Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vasopressin and disruption of calcium signalling in polycystic kidney disease

Key Points

  • Polycystin-1 and polycystin-2 in the primary cilia and endoplasmic reticulum regulate intracellular calcium signalling; mutations in these proteins cause autosomal dominant polycystic kidney disease (ADPKD)

  • In ADPKD, reduced intracellular calcium increases the generation of and inhibits the destruction of cAMP, and reduces the release of ATP

  • Altered cAMP metabolism and purinergic signalling in collecting duct principal cells and distal nephron epithelial cells markedly increases the sensitivity of these cells to the constant tonic effects of vasopressin

  • Increased protein kinase A activity leads to phosphorylation of polycystin-2, ryanodine receptors and inositol 1,4,5-trisphosphate receptors, increasing leakage of calcium from the endoplasmic reticulum, which further disrupts intracellular calcium signalling

  • The reduction in intracellular calcium that results from mutant polycystin-1 or polycystin-2 causes the cellular response to cAMP to switch from suppression to stimulation of proliferation

  • In vivo studies support the hypothesis that disruption of intracellular calcium signalling has a central role in the pathogenesis of ADPKD

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disease and is responsible for 5–10% of cases of end-stage renal disease worldwide. ADPKD is characterized by the relentless development and growth of cysts, which cause progressive kidney enlargement associated with hypertension, pain, reduced quality of life and eventual kidney failure. Mutations in the PKD1 or PKD2 genes, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively, cause ADPKD. However, neither the functions of these proteins nor the molecular mechanisms of ADPKD pathogenesis are well understood. Here, we review the literature that examines how reduced levels of functional PC1 or PC2 at the primary cilia and/or the endoplasmic reticulum directly disrupts intracellular calcium signalling and indirectly disrupts calcium-regulated cAMP and purinergic signalling. We propose a hypothetical model in which dysregulated metabolism of cAMP and purinergic signalling increases the sensitivity of principal cells in collecting ducts and of tubular epithelial cells in the distal nephron to the constant tonic action of vasopressin. The resulting magnified response to vasopressin further enhances the disruption of calcium signalling that is initiated by mutations in PC1 or PC2, and activates downstream signalling pathways that cause impaired tubulogenesis, increased cell proliferation, increased fluid secretion and interstitial inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothetical roles of calcium, vasopressin and purinergic signalling in ADPKD.
Figure 2: Predicted structures of PC1 and PC2.

Similar content being viewed by others

References

  1. Torres, V. E., Harris, P. C. & Pirson, Y. Autosomal dominant polycystic kidney disease. Lancet 369, 1287–1301 (2007).

    Article  PubMed  Google Scholar 

  2. Harris, P. C. & Torres, V. E. Polycystic kidney disease. Annu. Rev. Med. 60, 321–327 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lentine, K. L., Xiao, H., Machnicki, G., Gheorghian, A. & Schnitzler. M. A. Renal function and healthcare costs in patients with polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 5, 1471–1479 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Spithoven, E. M. et al. Renal replacement therapy for autosomal dominant polycystic kidney disease (ADPKD) in Europe: prevalence and survival—an analysis of data from the ERA-EDTA Registry. Nephrol. Dial. Transplant. 29 (Suppl. 4), iv15–iv25 (2014).

    Article  PubMed  Google Scholar 

  5. The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14kb transcript and lies within a duplicated region on chromosome 16. Cell 77, 881–894 (1994).

  6. Mochizuki, T. et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272, 1339–1342 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Hughes, J. et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat. Genet. 10, 151–160 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. The International Polycystic Kidney Disease Consortium. Polycystic kidney disease: the complete structure of the PKD1 gene and its protein. Cell 81, 289–298 (1995).

  9. Grantham, J. J. et al. Volume progression in polycystic kidney disease. N. Engl. J. Med. 354, 2122–2130 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Chapman, A. B. et al. Kidney volume and functional outcomes in autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 7, 479–486 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Torres, V. E. et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 367, 2407–2418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caroli, A. et al. Effect of longacting somatostatin analogue on kidney and cyst growth in autosomal dominant polycystic kidney disease (ALADIN): a randomised, placebo-controlled, multicentre trial. Lancet 382, 1485–1495 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Schrier, R. S. et al. Blood pressure in early autosomal dominant polycystic kidney disease. N. Engl. J. Med. 37, 2255–2266 (2014).

    Article  CAS  Google Scholar 

  14. Qian, F. et al. PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat. Genet. 16, 179–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Araç, D. et al. A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J. 31, 1364–1378 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu, S. et al. Essential role of cleavage of polycystin-1 at G protein-coupled receptor proteolytic site for kidney tubular structure. Proc. Natl Acad. Sci. USA 104, 18688–18693 (2007).

    Article  PubMed  Google Scholar 

  17. Qian, F. et al. Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc. Natl Acad. Sci. USA 99, 16981–16986 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Hogan, M. et al. Characterization of PKD protein-positive exosome-like vesicles. J. Am. Soc. Nephrol. 20, 278–288 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hopp, K. et al. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J. Clin. Invest. 122, 4257–4273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Woodward, O. M. et al. Identification of a polycystin-1 cleavage product, P100, that regulates store operated Ca entry through interactions with STIM1. PLoS ONE 5, e12305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chauvet, V. et al. Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J. Clin. Invest. 114, 1433–1443 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bertuccio, C. A. et al. Polycystin-1 C-terminal cleavage is modulated by polycystin-2 expression. J. Biol. Chem. 284, 21011–21026 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Merrick, D. et al. The γ-secretase cleavage product of polycystin-1 regulates TCF and CHOP-mediated transcriptional activation through a p300-dependent mechanism. Dev. Cell 22, 197–210 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Low, S. H. et al. Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev. Cell 10, 57–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Sutters, M. et al. Polycystin-1 transforms the cAMP growth-responsive phenotype of M-1 cells. Kidney Int. 60, 484–494 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Vandorpe, D. H. et al. Cation channel regulation by COOH-terminal cytoplasmic tail of polycystin-1: mutational and functional analysis. Physiol. Genomics 8, 87–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Aguiari, G. et al. Expression of polycystin-1 C-terminal fragment enhances the ATP-induced Ca2+ release in human kidney cells. Biochem. Biophys. Res. Commun. 301, 657–664 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Wildman, S. S. et al. The isolated polycystin-1 cytoplasmic COOH terminus prolongs ATP-stimulated Cl conductance through increased Ca2+ entry. Am. J. Physiol. Renal Physiol. 285, F1168–F1178 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Hooper, K. M., Unwin, R. J. & Sutters, M. The isolated C-terminus of polycystin-1 promotes increased ATP-stimulated chloride secretion in a collecting duct cell line. Clin. Sci. (Lond.) 104, 217–221 (2003).

    Article  CAS  Google Scholar 

  30. Puri, S. et al. Polycystin-1 activates the calcineurin/NFAT (nuclear factor of activated T-cells) signaling pathway. J. Biol. Chem. 279, 55455–55464 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Manzati, E. et al. The cytoplasmic C-terminus of polycystin-1 increases cell proliferation in kidney epithelial cells through serum-activated and Ca2+-dependent pathway(s). Exp. Cell Res. 304, 391–406 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Xu, C. et al. Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling. Am. J. Physiol. Renal Physiol. 292, F930–F945 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. González-Perrett, S. et al. Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc. Natl Acad. Sci. USA 98, 1182–1187 (2001).

    Article  PubMed  Google Scholar 

  34. Vassilev, P. M. et al. Polycystin-2 is a novel cation channel implicated in defective intracellular Ca2+ homeostasis in polycystic kidney disease. Biochem. Biophys. Res. Commun. 282, 341–350 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Yu, Y. et al. Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc. Natl Acad. Sci. USA 106, 11558–11563 (2009).

    Article  PubMed  Google Scholar 

  36. Feng, S., Rodat-Despoix, L., Delmas, P. & Ong, A. C. A single amino acid residue constitutes the third dimerization domain essential for the assembly and function of the tetrameric polycystin-2 (TRPP2) channel. J. Biol. Chem. 286, 18994–19000 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hanaoka, K. et al. Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408, 990–994 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Kim, H. et al. Ciliary membrane proteins traffic through the Golgi via a Rabep1/GGA1/Arl3-dependent mechanism. Nat. Commun. 5, 5482 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gainullin, V. G., Hopp, K., Ward, C. J., Hommerding, C. J. & Harris, P.C. Polycystin-1 maturation requires polycystin-2 in a dose-dependent manner. J. Clin. Invest. 125, 607–620 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li, Y. et al. Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J. Biol. Chem. 284, 36431–36441 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Santoso, N. G., Cebotaru, L. & Guggino, W. B. Polycystin-1, 2, and STIM1 interact with IP3R. to modulate ER Ca2+ release through the PI3K/Akt pathway. Cell Physiol. Biochem. 27, 715–726 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Anyatonwu, G. I., Estrada, M., Tian, X., Somlo, S. & Ehrlich, B. E. Regulation of ryanodine receptor-dependent calcium signaling by polycystin-2. Proc. Natl Acad. Sci. USA 104, 6454–6459 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Tsiokas, L. et al. Specific association of the gene product of PKD2 with the TRPC1 channel. Proc. Natl Acad. Sci. USA 96, 3934–3939 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Bai, C. X. et al. Formation of a new receptor-operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep. 9, 472–479 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Du, J., Ding, M., Sours-Brothers, S., Graham, S. & Ma, R. Mediation of angiotensin II-induced Ca2+ signaling by polycystin 2 in glomerular mesangial cells. Am. J. Physiol. Renal Physiol. 294, F909–F918 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Köttgen, M. et al. TRPP2 and TRPV4 form a polymodal sensory channel complex. J. Cell Biol. 182, 437–447 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miyagi, K. et al. A pathogenic C terminus-truncated polycystin-2 mutant enhances receptor-activated Ca2+ entry via association with TRPC3 and TRPC7. J. Biol. Chem. 284, 34400–34412 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barr, M. M. & Sternberg, P. W. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401, 386–389 (1999).

    CAS  PubMed  Google Scholar 

  49. Haycraft, C. J., Swoboda, P., Taulman, P. D., Thomas, J. H. & Yoder, B. K. The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. Development 128, 1493–1505 (2001).

    CAS  PubMed  Google Scholar 

  50. Praetorius, H. A. & Spring, K. R. Bending the MDCK cell primary cilium increases intracellular calcium. J. Membr. Biol. 184, 71–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Nauli, S. M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Delling, M., DeCaen, P. G., Doerner, J. F., Febvay, S. & Clapham, D. E. Primary cilia are specialized calcium signalling organelles. Nature 504, 311–314 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jin, X. et al. Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli. Cell. Mol. Life Sci. 71, 2165–2178 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Praetorius, H. A. & Leipziger, J. Intrarenal purinergic signaling in the control of renal tubular transport. Annu. Rev. Physiol. 72, 377–393 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Praetorius, H. A. & Leipziger, J. Released nucleotides amplify the cilium-dependent, flow-induced [Ca2+]i response in MDCK cells. Acta Physiol. (Oxf.) 197, 241–251 (2009).

    Article  CAS  Google Scholar 

  56. Praetorius, H. A. & Leipziger, J. Primary cilium-dependent sensing of urinary flow and paracrine purinergic signaling. Semin. Cell Dev. Biol. 24, 3–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Rodat-Despoix, L., Hao, J., Dandonneau, M. & Delmas, P. Shear stress-induced Ca2+ mobilization in MDCK cells is ATP dependent, no matter the primary cilium. Cell Calcium 53, 327–337 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Koulen, P. et al. Polycystin-2 is an intracellular calcium release channel. Nat. Cell Biol. 4, 191–197 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Qian, Q. et al. Pkd2 haploinsufficiency alters intracellular calcium regulation in vascular smooth muscle cells. Hum. Mol. Genet. 12, 1875–1880 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Cai, Y. et al. Calcium dependence of polycystin-2 channel activity is modulated by phosphorylation at Ser812. J. Biol. Chem. 279, 19987–19995 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Aguiari, G. et al. Deficiency of polycystin-2 reduces Ca2+ channel activity and cell proliferation in ADPKD lymphoblastoid cells. FASEB J. 18, 884–886 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Gao, Z., Joseph, E., Ruden, D. M. & Lu, X. Drosophila Pkd2 is haploid-insufficient for mediating optimal smooth muscle contractility. J. Biol. Chem. 279, 14225–14231 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Koulen, P. et al. Polycystin-2 accelerates Ca2+ release from intracellular stores in Caenorhabditis elegans. Cell Calcium 37, 593–601 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Li, Y., Wright, J. M., Qian, F., Germino, G. G. & Guggino, W. B. Polycystin 2 interacts with type I inositol 1, 4, 5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J. Biol. Chem. 280, 41298–41306 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Geng, L. et al. Syntaxin 5 regulates the endoplasmic reticulum channel-release properties of polycystin-2. Proc. Natl Acad. Sci. USA 105, 15920–15925 (2008).

    Article  PubMed  Google Scholar 

  66. Weber, K. H. et al. Heterologous expression of polycystin-1 inhibits endoplasmic reticulum calcium leak in stably transfected MDCK cells. Am. J. Physiol. Renal Physiol. 294, F1279–F1286 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Wegierski, T. et al. TRPP2 channels regulate apoptosis through the Ca2+ concentration in the endoplasmic reticulum. EMBO J. 28, 490–499 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mekahli, D. et al. Polycystin-1 and polycystin-2 are both required to amplify inositol-trisphosphate-induced Ca2+ release. Cell Calcium 51, 452–458 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Paavola, J. et al. Polycystin-2 mutations lead to impaired calcium cycling in the heart and predispose to dilated cardiomyopathy. J. Mol. Cellular Cardiol. 58, 199–208 (2013).

    Article  CAS  Google Scholar 

  70. Streets, A. J., Wessely, O., Peters, D. J. & Ong, A. C. Hyperphosphorylation of polycystin-2 at a critical residue in disease reveals an essential role for polycystin-1-regulated dephosphorylation. Hum. Mol. Genet. 22, 1924–1939 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Plotnikova, O. V., Pugacheva, E. N. & Golemis, E. A. Aurora A kinase activity influences calcium signaling in kidney cells. J. Cell Biol. 193, 1021–1032 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hooper, K. et al. Expression of polycystin-1 enhances endoplasmic reticulum calcium uptake and decreases capacitative calcium entry in ATP-stimulated MDCK cells. Am. J. Physiol. Renal Physiol. 289, F521–F530 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Morel, N. et al. PKD1 haploinsufficiency is associated with altered vascular reactivity and abnormal calcium signaling in the mouse aorta. Pflugers Arch. 457, 845–856 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Chang, M. Y. et al. Haploinsufficiency of Pkd2 is associated with increased tubular cell proliferation and interstitial fibrosis in two murine Pkd2 models. Nephrol. Dial. Transplant. 21, 2078–2084 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Parker, E. et al. Hyperproliferation of PKD1 cystic cells is induced by insulin-like growth factor-1 activation of the Ras/Raf signalling system. Kidney Int. 72, 157–165 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ahrabi, A. K. et al. PKD1 haploinsufficiency causes a syndrome of inappropriate antidiuresis in mice. J. Am. Soc. Nephrol. 18, 1740–1753 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Nauli, S. M. et al. Loss of polycystin-1 in human cyst-lining epithelia leads to ciliary dysfunction. J. Am. Soc. Nephrol. 17, 1015–1025 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Kuo, I. Y. et al. Cyst formation following disruption of intracellular calcium signaling. Proc. Natl Acad. Sci. USA 111, 14283–14288 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Spirli, C. et al. Altered store operated calcium entry increases cyclic 3′, 5′-adenosine monophosphate production and extracellular signal-regulated kinases 1 and 2 phosphorylation in polycystin-2-defective cholangiocytes. Hepatology 55, 856–868 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lantinga-van Leeuwen, I. S. et al. Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum. Mol. Genet. 13, 3069–3077 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Pritchard, L. et al. A human PKD1 transgene generates functional polycystin-1 in mice and is associated with a cystic phenotype. Hum. Mol. Genet. 9, 2617–2627 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Thivierge, C. et al. Overexpression of PKD1 causes polycystic kidney disease. Mol. Cell Biol. 26, 1538–1548 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Park, E. Y. et al. Cyst formation in kidney via B-Raf signaling in the PKD2 transgenic mice. J. Biol. Chem. 284, 7214–7222 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yamaguchi, T., Nagao, S., Kasahara, M., Takahashi, H. & Grantham, J. Renal accumulation and excretion of cyclic adenosine monophosphate in a murine model of slowly progressive polycystic kidney disease. Am. J. Kidney Dis. 30, 703–709 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Gattone, V. H. 2nd, Wang, X., Harris, P. C. & Torres, V. E. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat. Med. 9, 1323–1326 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Starremans, P. G. et al. A mouse model for polycystic kidney disease through a somatic in-frame deletion in the 5′ end of Pkd1. Kidney Int. 73, 1394–1405 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Smith, L. A. et al. Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease. J. Am. Soc. Nephrol. 17, 2821–2831 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Masyuk, T. V., Masyuk, A. I., Torres, V. E., Harris, P. C. & Larusso, N. F. Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′, 5′-cyclic monophosphate. Gastroenterology 132, 1104–1116 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Kip, S. N. et al. [Ca2+]i reduction increases cellular proliferation and apoptosis in vascular smooth muscle cells: relevance to the ADPKD phenotype. Circ. Res. 96, 873–880 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Banizs, B. et al. Altered pHi regulation and Na+/HCO3 transporter activity in choroid plexus of cilia-defective Tg737orpk mutant mouse. Am. J. Physiol. Cell Physiol. 292, C1409–C1416 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Wang, X., Ward, C. J., Harris, P. C. & Torres, V. E. Cyclic nucleotide signaling in polycystic kidney disease. Kidney Int. 77, 129–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Rees, S. et al. Adenylyl cyclase 6 deficiency ameliorates polycystic kidney disease. J. Am. Soc. Nephrol. 25, 232–237 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Sussman, C. R. et al. Phosphodiesterase 1A modulates cystogenesis in zebrafish. J. Am. Soc. Nephrol. 25, 2222–2230 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yamaki, M., McIntyre, S., Rassier, M. E., Schwartz, J. H. & Dousa, T. P. Cyclic 3′, 5′-nucleotide diesterases in dynamics of cAMP and cGMP in rat collecting duct cells. Am. J. Physiol. 262, F957–F964 (1992).

    CAS  PubMed  Google Scholar 

  95. Kusano, E. et al. Effects of calcium on the vasopressin-sensitive cAMP metabolism in medullary tubules. Am. J. Physiol. 249, F956–F966 (1985).

    CAS  PubMed  Google Scholar 

  96. Kenan, Y., Murata, T., Shakur, Y., Degerman, E. & Manganiello, V. C. Functions of the N-terminal region of cyclic nucleotide phosphodiesterase 3 (PDE 3) isoforms. J. Biol. Chem. 275, 12331–12338 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Shakur, Y. et al. Membrane localization of cyclic nucleotide phosphodiesterase 3 (PDE3). Two N-terminal domains are required for the efficient targeting to, and association of, PDE3 with endoplasmic reticulum. J. Biol. Chem. 275, 38749–38761 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Grantham, J. J. Renal cell proliferation and the two faces of cyclic adenosine monophosphate. J. Lab. Clin. Med. 130, 459–460 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Matousovic, K., Tsuboi, Y., Walker, H., Grande, J. P. & Dousa, T. P. Inhibitors of cyclic nucleotide phosphodiesterase isozymes block renal tubular cell proliferation induced by folic acid. J. Lab. Clin. Med. 130, 487–495 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Cheng, J. et al. Lixazinone stimulates mitogenesis of Madin–Darby canine kidney cells. Exp. Biol. Med. (Maywood) 231, 288–295 (2006).

    Article  CAS  Google Scholar 

  101. De Jonge, H. R. et al. cGMP inhibition of type 3 phosphodiesterase is the major mechanism by which C-type natriuretic peptide activates CFTR in the shark rectal gland. Am. J. Physiol. Cell Physiol. 306, C343–C353 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Penmatsa, H. et al. Compartmentalized cyclic adenosine 3′,5′-monophosphate at the plasma membrane clusters PDE3A and cystic fibrosis transmembrane conductance regulator into microdomains. Mol. Biol.Cell 21, 1097–1110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Choi, Y. H. et al. Polycystin-2 and phosphodiesterase 4C are components of a ciliary A-kinase anchoring protein complex that is disrupted in cystic kidney diseases. Proc. Natl Acad. Sci. USA 108, 10679–10684 (2011).

    Article  PubMed  Google Scholar 

  104. Xu, C. et al. Attenuated, flow-induced ATP release contributes to absence of flow-sensitive, purinergic Cai2+ signaling in human ADPKD cyst epithelial cells. Am. J. Physiol. Renal Physiol. 296, F1464–F1476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hovater, M. B. et al. Loss of apical monocilia on collecting duct principal cells impairs ATP secretion across the apical cell surface and ATP-dependent and flow-induced calcium signals. Purinergic Signal. 4, 155–170 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. AbouAlaiwi, W. A. et al. Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ. Res. 104, 860–869 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Seeman, T. et al. Renal concentrating capacity is linked to blood pressure in children with autosomal dominant polycystic kidney disease. Physiol. Res. 53, 629–634 (2004).

    CAS  PubMed  Google Scholar 

  108. Danielsen, H. et al. Expansion of extracellular volume in early polycystic kidney disease. Acta Med. Scand. 219, 399–405 (1986).

    Article  CAS  PubMed  Google Scholar 

  109. Michalski, A. & Grzeszczak, W. The effect of hypervolemia on electrolyte level and level of volume regulating hormones in patients with autosomal dominant polycystic kidney disease. [Polish] Pol. Arch. Med. Wewn. 96, 329–343 (1996).

    CAS  PubMed  Google Scholar 

  110. Zittema, D. et al. Kidney function and plasma copeptin levels in healthy kidney donors and autosomal dominant polycystic kidney disease patients. Clin. J. Am. Soc. Nephrol. 9, 1553–1562 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Boertien, W. E. et al. Relationship of copeptin, a surrogate marker for arginine vasopressin, with change in total kidney volume and GFR decline in autosomal dominant polycystic kidney disease: results from the CRISP cohort. Am. J. Kidney Dis. 61, 420–429 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Meijer, E. et al. Copeptin, a surrogate marker of vasopressin, is associated with disease severity in autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 361–368 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Boertien, W. E. et al. Copeptin, a surrogate marker for vasopressin, is associated with kidney function decline in subjects with autosomal dominant polycystic kidney disease. Nephrol. Dial. Transplant. 27, 4131–4137 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Gabow, P. A. et al. The clinical utility of renal concentrating capacity in polycystic kidney disease. Kidney Int. 35, 675–680 (1989).

    Article  CAS  PubMed  Google Scholar 

  115. Gattone, V. H. 2nd, Maser, R. L., Tian, C., Rosenberg, J. M. & Branden, M. G. Developmental expression of urine concentration-associated genes and their altered expression in murine infantile-type polycystic kidney disease. Dev. Genet. 24, 309–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Torres, V. E. et al. Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat. Med. 10, 363–364 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Carone, F. A., Ozono, S., Samma, S., Kanwar, Y. S. & Oyasu, R. Renal functional changes in experimental cystic disease are tubular in origin. Kidney Int. 33, 8–13 (1988).

    Article  CAS  PubMed  Google Scholar 

  118. Safouh, M., Crocker, J. F. & Vernier, R. L. Experimental cystic disease of the kidney. Sequential, functional, and morphologic studies. Lab. Invest. 23, 392–400 (1970).

    CAS  PubMed  Google Scholar 

  119. Wolf, M. T. & Hildebrandt, F. Nephronophthisis. Pediatr. Nephrol. 26, 181–194 (2011).

    Article  PubMed  Google Scholar 

  120. Marion, V. et al. Bardet–Biedl syndrome highlights the major role of the primary cilium in efficient water reabsorption. Kidney Int. 79, 1013–1025 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Hayashi, M. et al. Expression and localization of the water channels in human autosomal dominant polycystic kidney disease. Nephron 75, 321–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Yasuda, G. & Jeffries, W. B. Regulation of cAMP production in initial and terminal inner medullary collecting ducts. Kidney Int. 54, 80–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Hopp, K. et al. Effects of hydration in rats and mice with polycystic kidney disease. Am. J. Physiol. 308, F261–F266 (2015).

    CAS  Google Scholar 

  124. Wang, X., Wu, Y., Ward, C. J., Harris, P. C. & Torres, V. E. Vasopressin directly regulates cyst growth in polycystic kidney disease. J. Am. Soc. Nephrol. 19, 102–108 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, X., Gattone, V. 2nd, Harris, P. C. & Torres, V. E. Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J. Am. Soc. Nephrol. 16, 846–851 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Meijer, E. et al. Therapeutic potential of vasopressin V2 receptor antagonist in a mouse model for autosomal dominant polycystic kidney disease: optimal timing and dosing of the drug. Nephrol. Dial. Transplant. 26, 2445–2453 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Hopp, K. et al. Tolvaptan plus pasireotide shows enhanced efficacy in a PKD1 model. J. Am. Soc. Nephrol. 26, 39–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Yip, K. P. & Sham, J. S. Mechanisms of vasopressin-induced intracellular Ca2+ oscillations in rat inner medullary collecting duct. Am. J. Physiol. Renal Physiol. 300, F540–F548 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Odgaard, E., Praetorius, H. A. & Leipziger, J. AVP-stimulated nucleotide secretion in perfused mouse medullary thick ascending limb and cortical collecting duct. Am. J. Physiol. Renal Physiol. 297, F341–F349 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Rieg, T. et al. Mice lacking P2Y2 receptors have salt-resistant hypertension and facilitated renal Na+ and water reabsorption. FASEB J. 21, 3717–3726 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Kishore, B. K., Chou, C. L. & Knepper, M. A. Extracellular nucleotide receptor inhibits AVP-stimulated water permeability in inner medullary collecting duct. Am. J. Physiol. 269, F863–F869 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. Teitelbaum, I. Protein kinase C inhibits arginine vasopressin-stimulated cAMP accumulation via a Gi-dependent mechanism. Am. J. Physiol. 264, F216–F220 (1993).

    CAS  PubMed  Google Scholar 

  133. Welch, B. D., Carlson, N. G., Shi, H., Myatt, L. & Kishore, B. K. P2Y2 receptor-stimulated release of prostaglandin E2 by rat inner medullary collecting duct preparations. Am. J. Physiol. Renal Physiol. 285, F711–F721 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Olesen, E. T. & Fenton, R. A. Is there a role for PGE2 in urinary concentration? J. Am. Soc. Nephrol. 24, 169–178 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Zhang, Y. et al. Potential role of purinergic signaling in urinary concentration in inner medulla: insights from P2Y2 receptor gene knockout mice. Am. J. Physiol. Renal Physiol. 295, F1715–F1724 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. DeSouza, N. et al. Protein kinase A and two phosphatases are components of the inositol 1,4,5-trisphosphate receptor macromolecular signaling complex. J. Biol. Chem. 277, 39397–39400 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Wagner, L. E. 2nd, Joseph, S. K. & Yule, D. I. Regulation of single inositol 1,4,5-trisphosphate receptor channel activity by protein kinase A phosphorylation. J. Physiol. 586, 3577–3596 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Andersson, D. C. et al. Stress-induced increase in skeletal muscle force requires protein kinase A phosphorylation of the ryanodine receptor. J. Physiol. 590, 6381–6387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Marx, S. O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Torres, V. E. Vasopressin receptor antagonists, heart failure, and polycystic kidney disease. Annu. Rev. Med. 66, 195–210 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Wehrens, X. H. et al. Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc. Natl Acad. Sci. USA 103, 511–518 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Morimoto, S. et al. Protein kinase A-dependent phosphorylation of ryanodine receptors increases Ca2+ leak in mouse heart. Biochem. Biophys. Res. Commun. 390, 87–92 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Marks, A. R. Calcium cycling proteins and heart failure: mechanisms and therapeutics. J. Clin. Invest. 123, 46–52 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Torres, V. E. & Harris, P. C. Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J. Am. Soc. Nephrol. 25, 18–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Yamaguchi, T. et al. cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int. 57, 1460–1471 (2000).

    Article  CAS  PubMed  Google Scholar 

  146. Hanaoka, K. & Guggino, W. B. cAMP regulates cell proliferation and cyst formation in autosomal polycystic kidney disease cells. J. Am. Soc. Nephrol. 11, 1179–1187 (2000).

    CAS  PubMed  Google Scholar 

  147. Yamaguchi, T. et al. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J. Biol. Chem. 279, 40419–40430 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Yamaguchi, T., Hempson, S. J., Reif, G. A., Hedge, A. M. & Wallace, D. P. Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. J. Am. Soc. Nephrol. 17, 178–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Rothschild, S. C., Francescatto, L., Drummond, I. A. & Tombes, R. M. CaMK-II is a PKD2 target that promotes pronephric kidney development and stabilizes cilia. Development 138, 3387–3397 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Mekahli, D. et al. Polycystin-1 but not polycystin-2 deficiency causes upregulation of the mTOR pathway and can be synergistically targeted with rapamycin and metformin. Pflugers Arch. 466, 1591–1604 (2014).

    CAS  PubMed  Google Scholar 

  151. Jin, X. et al. L-type calcium channel modulates cystic kidney phenotype. Biochim. Biophys. Acta 1842, 1518–1526 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Banales, J. M. et al. The cAMP effectors Epac and protein kinase A (PKA) are involved in the hepatic cystogenesis of an animal model of autosomal recessive polycystic kidney disease (ARPKD). Hepatology 49, 160–174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fischer, D. C. et al. Activation of the AKT/mTOR pathway in autosomal recessive polycystic kidney disease (ARPKD). Nephrol. Dial. Transplant. 24, 1819–1827 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Nishio, S. et al. Pkd1 regulates immortalized proliferation of renal tubular epithelial cells through p53 induction and JNK activation. J. Clin. Invest. 115, 910–918 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wahl, P. R. et al. Mitotic activation of Akt signalling pathway in Han:SPRD rats with polycystic kidney disease. Nephrology (Carlton) 12, 357–363 (2007).

    Article  CAS  Google Scholar 

  156. Natoli, T. A. et al. Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models. Nat. Med. 16, 788–792 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ren, X. S. et al. Activation of the PI3K/mTOR pathway is involved in cystic proliferation of cholangiocytes of the PCK rat. PloS ONE 9, e87660 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Distefano, G. et al. Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol. Cell Biol. 29, 2359–2371 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Spirli, C. et al. Mammalian target of rapamycin regulates vascular endothelial growth factor-dependent liver cyst growth in polycystin-2-defective mice. Hepatology 51, 1778–1788 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ibraghimov-Beskrovnaya, O. & Natoli, T. A. mTOR signaling in polycystic kidney disease. Trends Mol. Med. 17, 625–633 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Rowe, I. et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat. Med. 19, 488–493 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yecies, J. L. & Manning, B. D. Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res. 71, 2815–2820 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Takiar, V. et al. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc. Natl Acad. Sci. USA 108, 2462–2467 (2011).

    Article  PubMed  Google Scholar 

  165. Saadi-Kheddouci, S. et al. Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the β-catenin gene. Oncogene 20, 5972–5981 (2001).

    Article  CAS  PubMed  Google Scholar 

  166. Li, M. et al. Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3β. Mol. Cell. Biol. 20, 9356–9363 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Taurin, S., Sandbo, N., Qin, Y., Browning, D. & Dulin, N. O. Phosphorylation of β-catenin by cyclic AMP-dependent protein kinase. J. Biol. Chem. 281, 9971–9976 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Qian, C. N. et al. Cystic renal neoplasia following conditional inactivation of Apc in mouse renal tubular epithelium. J. Biol. Chem. 280, 3938–3945 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Qin, S., Taglienti, M., Cai, L., Zhou, J. & Kreidberg, J. A. c-Met and NF-κB-dependent overexpression of Wnt7a and -7b and Pax2 promotes cystogenesis in polycystic kidney disease. J. Am. Soc. Nephrol. 23, 1309–1318 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Talbot, J. J. et al. Polycystin-1 regulates STAT activity by a dual mechanism. Proc. Natl Acad. Sci. USA 108, 7985–7990 (2011).

    Article  PubMed  Google Scholar 

  171. Leonhard, W. N. et al. Curcumin inhibits cystogenesis by simultaneous interference of multiple signaling pathways: in vivo evidence from a Pkd1-deletion model. Am. J. Physiol. Renal Physiol. 300, F1193–F1202 (2011).

    Article  CAS  PubMed  Google Scholar 

  172. Takakura, A. et al. Pyrimethamine inhibits adult polycystic kidney disease by modulating STAT signaling pathways. Hum. Mol. Genet. 20, 4143–4154 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Stayner, C. et al. Pax2 gene dosage influences cystogenesis in autosomal dominant polycystic kidney disease. Hum. Mol. Genet. 15, 3520–3528 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Ostom, L., Tang, M. J., Gruss, P. & Dressler, G. Reduced Pax2 gene dosage increases apoptosis and slows the progression of renal cystic disease. Dev. Biol. 219, 250–258 (2000).

    Article  CAS  Google Scholar 

  175. Sullivan, L. P., Wallace, D. P. & Grantham, J. J. Epithelial transport in polycystic kidney disease. Physiol. Rev. 78, 1165–1191 (1998).

    Article  CAS  PubMed  Google Scholar 

  176. Sullivan, L. P., Wallace, D. P. & Grantham, J. J. Chloride and fluid secretion in polycystic kidney disease. J. Am. Soc. Nephrol 9, 903–916 (1998).

    CAS  PubMed  Google Scholar 

  177. Buchholz, B., Teschemacher, B., Schley, G., Schillers, H. & Eckardt, K. U. Formation of cysts by principal-like MDCK cells depends on the synergy of cAMP- and ATP-mediated fluid secretion. J. Mol. Med. 89, 251–261 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Buchholz, B. et al. Anoctamin 1 induces calcium-activated chloride secretion and proliferation of renal cyst-forming epithelial cells. Kidney Int. 85, 1058–1067 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Jang, Y. & Oh, U. Anoctamin 1 in secretory epithelia. Cell Calcium 55, 355–361 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. Leuenroth, S. J. et al. Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proc. Natl Acad. Sci. USA 104, 4389–4394 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Leuenroth, S. J., Bencivenga, N., Igarashi, P., Somlo, S. & Crews, C. M. Triptolide reduces cystogenesis in a model of ADPKD. J. Am. Soc. Nephrol. 19, 1659–1662 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Nagao, S. et al. Calcium channel inhibition accelerates polycystic kidney disease progression in the Cy/+ rat. Kidney Int. 73, 269–277 (2008).

    Article  CAS  PubMed  Google Scholar 

  183. Gattone, V. H. 2nd et al. Calcimimetic inhibits late-stage cyst growth in ADPKD. J. Am. Soc. Nephrol. 20, 1527–1532 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wang, X., Harris, P. C., Somlo, S., Batlle, D. & Torres, V. E. Effect of calcium-sensing receptor activation in models of autosomal recessive or dominant polycystic kidney disease. Nephrol. Dial. Transplant. 24, 526–534 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Leuenroth, S. J., Bencivenga, N., Chahboune, H., Hyder, F. & Crews, C. M. Triptolide reduces cyst formation in a neonatal to adult transition Pkd1 model of ADPKD. Nephrol. Dial. Transplant. 25, 2187–2194 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Gradilone, S. A. et al. Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD. Gastroenterology 139, 304–314.e2 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chen, N. X. et al. Calcimimetics inhibit renal pathology in rodent nephronophthisis. Kidney Int. 80, 612–619 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Mahajan, N. et al. Calcium ameliorates renal cyst growth in metanephric organ culture: a morphological study. J. Environ. Pathol. Toxicol. Oncol. 31, 285–293 (2012).

    Article  CAS  PubMed  Google Scholar 

  189. Zaica, O. et al. TRPV4 dysfunction promotes renal cystogenesis in autosomal recessive polycystic kidney disease. J. Am. Soc. Nephrol. 24, 604–616 (2013).

    Article  CAS  Google Scholar 

  190. Torres, V. E. Type II calcimimetics and polycystic kidney disease: unanswered questions. J. Am. Soc. Nephrol. 20, 1421–1425 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is supported in part by grants from the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (DK044863 and DK090728).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, discussion of content, writing the article and reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Vicente E. Torres.

Ethics declarations

Competing interests

V.E.T. is principal investigator for several clinical trials of tolvaptan in ADPKD and has received research support from Otsuka Pharmaceutical. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chebib, F., Sussman, C., Wang, X. et al. Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat Rev Nephrol 11, 451–464 (2015). https://doi.org/10.1038/nrneph.2015.39

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.39

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing