF is elevated in serum of patients with Wegener's granulomatosis. J. Autoimmun. 25, 298–302 (2005).

    CAS  PubMed  Google Scholar 

  43. Bader, L., Koldingsnes, W. & Nossent, J. B-lymphocyte activating factor levels are increased in patients with Wegener's granulomatosis and inversely correlated with ANCA titer. Clin. Rheumatol. 29, 1031–1035 (2010).

    PubMed  Google Scholar 

  44. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  45. Stilmant, M. M., Bolton, W. K., Sturgill, B. C., Schmitt, G. W. & Couser, W. G. Crescentic glomerulonephritis without immune deposits: clinicopathologic features. Kidney Int. 15, 184–195 (1979).

    CAS  PubMed  Google Scholar 

  46. Huugen, D. et al. Inhibition of complement factor C5 protects against anti-myeloperoxidase antibody-mediated glomerulonephritis in mice. Kidney Int. 71, 646–654 (2007).

    CAS  PubMed  Google Scholar 

  47. Xiao, H. et al. C5a receptor (CD88) blockade protects against MPO–ANCA GN. J. Am. Soc. Nephrol. 25, 225–231 (2014).

    CAS  PubMed  Google Scholar 

  48. Schreiber, A. et al. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J. Am. Soc. Nephrol. 20, 289–298 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  50. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  51. Romo-Tena, J., Gomez-Martin, D. & Alcocer-Varela, J. CTLA-4 and autoimmunity: new insights into the dual regulator of tolerance. Autoimmun. Rev. 12, 1171–1176 (2013).

    CAS  PubMed  Google Scholar 

  52. Abrams, J. R. et al. Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J. Exp. Med. 192, 681–694 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Langford, C. A. et al. An open-label trial of abatacept (CTLA4-IG) in non-severe relapsing granulomatosis with polyangiitis (Wegener's). Ann. Rheum. Dis. 73, 1376–1379 (2014).

    CAS  PubMed  Google Scholar 

  54. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  55. Moreland, L. W. et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N. Engl. J. Med. 337, 141–147 (1997).

    CAS  PubMed  Google Scholar 

  56. Moelants, E. A., Mortier, A., Van Damme, J. & Proost, P. Regulation of TNF-α with a focus on rheumatoid arthritis. Immunol. Cell Biol. 91, 393–401 (2013).

    CAS  PubMed  Google Scholar 

  57. Little, M. A. et al. Therapeutic effect of anti-TNF-α antibodies in an experimental model of anti-neutrophil cytoplasm antibody-associated systemic vasculitis. J. Am. Soc. Nephrol. 17, 160–169 (2006).

    CAS  PubMed  Google Scholar 

  58. Stone, J. H. et al. Etanercept combined with conventional treatment in Wegener's granulomatosis: a six-month open-label trial to evaluate safety. Arthritis Rheum. 44, 1149–1154 (2001).

    CAS  PubMed  Google Scholar 

  59. The Wegener's Granulomatosis Etanercept Tiral (WGET) Research Group. Etanercept plus standard therapy for Wegener's granulomatosis. N. Engl. J. Med. 352, 351–361 (2005).

  60. Stone, J. H. et al. Solid malignancies among patients in the Wegener's Granulomatosis Etanercept Trial. Arthritis Rheum. 54, 1608–1618 (2006).

    CAS  PubMed  Google Scholar 

  61. Mukhtyar, C. & Luqmani, R. Current state of tumour necrosis factor α blockade in Wegener's granulomatosis. Ann. Rheum. Dis. 64, iv31–iv36 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lamprecht, P. et al. Effectiveness of TNF-α blockade with infliximab in refractory Wegener's granulomatosis. Rheumatol. (Oxford) 41, 1303–1307 (2002).

    CAS  Google Scholar 

  63. Booth, A. D., Jefferson, H. J., Ayliffe, W., Andrews, P. A. & Jayne, D. R. Safety and efficacy of TNFα blockade in relapsing vasculitis. Ann. Rheum. Dis. 61, 559 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bartolucci, P. et al. Efficacy of the anti-TNF-α antibody infliximab against refractory systemic vasculitides: an open pilot study on 10 patients. Rheumatol. (Oxford) 41, 1126–1132 (2002).

    CAS  Google Scholar 

  65. Booth, A. et al. Prospective study of TNFα blockade with infliximab in anti-neutrophil cytoplasmic antibody-associated systemic vasculitis. J. Am. Soc. Nephrol. 15, 717–721 (2004).

    CAS  PubMed  Google Scholar 

  66. US National Libary of Science. ClinicalTrials.gov[online], (2008).

  67. Morgan, M. D., Drayson, M. T., Savage, C. O. & Harper, L. Addition of infliximab to standard therapy for ANCA-associated vasculitis. Nephron Clin. Pract. 117, c89–c97 (2011).

    CAS  PubMed  Google Scholar 

  68. Smolen, J. S. et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet 371, 987–997 (2008).

    CAS  PubMed  Google Scholar 

  69. Arimura, Y. et al. Serum myeloperoxidase and serum cytokines in anti-myeloperoxidase antibody-associated glomerulonephritis. Clin. Nephrol. 40, 256–264 (1993).

    CAS  PubMed  Google Scholar 

  70. Ohlsson, S., Wieslander, J. & Segelmark, M. Circulating cytokine profile in anti-neutrophilic cytoplasmatic autoantibody-associated vasculitis: prediction of outcome? Mediators Inflamm. 13, 275–283 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Berti, A. et al. Interleukin-6 in ANCA-associated vasculitis: rationale for successful treatment with tocilizumab. Semin. Arthritis Rheum. 45, 48–54 (2015).

    CAS  PubMed  Google Scholar 

  72. Vaglio, A., Moosig, F. & Zwerina, J. Churg–Strauss syndrome: update on pathophysiology and treatment. Curr. Opin. Rheumatol. 24, 24–30 (2012).

    CAS  PubMed  Google Scholar 

  73. Kahn, J. E. et al. Sustained response to mepolizumab in refractory Churg–Strauss syndrome. J. Allergy Clin. Immunol. 125, 267–270 (2010).

    CAS  PubMed  Google Scholar 

  74. Kim, S., Marigowda, G., Oren, E., Israel, E. & Wechsler, M. E. Mepolizumab as a steroid-sparing treatment option in patients with Churg–Strauss syndrome. J. Allergy Clin. Immunol. 125, 1336–1343 (2010).

    CAS  PubMed  Google Scholar 

  75. Herrmann, K., Gross, W. L. & Moosig, F. Extended follow-up after stopping mepolizumab in relapsing/refractory Churg–Strauss syndrome. Clin. Exp. Rheumatol. 30, S62–S65 (2012).

    PubMed  Google Scholar 

  76. US National Libary of Science. ClinicalTrials.gov[online], (2009).

  77. US National Libary of Science. ClinicalTrials.gov[online], (2012).

  78. Giavina-Bianchi, P., Giavina-Bianchi, M., Agondi, R. & Kalil, J. Omalizumab and Churg–Strauss syndrome. J. Allergy Clin. Immunol. 122, 217; author reply 217–218 (2008).

    CAS  PubMed  Google Scholar 

  79. Iglesias, E. et al. Successful management of Churg–Strauss syndrome using omalizumab as adjuvant immunomodulatory therapy: first documented pediatric case. Pediatr. Pulmonol. 49, E78–E81 (2014).

    CAS  PubMed  Google Scholar 

  80. Pabst, S., Tiyerili, V. & Grohe, C. Apparent response to anti-IgE therapy in two patients with refractory 'forme fruste' of Churg–Strauss syndrome. Thorax 63, 747–748 (2008).

    CAS  PubMed  Google Scholar 

  81. Mellors, R. C., Ortega, L. G. & Holman, H. R. Role of gamma globulins in pathogenesis of renal lesions in systemic lupus erythematosus and chronic membranous glomerulonephritis, with an observation on the lupus erythematosus cell reaction. J. Exp. Med. 106, 191–202 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Beck, L. H. Jr. et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361, 11–21 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Tomas, N. M. et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N. Engl. J. Med. 371, 2277–2287 (2014).

    PubMed  PubMed Central  Google Scholar 

  84. Beck, L. H. Jr & Salant, D. J. Membranous nephropathy: from models to man. J. Clin. Invest. 124, 2307–2314 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Beck, L. H. Jr. et al. Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J. Am. Soc. Nephrol. 22, 1543–1550 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Howman, A. et al. Immunosuppression for progressive membranous nephropathy: a UK randomised controlled trial. Lancet 381, 744–751 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Jha, V. et al. A randomized, controlled trial of steroids and cyclophosphamide in adults with nephrotic syndrome caused by idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 18, 1899–1904 (2007).

    CAS  PubMed  Google Scholar 

  88. Heymann, W., Hackel, D. B., Harwood, S., Wilson, S. G. & Hunter, J. L. Production of nephrotic syndrome in rats by Freund's adjuvants and rat kidney suspensions. Proc. Soc. Exp. Biol. Med. 100, 660–664 (1959).

    CAS  PubMed  Google Scholar 

  89. Baker, P. J. et al. Depletion of C6 prevents development of proteinuria in experimental membranous nephropathy in rats. Am. J. Pathol. 135, 185–194 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cunningham, P. N. & Quigg, R. J. Contrasting roles of complement activation and its regulation in membranous nephropathy. J. Am. Soc. Nephrol. 16, 1214–1222 (2005).

    CAS  PubMed  Google Scholar 

  91. Noris, M., Mele, C. & Remuzzi, G. Podocyte dysfunction in atypical haemolytic uraemic syndrome. Nat. Rev. Nephrol. 11, 245–252 (2015).

    CAS  PubMed  Google Scholar 

  92. Neale, T. J. et al. Tumor necrosis factor-α is expressed by glomerular visceral epithelial cells in human membranous nephropathy. Am. J. Pathol. 146, 1444–1454 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ruggenenti, P. et al. Rituximab for idiopathic membranous nephropathy: who can benefit? Clin. J. Am. Soc. Nephrol. 1, 738–748 (2006).

    CAS  PubMed  Google Scholar 

  94. Fervenza, F. C. et al. Rituximab treatment of idiopathic membranous nephropathy. Kidney Int. 73, 117–125 (2008).

    CAS  PubMed  Google Scholar 

  95. Fervenza, F. C. et al. Rituximab therapy in idiopathic membranous nephropathy: a 2-year study. Clin. J. Am. Soc. Nephrol. 5, 2188–2198 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Cravedi, P., Ruggenenti, P., Sghirlanzoni, M. C. & Remuzzi, G. Titrating rituximab to circulating B cells to optimize lymphocytolytic therapy in idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol. 2, 932–937 (2007).

    CAS  PubMed  Google Scholar 

  97. Segarra, A. et al. Successful treatment of membranous glomerulonephritis with rituximab in calcineurin inhibitor-dependent patients. Clin. J. Am. Soc. Nephrol. 4, 1083–1088 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  99. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  100. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  101. Fervenza, F. C. et al. A multicenter randomized controlled trial of rituximab versus cyclosporine in the treatment of idiopathic membranous nephropathy (MENTOR). Nephron 130, 159–168 (2015).

    CAS  PubMed  Google Scholar 

  102. Sethi, S. & Fervenza, F. C. Membranoproliferative glomerulonephritis: pathogenetic heterogeneity and proposal for a new classification. Semin. Nephrol. 31, 341–348 (2011).

    CAS  PubMed  Google Scholar 

  103. Fakhouri, F., Fremeaux-Bacchi, V., Noel, L. H., Cook, H. T. & Pickering, M. C. C3 glomerulopathy: a new classification. Nat. Rev. Nephrol. 6, 494–499 (2010).

    CAS  PubMed  Google Scholar 

  104. Sethi, S. & Fervenza, F. C. Membranoproliferative glomerulonephritis — a new look at an old entity. N. Engl. J. Med. 366, 1119–1131 (2012).

    CAS  PubMed  Google Scholar 

  105. Zipfel, P. F. et al. The role of complement in C3 glomerulopathy. Mol. Immunol. 67, 21–30 (2015).

    CAS  PubMed  Google Scholar 

  106. Pickering, M. C. et al. C3 glomerulopathy: consensus report. Kidney Int. 84, 1079–1089 (2013).

    PubMed  PubMed Central  Google Scholar 

  107. Sethi, S. et al. Mayo clinic/renal pathology society consensus report on pathologic classification, diagnosis, and reporting of GN. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2015060612 (2015).

  108. Servais, A. et al. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int. 82, 454–464 (2012).

    CAS  PubMed  Google Scholar 

  109. Pickering, M. C. et al. Prevention of C5 activation ameliorates spontaneous and experimental glomerulonephritis in factor H-deficient mice. Proc. Natl Acad. Sci. USA 103, 9649–9654 (2006).

    CAS  PubMed  Google Scholar 

  110. Sethi, S. et al. C3 glomerulonephritis: clinicopathological findings, complement abnormalities, glomerular proteomic profile, treatment, and follow-up. Kidney Int. 82, 465–473 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Bomback, A. S. Eculizumab in the treatment of membranoproliferative glomerulonephritis. Nephron Clin. Pract. 128, 270–276 (2014).

    CAS  PubMed  Google Scholar 

  112. Bomback, A. S. et al. Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin. J. Am. Soc. Nephrol. 7, 748–756 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Herlitz, L. C. et al. Pathology after eculizumab in dense deposit disease and C3 GN. J. Am. Soc. Nephrol. 23, 1229–1237 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Radhakrishnan, S. et al. Eculizumab and refractory membranoproliferative glomerulonephritis. N. Engl. J. Med. 366, 1165–1166 (2012).

    CAS  PubMed  Google Scholar 

  115. Vivarelli, M., Pasini, A. & Emma, F. Eculizumab for the treatment of dense-deposit disease. N. Engl. J. Med. 366, 1163–1165 (2012).

    CAS  PubMed  Google Scholar 

  116. Daina, E., Noris, M. & Remuzzi, G. Eculizumab in a patient with dense-deposit disease. N. Engl. J. Med. 366, 1161–1163 (2012).

    CAS  PubMed  Google Scholar 

  117. McCaughan, J. A., O'Rourke, D. M. & Courtney, A. E. Recurrent dense deposit disease after renal transplantation: an emerging role for complementary therapies. Am. J. Transplant. 12, 1046–1051 (2012).

    CAS  PubMed  Google Scholar 

  118. Gurkan, S. et al. Eculizumab and recurrent C3 glomerulonephritis. Pediatr. Nephrol. 28, 1975–1981 (2013).

    PubMed  PubMed Central  Google Scholar 

  119. Rousset-Rouviere, C. et al. Rituximab fails where eculizumab restores renal function in C3nef-related DDD. Pediatr. Nephrol. 29, 1107–1111 (2014).

    PubMed  Google Scholar 

  120. Ozkaya, O. et al. Eculizumab therapy in a patient with dense-deposit disease associated with partial lipodystropy. Pediatr. Nephrol. 29, 1283–1287 (2014).

    PubMed  Google Scholar 

  121. Kerns, E., Rozansky, D. & Troxell, M. L. Evolution of immunoglobulin deposition in C3-dominant membranoproliferative glomerulopathy. Pediatr. Nephrol. 28, 2227–2231 (2013).

    PubMed  Google Scholar 

  122. Nester, C. M. & Smith, R. J. Treatment options for C3 glomerulopathy. Curr. Opin. Nephrol. Hypertens. 22, 231–237 (2013).

    PubMed  PubMed Central  Google Scholar 

  123. US National Libary of Science. ClinicalTrials.gov[online], (2014).

  124. Melis, J. P. et al. Complement in therapy and disease: regulating the complement system with antibody-based therapeutics. Mol. Immunol. 67, 117–130 (2015).

    CAS  PubMed  Google Scholar 

  125. Ricklin, D. & Lambris, J. D. Complement in immune and inflammatory disorders: therapeutic interventions. J. Immunol. 190, 3839–3847 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ruseva, M. M. et al. Efficacy of targeted complement inhibition in experimental C3 glomerulopathy. J. Am. Soc. Nephrol. 27, 405–416 (2015).

    PubMed  PubMed Central  Google Scholar 

  127. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  128. US National Libary of Science. ClinicalTrials.gov[online], (2014).

  129. Zhang, Y. et al. Soluble CR1 therapy improves complement regulation in C3 glomerulopathy. J. Am. Soc. Nephrol. 24, 1820–1829 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Schmidt, C. Q. et al. Rational engineering of a minimized immune inhibitor with unique triple-targeting properties. J. Immunol. 190, 5712–5721 (2013).

    CAS  PubMed  Google Scholar 

  131. Hebecker, M. et al. An engineered construct combining complement regulatory and surface-recognition domains represents a minimal-size functional factor H. J. Immunol. 191, 912–921 (2013).

    CAS  PubMed  Google Scholar 

  132. Angioi, A. et al. Diagnosis of complement alternative pathway disorders. Kidney Int. 89, 278–288 (2016).

    CAS  PubMed  Google Scholar 

  133. Barratt, J. & Feehally, J. Primary IgA nephropathy: new insights into pathogenesis. Semin. Nephrol. 31, 349–360 (2011).

    CAS  PubMed  Google Scholar 

  134. Mestecky, J. et al. Defective galactosylation and clearance of IgA1 molecules as a possible etiopathogenic factor in IgA nephropathy. Contrib. Nephrol. 104, 172–182 (1993).

    CAS  PubMed  Google Scholar 

  135. Gharavi, A. G. et al. Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J. Am. Soc. Nephrol. 19, 1008–1014 (2008).

    PubMed  PubMed Central  Google Scholar 

  136. Suzuki, H. et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J. Clin. Invest. 119, 1668–1677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Moura, I. C. et al. Identification of the transferrin receptor as a novel immunoglobulin (Ig)a1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J. Exp. Med. 194, 417–425 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Dohi, K. et al. The prognostic significance of urinary interleukin 6 in IgA nephropathy. Clin. Nephrol. 35, 1–5 (1991).

    CAS  PubMed  Google Scholar 

  139. Lee, T. W., Ahn, J. H., Park, J. K., Ihm, C. G. & Kim, M. J. Tumor necrosis factor α from peripheral blood mononuclear cells of IgA nephropathy and mesangial cell proliferation. Kor. J. Intern. Med. 9, 1–8 (1994).

    CAS  Google Scholar 

  140. Xin, G. et al. Serum BAFF is elevated in patients with IgA nephropathy and associated with clinical and histopathological features. J. Nephrol. 26, 683–690 (2013).

    CAS  PubMed  Google Scholar 

  141. Lin, F. J. et al. Imbalance of regulatory T cells to Th17 cells in IgA nephropathy. Scand. J. Clin. Lab. Invest. 72, 221–229 (2012).

    CAS  PubMed  Google Scholar 

  142. Ohsawa, I. et al. Extraglomerular C3 deposition and metabolic impacts in patients with IgA nephropathy. Nephrol. Dial. Transplant. 28, 1856–1864 (2013).

    CAS  PubMed  Google Scholar 

  143. Suzuki, H. et al. Fluctuation of serum C3 levels reflects disease activity and metabolic background in patients with IgA nephropathy. J. Nephrol. 26, 708–715 (2013).

    CAS  PubMed  Google Scholar 

  144. Sugiura, H. et al. Effect of single-dose rituximab on primary glomerular diseases. Nephron Clin. Pract. 117, c98–c105 (2011).

    CAS  PubMed  Google Scholar 

  145. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  146. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  147. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  148. Lamm, M. E. et al. Microbial IgA protease removes IgA immune complexes from mouse glomeruli in vivo: potential therapy for IgA nephropathy. Am. J. Pathol. 172, 31–36 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Cairns, L. S. et al. The fine specificity and cytokine profile of T-helper cells responsive to the α3 chain of type IV collagen in Goodpasture's disease. J. Am. Soc. Nephrol. 14, 2801–2812 (2003).

    CAS  PubMed  Google Scholar 

  150. Ooi, J. D. et al. The HLA-DRB1*15:01-restricted Goodpasture's T cell epitope induces GN. J. Am. Soc. Nephrol. 24, 419–431 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Pedchenko, V. et al. Molecular architecture of the Goodpasture autoantigen in anti-GBM nephritis. N. Engl. J. Med. 363, 343–354 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Chen, J. L. et al. Association of epitope spreading of antiglomerular basement membrane antibodies and kidney injury. Clin. J. Am. Soc. Nephrol. 8, 51–58 (2013).

    PubMed  Google Scholar 

  153. Phelps, R. G. & Rees, A. J. The HLA complex in Goodpasture's disease: a model for analyzing susceptibility to autoimmunity. Kidney Int. 56, 1638–1653 (1999).

    CAS  PubMed  Google Scholar 

  154. Wu, J. et al. CD4+ T cells specific to a glomerular basement membrane antigen mediate glomerulonephritis. J. Clin. Invest. 109, 517–524 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Ooi, J. D., Phoon, R. K., Holdsworth, S. R. & Kitching, A. R. IL-23, not IL-12, directs autoimmunity to the Goodpasture antigen. J. Am. Soc. Nephrol. 20, 980–989 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Hunemorder, S. et al. TH1 and TH17 cells promote crescent formation in experimental autoimmune glomerulonephritis. J. Pathol. 237, 62–71 (2015).

    PubMed  Google Scholar 

  157. Salama, A. D. et al. Regulation by CD25+ lymphocytes of autoantigen-specific T-cell responses in Goodpasture's (anti-GBM) disease. Kidney Int. 64, 1685–1694 (2003).

    CAS  PubMed  Google Scholar 

  158. Kidney Disease Improving Global Outcomes. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int. 2, (Suppl. 2) 233–239 (2012).

  159. Henderson, L. et al. Treatment for lupus nephritis. Cochrane Database Syst. Rev. 12, CD002922 (2012).

    PubMed  Google Scholar 

  160. Finck, B. K., Linsley, P. S. & Wofsy, D. Treatment of murine lupus with CTLA4Ig. Science 265, 1225–1227 (1994).

    CAS  PubMed  Google Scholar 

  161. Reap, E. A., Sobel, E. S., Cohen, P. L. & Eisenberg, R. A. Conventional B cells, not B-1 cells, are responsible for producing autoantibodies in lpr mice. J. Exp. Med. 177, 69–78 (1993).

    CAS  PubMed  Google Scholar 

  162. Mackay, F. et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697–1710 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Santiago-Raber, M. L. et al. Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J. Exp. Med. 197, 777–788 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Kiberd, B. A. Interleukin-6 receptor blockage ameliorates murine lupus nephritis. J. Am. Soc. Nephrol. 4, 58–61 (1993).

    CAS  PubMed  Google Scholar 

  165. Merrill, J. et al. Assessment of flares in lupus patients enrolled in a Phase II/III study of rituximab (EXPLORER). Lupus 20, 709–716 (2011).

    CAS  PubMed  Google Scholar 

  166. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).

    CAS  PubMed  Google Scholar 

  167. Lightstone, L. The landscape after LUNAR: rituximab's crater-filled path. Arthritis Rheum. 64, 962–965 (2012).

    PubMed  Google Scholar 

  168. Rovin, B. H. Targeting B-cells in lupus nephritis: should cautious optimism remain? Nephrol. Dial. Transplant. 28, 7–9 (2013).

    PubMed  Google Scholar 

  169. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  170. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  171. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  172. Mysler, E. F. et al. Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, Phase III study. Arthritis Rheum. 65, 2368–2379 (2013).

    CAS  PubMed  Google Scholar 

  173. Gregersen, J. W. & Jayne, D. R. B-cell depletion in the treatment of lupus nephritis. Nat. Rev. Nephrol. 8, 505–514 (2012).

    CAS  PubMed  Google Scholar 

  174. Al Rayes, H. & Touma, Z. Profile of epratuzumab and its potential in the treatment of systemic lupus erythematosus. Drug Des. Devel. Ther. 8, 2303–2310 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, Phase 3 trial. Lancet 377, 721–731 (2011).

    CAS  PubMed  Google Scholar 

  176. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  177. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  178. Vincent, F. B. et al. The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev. 24, 203–215 (2013).

    CAS  PubMed  Google Scholar 

  179. US National Libary of Science. ClinicalTrials.gov[online], (2014).

  180. Ginzler, E. M. et al. Atacicept in combination with MMF and corticosteroids in lupus nephritis: results of a prematurely terminated trial. Arthritis Res. Ther. 14, R33 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Furie, R. et al. Efficacy and safety of abatacept in lupus nephritis: a twelve-month, randomized, double-blind study. Arthritis Rheumatol. 66, 379–389 (2014).

    CAS  PubMed  Google Scholar 

  182. Askanase, A. D. et al. Treatment of lupus nephritis with abatacept: the Abatacept and Cyclophosphamide Combination Efficacy and Safety Study. Arthritis Rheumatol. 66, 3096–3104 (2014).

    CAS  PubMed Central  Google Scholar 

  183. Mohan, C., Shi, Y., Laman, J. D. & Datta, S. K. Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J. Immunol. 154, 1470–1480 (1995).

    CAS  PubMed  Google Scholar 

  184. Ruth, A. J. et al. An IL-12-independent role for CD40–CD154 in mediating effector responses: studies in cell-mediated glomerulonephritis and dermal delayed-type hypersensitivity. J. Immunol. 173, 136–144 (2004).

    CAS  PubMed  Google Scholar 

  185. Ruth, A. J., Kitching, A. R., Semple, T. J., Tipping, P. G. & Holdsworth, S. R. Intrinsic renal cell expression of CD40 directs Th1 effectors inducing experimental crescentic glomerulonephritis. J. Am. Soc. Nephrol. 14, 2813–2822 (2003).

    CAS  PubMed  Google Scholar 

  186. Sidiropoulos, P. I. & Boumpas, D. T. Lessons learned from anti-CD40L treatment in systemic lupus erythematosus patients. Lupus 13, 391–397 (2004).

    CAS  PubMed  Google Scholar 

  187. Jacob, C. O. & McDevitt, H. O. Tumour necrosis factor-α in murine autoimmune 'lupus' nephritis. Nature 331, 356–358 (1988).

    CAS  PubMed  Google Scholar 

  188. Aringer, M. & Smolen, J. S. Therapeutic blockade of TNF in patients with SLE — promising or crazy? Autoimmun. Rev. 11, 321–325 (2012).

    CAS  PubMed  Google Scholar 

  189. US National Libary of Science. ClinicalTrials.gov[online], (2013).

  190. US National Libary of Science. ClinicalTrials.gov[online], (2009).

  191. Michaelson, J. S., Wisniacki, N., Burkly, L. C. & Putterman, C. Role of TWEAK in lupus nephritis: a bench-to-bedside review. J. Autoimmun. 39, 130–142 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  193. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  194. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).

    CAS  PubMed  Google Scholar 

  196. Zheng, B., Yu, X. Q., Greth, W. & Robbie, G. J. Population pharmacokinetic analysis of sifalimumab from a clinical Phase IIb trial in systemic lupus erythematosus patients. Br. J. Clin. Pharmacol. (2015).

  197. Kalunian, K. C. et al. A Phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann. Rheum. Dis. 75, 196–202 (2016).

    PubMed  Google Scholar 

  198. Fukatsu, A. et al. Distribution of interleukin-6 in normal and diseased human kidney. Lab. Invest. 65, 61–66 (1991).

    CAS  PubMed  Google Scholar 

  199. Ryffel, B. et al. Interleukin-6 exacerbates glomerulonephritis in (NZB x NZW)F1 mice. Am. J. Pathol. 144, 927–937 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. US National Libary of Science. ClinicalTrials.gov[online], (2014).

  201. van Vollenhoven, R. et al. A Phase 2, multicenter, randomized, double-blind, placebo-controlled, proof-of-concept study to evaluate the efficacy and safety of sirukumab in patients with active lupus nephritis. Ann. Rheum. Dis. 73 (Suppl. 2), 78 (2014).

    Google Scholar 

  202. Illei, G. G. et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum. 62, 542–552 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Jacob, C. O., van der Meide, P. H. & McDevitt, H. O. In vivo treatment of (NZB X NZW)F1 lupus-like nephritis with monoclonal antibody to γ interferon. J. Exp. Med. 166, 798–803 (1987).

    CAS  PubMed  Google Scholar 

  204. Summers, S. A. et al. Endogenous interleukin (IL)-17A promotes pristane-induced systemic autoimmunity and lupus nephritis induced by pristane. Clin. Exp. Immunol. 176, 341–350 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. US National Libary of Science. ClinicalTrials.gov[online], (2014).

  206. Martin, D. A. et al. A multiple dose study of AMG 811 (Anti-IFN-Gamma) in subjects with systemic lupus erythematosus and active nephritis. Ann. Rheum. Dis. 74 (Suppl. 2), 337 (2015).

    Google Scholar 

  207. Hoi, A. Y. et al. Macrophage migration inhibitory factor deficiency attenuates macrophage recruitment, glomerulonephritis, and lethality in MRL/lpr mice. J. Immunol. 177, 5687–5696 (2006).

    CAS  PubMed  Google Scholar 

  208. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  209. Leng, L. et al. MIF signal transduction initiated by binding to CD74. J. Exp. Med. 197, 1467–1476 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Djudjaj, S. et al. Macrophage migration inhibitory factor mediates proliferative GN via CD74. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2015020149 (2015).

  211. US National Libary of Science. ClinicalTrials.gov[online], (2015).

  212. Kidney Disease Improving Global Outcomes. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int. 2 (Suppl. 2), 240–242 (2012).

  213. Falk, R. J. & Jennette, J. C. Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N. Engl. J. Med. 318, 1651–1657 (1988).

    CAS  PubMed  Google Scholar 

  214. Kain, R. et al. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat. Med. 14, 1088–1096 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Netzer, K. O. et al. The goodpasture autoantigen. Mapping the major conformational epitope(s) of α3(IV) collagen to residues 17–31 and 127–141 of the NC1 domain. J. Biol. Chem. 274, 11267–11274 (1999).

    CAS  PubMed  Google Scholar 

  216. Lech, M. & Anders, H. J. The pathogenesis of lupus nephritis. J. Am. Soc. Nephrol. 24, 1357–1366 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Lockwood, C. M. et al. Treatment of refractory Wegener's granulomatosis with humanized monoclonal antibodies. QJM 89, 903–912 (1996).

    CAS  PubMed  Google Scholar 

  218. US National Libary of Science. ClinicalTrials.gov[online], (2012).

  219. US National Libary of Science. ClinicalTrials.gov[online], (2011).

  220. Laurino, S., Chaudhry, A., Booth, A., Conte, G. & Jayne, D. Prospective study of TNFα blockade with adalimumab in ANCA-associated systemic vasculitis with renal involvement. Nephrol. Dial. Transplant. 25, 3307–3314 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in glomerular disease performed by S.R.H., P.Y.G., and A.R.K. is funded by project grants from the National Health and Medical Research Council of Australia (grant numbers 1048575, 1045065, 1046585, 1064112, and 1084869).

Author information

Authors and Affiliations

Authors

Contributions

A.R.K., P.Y.G., and S.R.H. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Stephen R. Holdsworth.

Ethics declarations

Competing interests

A.R.K. has been a member of an advisory board for Roche Products, Australia. P.Y.G and S.R.H. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holdsworth, S., Gan, PY. & Kitching, A. Biologics for the treatment of autoimmune renal diseases. Nat Rev Nephrol 12, 217–231 (2016). https://doi.org/10.1038/nrneph.2016.18

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing