Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Nephrology research—the past, present and future

Abstract

Important advances have been made in basic and clinical nephrology research over the past decade, with improved pathological insights into various disease processes and the introduction of new treatments for diseases such as atypical haemolytic uraemic syndrome. However, many challenges remain. In this Viewpoint, we asked five Nature Reviews Nephrology Advisory Board members, who have been associated with the journal since its launch in November 2005, to reflect on the progress and roadblocks of the past 10 years. They also comment on areas where effort and money should be invested and how they expect the field to progress in the next 10 years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macrophages interact in S1 tubules to mediate endotoxin preconditioning.
Figure 2: Randomized clinical trials in various disciplines of medicine.
Figure 3: Aberrant signalling pathways that have been implicated in the pathogenesis of polycystic kidney disease and potential drugs that act on targets in these pathways.

Similar content being viewed by others

References

  1. Beck. L. H. Jr et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361, 11–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Clement, L. C. et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat. Med. 17, 117–122 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Hu, M. C. et al. Klotho and phosphate are modulators of pathologic uremic cardiac remodeling. J. Am. Soc. Nephrol. 26, 1290–1302 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 15, 545–552 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Maass, P. G. et al. PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat. Genet. 47, 647–653 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Antignac, C. et al. The future of polycystic kidney disease research—as seen by the 12 Kaplan awardees. J. Am. Soc. Nephrol. 9, 2081–2095 (2015).

    Article  Google Scholar 

  7. Freedman, B. I. et al. APOL1 associations with nephropathy, atherosclerosis, and all-cause mortality in African Americans with type 2 diabetes. Kidney Int. 87, 176–181 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Fresquet, M. et al. Identification of a major epitope recognized by PLA2R autoantibodies in primary membranous nephropathy. J. Am. Soc. Nephrol. 26, 302–313 (2015).

    Article  PubMed  Google Scholar 

  9. Kurts, C., Panzer, U., Anders, H. J. & Rees, A. J. The immune system and kidney disease: basic concepts and clinical implications. Nat. Rev. Immunol. 13, 738–753 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Hato, T. et al. The macrophage mediates the renoprotective effects of endotoxin preconditioning. J. Am. Soc. Nephrol. 26, 1347–1362 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Hall, A. M. & Molitoris, B. A. Dynamic multiphoton microscopy: focusing light on acute kidney injury. Physiology (Bethesda) 29, 334–342 (2014).

    CAS  Google Scholar 

  12. Lifton, R. P., Gharavi, A. G. & Geller, D. S. Molecular mechanisms of human hypertension. Cell 104, 545–556 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Shibata, S. et al. Angiotensin II signaling via protein kinase C phosphorylates Kelch-like 3, preventing WNK4 degradation. Proc. Natl Acad. Sci. USA 111, 15556–15561 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Kestilä, M. et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol. Cell 1, 575–582 (1998).

    Article  PubMed  Google Scholar 

  15. Boute, N. et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat. Genet. 24, 349–354 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Devuyst, O. et al. Rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet 383, 1844–1859 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sadowski, C. E. et al. A single-gene cause in 29.5% of cases of steroid resistant nephrotic syndrome. J. Am. Soc. Nephrol. 26, 1279–1289 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Santín, S. et al. Clinical value of NPHS2 analysis in early- and adult-onset steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 6, 344–354 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Evolve Trial Investigators. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N. Engl. J. Med. 367, 2482–2494 (2012).

  21. Parving, H. H. et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N. Engl. J. Med. 367, 2204–2213 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Legendre, C. M. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 368, 2169–2181 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Wuhl, E. et al. Strict blood pressure control and progression of renal failure in children. N. Engl. J. Med. 361, 1639–1650 (2009).

    Article  PubMed  Google Scholar 

  24. Schrier, R. W. et al. Blood pressure in early autosomal dominant kidney disease. N. Engl. J. Med. 371, 2255–2266 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Appel, L. J. et al. Intensive blood pressure control in hypertensive chronic kidney disease. N. Engl. J. Med. 363, 918–929 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parsa, A. et al. APOL1 risk variants, race and progression of chronic kidney disease. N. Engl. J. Med. 369, 2183–2196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. He, J. C., Chuang, P. Y., Ma'ayan, A. & Iyengar, R. Systems biology of kidney diseases. Kidney Int. 81, 22–39 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Loupy, A. et al. Molecular microscope strategy to improve risk stratification in early antibody-mediated kidney allograft rejection. J. Am. Soc. Nephrol. 25, 2267–2277 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Warnock, D. G. & Mauer, M. Fabry disease: dose matters. J. Am. Soc. Nephrol. 25, 653–655 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kavanagh, D., Goodship, T. H. & Richards, A. Atypical hemolytic uremic syndrome. Semin. Nephrol. 33, 508–530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang, M. Y. & Ong, A. C. New treatments for autosomal dominant polycystic kidney disease. Br. J. Clin. Pharmacol. 76, 524–535 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Debiec, H. et al. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N. Engl. J. Med. 346, 2053–2060 (2002).

    Article  PubMed  Google Scholar 

  33. Tomas, N. M. et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N. Engl. J. Med. 371, 2277–2287 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ronco, P. & Debiec, H. Pathophysiological advances in membranous nephropathy: time for a shift in patient's care. Lancet 385, 1983–1992 (2015).

    Article  PubMed  Google Scholar 

  35. Nürnberger, J. et al. Eculizumab for atypical hemolytic-uremic syndrome. N. Engl. J. Med. 360, 542–544 (2009).

    Article  PubMed  Google Scholar 

  36. Gruppo, R. A. & Rother, R. P. Eculizumab for congenital atypical hemolytic-uremic syndrome. N. Engl. J. Med. 360, 544–546 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Loirat, C. et al. An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr. Nephrol. http://dx.doi.org/10.1007/s00467-015-3076-8.

  38. Torres, V. E. et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 367, 2407–2418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coresh, J. et al. Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA 311, 2518–2531 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. LaRivere, W. B., Irazabal, M. V. & Torres, V. E. Novel therapeutic approaches to autosomal dominant polycystic kidney disease. Translat. Res. 4, 488–498 (2015).

    Article  Google Scholar 

  41. Dickson, L. E., Wagner, M. C., Sandoval, R. M. & Molitoris, B. A. The proximal tubule and albuminuria: really! J. Am. Soc. Nephrol. 25, 443–453 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wagner, M. C. et al. Proximal tubules have the capacity to regulate uptake of albumin. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2014111107.

  43. Prowle, J. R. et al. Serum creatinine changes associated with critical illness and detection of persistent renal dysfunction after AKI. Clin. J. Am. Soc. Nephrol. 9, 1015–1023 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gaspari, F. et al. The GFR and GFR decline cannot be accurately estimated in type 2 diabetics. Kidney Int. 84, 164–173 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. GBD Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385, 117–171 (2015).

  46. Ruggenenti, P. et al. Role of remission clinics in the longitudinal treatment of CKD. J. Am. Soc. Nephrol. 19, 1213–1224 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Luyckx, V. A. & Brenner, B. M. Birth weight, malnutrition and kidney-associated outcomes—a global concern. Nat. Rev. Nephrol. 11, 135–149 (2015).

    Article  PubMed  Google Scholar 

  48. De Vriese, A. S. & Fervenza, F. C. Con: biomarkers in glomerular diseases: putting the cart before the wheel? Nephrol. Dial. Transplant. 30, 885–890 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Ronco, P. Moderator's view: biomarkers in glomerular diseases-translated into patient care or lost in translation? Nephrol. Dial. Transplant. 30, 899–902 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Murray, P. T. et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 85, 513–521 (2014).

    Article  PubMed  Google Scholar 

  51. Ronco, P. & Floege, J. Ten-year advances in immunopathology of glomerulonephritis: translated into patients' care or lost in translation? Semin. Immunopathol. 36, 377–379 (2014).

    Article  PubMed  Google Scholar 

  52. Wanner, C. et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 353, 238–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Fellstrom, B. C. et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 360, 1395–1407 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Grantham, J. J. et al. Volume progression in polycystic kidney disease. N. Engl. J. Med. 354, 2122–2130 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Warady, B. A. et al. Predictors of rapid progression of glomerular and nonglomerular kidney disease in children and adolescents: The Chronic Kidney Disease in Children (CKiD) cohort. Am. J. Kidney Dis. 65, 878–888 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. English, K. & Wood, K. J. Mesenchymal stromal cells in transplantation rejection and tolerance. Cold Spring Harb. Perspect. Med. 3, a015560 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mariani, L. H. & Kretzler, M. Pro: 'The usefulness of biomarkers in glomerular diseases'. The problem: moving from syndrome to mechanism-individual patient variability in disease presentation, course and response to therapy. Nephrol. Dial. Transplant. 30, 892–898 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Okpechi, I. G., Swanepoel, C. R. & Venter, F. Access to medications and conducting clinical trials in LMICs. Nat. Rev. Nephrol. 11, 189–194 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Armignacco, P. et al. Wearable devices for blood purification: principles, miniaturization, and technical challenges. Semin. Dial. 28, 125–130 (2015).

    Article  PubMed  Google Scholar 

  60. Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 125096 (2014).

    Article  Google Scholar 

  61. Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Molitoris, B. A. ASN Presidential Address 2013: innovation and individualization—the path forward for nephrology. J. Am. Soc. Nephrol. 25, 893–897 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Horton, R. & Berman, P. Eliminating acute kidney injury by 2015: an achievable goal. Lancet 385, 2551–2552 (2015).

    Article  PubMed  Google Scholar 

  64. Menche, J. et al. Disease networks. Uncovering disease–disease relationships through the incomplete interactome. Science. 347, 1257601 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kawai, T., Sachs, D. H., Sykes, M. & Cosimi, A. B. HLA-mismatched renal transplantation without maintenance immunosuppression. N. Engl. J. Med. 368, 1850–1852 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Humphreys, B. D. Kidney injury, stem cells and regeneration. Curr. Opin. Nephrol. Hypertens. 23, 25–31 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jürgen Floege, Robert H. Mak, Bruce A. Molitoris, Giuseppe Remuzzi or Pierre Ronco.

Ethics declarations

Competing interests

J.F. has consulted for and/or received speaker honoraria from Amgen, Abbvie, Chugai, Fresenius, Pharmalink, Sanofi and Vifor. B.A.M. is co-founder and Medical Director of FAST BioMedical, a company developing technology to rapidly quantify plasma volume and glomerular filtration rate. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Floege, J., Mak, R., Molitoris, B. et al. Nephrology research—the past, present and future. Nat Rev Nephrol 11, 677–687 (2015). https://doi.org/10.1038/nrneph.2015.152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.152

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research