Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic use of human renal progenitor cells for kidney regeneration

Key Points

  • Embryonic renal progenitor cells (RPCs) represent the prototype of the kidney cell population with nephrogenic potential, but the nephrogenic mesenchymal progenitor population is absent in the adult human kidney

  • In adults, RPCs seem to be segment-restricted, and several studies indicate that these cells arise through phenotypic plasticity of tubular cells; CD133+ cells with progenitor-like properties exist in all human nephron segments

  • Adult human RPCs obtained from different nephron segments or urine show therapeutic potential in acute tubular and glomerular damage, through paracrine mechanisms and differentiation

  • Adult and fetal RPCs show engraftment in glomeruli and tubules in preclinical models of chronic kidney disease; generation of patient-derived RPCs could enable autologous therapy that does not require immunosuppression

  • Intraparenchymal injection of differentiated adult renal cells seems to be beneficial in chronic kidney disease

  • The administration route of RPCs in cell therapy must be defined; tubular localization requires RPCs to passage through basal membranes, so local administration seems more feasible

Abstract

The ability of the human kidney to repair itself is limited. Consequently, repeated injury can trigger a maladaptive response that is characterized by fibrosis and loss of renal function. The transcription patterns that characterize nephrogenesis in fetal renal progenitor cells (RPCs) are only partially activated during renal repair in adults. Nevertheless, evidence suggests that segment-restricted progenitor resident cells support renal healing in adults. In this Review, we discuss the evidence for the existence of functional human RPCs in adults and their role in renal repair, and consider the controversial issue of whether RPCs are a fixed population or arise through phenotypical plasticity of tubular cells that is mediated by the microenvironment. We also discuss the strategies for generating renal progenitor cells from pluripotent stem cells or differentiated cells and their use in therapy. Finally, we examine preclinical data on the therapeutic use of human fetal cells, adult progenitor cells and adult renal cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of CD133+ renal progenitor cells and coexpressed markers in different nephron structures.
Figure 2: Potential strategies of cell therapy for kidney regeneration.

Similar content being viewed by others

References

  1. Jha, V. et al. Chronic kidney disease: global dimension and perspectives. Lancet 382, 260–272 (2013).

    Article  PubMed  Google Scholar 

  2. Rinkevich, Y. et al. In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration. Cell Rep. 7, 1270–1283 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hansson, J. et al. Evidence for a morphologically distinct and functionally robust cell type in the proximal tubules of human kidney. Hum. Pathol. 45, 382–393 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Metsuyanim, S. et al. Accumulation of malignant renal stem cells is associated with epigenetic changes in normal renal progenitor genes. Stem Cells 26, 1808–1817 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Chawla, L. S., Eggers, P. W., Star, R. A. & Kimmel, P. L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 371, 58–66 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Costantini, F. & Kopan, R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev. Cell 18, 698–712 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boyle, S. et al. Fate mapping using Cited1–CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev. Biol. 313, 234–245 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Kobayashi, A. et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3, 169–181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kopan, R., Chen, S. & Little, M. Nephron progenitor cells: shifting the balance of self-renewal and differentiation. Curr. Top. Dev. Biol. 107, 293–331 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Kanda, S. et al. Sall1 maintains nephron progenitors and nascent nephrons by acting as both an activator and a repressor. J. Am. Soc. Nephrol. 25, 2584–2595 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kalatzis, V., Sahly, I., El-Amraoui, A. & Petit, C. Eya1 expression in the developing ear and kidney: towards the understanding of the pathogenesis of branchio-oto-renal (BOR) syndrome. Dev. Dyn. 213, 486–499 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Xu, J., Liu, H., Park, J. S., Lan, Y. & Jiang, R. Osr1 acts downstream of and interacts synergistically with Six2 to maintain nephron progenitor cells during kidney organogenesis. Development 141, 1442–1452 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Torres, M., Gómez-Pardo, E., Dressler, G. R. & Gruss, P. Pax-2 controls multiple steps of urogenital development. Development 121, 4057–4065 (1995).

    CAS  PubMed  Google Scholar 

  14. Kreidberg, J. A. et al. WT-1 is required for early kidney development. Cell 74, 679–691 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Barker, N. et al. Lgr5+ve stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep. 2, 540–552 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Fujimura, S., Jiang, Q., Kobayashi, C. & Nishinakamura, R. Notch2 activation in the embryonic kidney depletes nephron progenitors. J. Am. Soc. Nephrol. 21, 803–810 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dekel, B. et al. Multiple imprinted and stemness genes provide a link between normal and tumor progenitor cells of the developing human kidney. Cancer Res. 66, 6040–6049 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Metsuyanim, S. et al. Expression of stem cell markers in the human fetal kidney. PLoS ONE 4, e6709 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harari-Steinberg, O. et al. Identification of human nephron progenitors capable of generation of kidney structures and functional repair of chronic renal disease. EMBO Mol. Med. 5, 1556–1568 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, K. et al. Expression of stem cell marker CD133 in fetal and adult human kidneys and pauci-immune crescentic glomerulonephritis. Histol. Histopathol. 26, 223–232 (2011).

    PubMed  Google Scholar 

  21. Lazzeri, E. et al. Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J. Am. Soc. Nephrol. 18, 3128–3138 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Bussolati, B., Collino, F. & Camussi, G. CD133+ cells as a therapeutic target for kidney diseases. Expert Opin. Ther. Targets 16, 157–165 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Hartman, H. A., Lai, H. L. & Patterson, L. T. Cessation of renal morphogenesis in mice. Dev. Biol. 310, 379–387 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maeshima, A., Maeshima, K., Nojima, Y. & Kojima, I. Involvement of Pax-2 in the action of activin A on tubular cell regeneration. J. Am. Soc. Nephrol. 13, 2850–2859 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Prescott, L. F. The normal urinary excretion rates of renal tubular cells, leucocytes and red blood cells. Clin. Sci. 31, 425–435 (1966).

    CAS  PubMed  Google Scholar 

  26. Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 6, 284–291 (2008).

    Article  CAS  Google Scholar 

  27. Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A. & Humphreys, B. D. Differentiated kidney epithelial cells repair injured proximal tubule. Proc. Natl Acad. Sci. USA 111, 1527–1532 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Berger, K. et al. Origin of regenerating tubular cells after acute kidney injury. Proc. Natl Acad. Sci. USA 111, 1533–1538 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Berger, K. & Moeller, M. J. Mechanisms of epithelial repair and regeneration after acute kidney injury. Semin. Nephrol. 34, 394–403 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Appel, D. et al. Recruitment of podocytes from glomerular parietal epithelial cells. J. Am. Soc. Nephrol. 20, 333–343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berger, K. et al. The regenerative potential of parietal epithelial cells in adult mice. J. Am. Soc. Nephrol. 25, 693–705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maeshima, A., Yamashita, S. & Nojima, Y. Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J. Am. Soc. Nephrol. 14, 3138–3146 (2003).

    Article  PubMed  Google Scholar 

  33. Oliver, J. A., Maarouf, O., Cheema, F. H., Martens, T. P. & Al-Awgati, Q. The renal papilla is a niche for adult kidney stem cells. J. Clin. Invest. 114, 795–804 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Langworthy, M., Zhou, B., de Caestecker, M., Moeckel, G. & Baldwin, H. S. NFATc1 identifies a population of proximal tubule cell progenitors. J. Am. Soc. Nephrol. 20, 311–321 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rangel, E. B. et al. C-Kit+ cells isolated from developing kidneys are a novel population of stem cells with regenerative potential. Stem Cells 31, 1644–1656 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yin, A. H. et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90, 5002–5012 (1997).

    CAS  PubMed  Google Scholar 

  37. Kemper, K. et al. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res. 70, 719–729 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Sagrinati, C. et al. J. Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys. J. Am. Soc. Nephrol. 17, 2443–2456 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Bussolati, B. et al. Hypoxia modulates the undifferentiated phenotype of human renal inner medullary CD133+ progenitors through Oct4/miR-145 balance. Am. J. Physiol. Renal Physiol. 302, F116–F128 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Smeets, B. et al. Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J. Pathol. 229, 645–659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ward, H. H. et al. Adult human CD133/1+ kidney cells isolated from papilla integrate into developing kidney tubules. Biochim. Biophys. Acta. 1812, 1344–1357 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lindgren, D. et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am. J. Pathol. 178, 828–837 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ronconi, E. et al. Regeneration of glomerular podocytes by human renal progenitors. J. Am. Soc. Nephrol. 20, 322–332 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Angelotti, M. L. et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 30, 1714–1725 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Bourseau-Guilmain, E., Griveau, A., Benoit, J. P. & Garcion, E. The importance of the stem cell marker prominin-1/CD133 in the uptake of transferrin and in iron metabolism in human colon cancer Caco-2 cells. PLoS ONE 6, e25515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Griguer, C. E. et al. CD133 is a marker of bioenergetic stress in human glioma. PLoS ONE 3, e3655 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Loverre, A. et al. Increase of proliferating renal progenitor cells in acute tubular necrosis underlying delayed graft function. Transplantation 85, 1112–1119 (2008).

    Article  PubMed  Google Scholar 

  48. Ye, Y. et al. Proliferative capacity of stem/progenitor-like cells in the kidney may associate with the outcome of patients with acute tubular necrosis. Hum. Pathol. 42, 1132–1141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Smeets, B. et al. Renal progenitor cells contribute to hyperplastic lesions of podocytopathies and crescentic glomerulonephritis. J. Am. Soc. Nephrol. 20, 2593–2603 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V. & Bonventre, J. V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16, 535–543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dekel, B. et al. Isolation and characterization of nontubular sca-1+lin multipotent stem/progenitor cells from adult mouse kidney. J. Am. Soc. Nephrol. 17, 3300–3314 (2006).

    Article  PubMed  Google Scholar 

  52. Carvalhosa, R. et al. Cystogenic potential of CD133+ progenitor cells of human polycystic kidneys. J. Pathol. 225, 129–141 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Tata, P. R. et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 503, 218–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goldberg, L. R. et al. The murine long-term multi-lineage renewal marrow stem cell is a cycling cell. Leukemia 28, 813–822 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Sangiorgi, E., Capecchi, M. R. Bmi1 lineage tracing identifies a self-renewing pancreatic acinar cell subpopulation capable of maintaining pancreatic organ homeostasis. Proc. Natl Acad. Sci. USA 106, 7101–7106 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Aliotta, J. M. et al. Progenitor/stem cell fate determination: interactive dynamics of cell cycle and microvesicles. Stem Cells Dev. 21, 1627–1638 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kitamura, S. et al. Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J. 19, 1789–1797 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Maeshima, A., Sakurai, H. & Nigam, S. K. Adult kidney tubular cell population showing phenotypic plasticity, tubulogenic capacity, and integration capability into developing kidney. J. Am. Soc. Nephrol. 17, 188–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Gupta, S. et al. Isolation and characterization of kidney-derived stem cells. J. Am. Soc. Nephrol. 17, 3028–3040 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Challen, G. A., Bertoncello, I., Deane, J. A., Ricardo, S. D. & Little, M. H. Kidney side population reveals multilineage potential and renal functional capacity but also cellular heterogeneity. J. Am. Soc. Nephrol. 17, 1896–1912 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Bussolati, B. et al. Isolation of renal progenitor cells from adult human kidney. Am. J. Pathol. 166, 545–555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sallustio, F. et al. TLR2 plays a role in the activation of human resident renal stem/progenitor cells. FASEB J. 24, 514–525 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Bussolati, B. et al. Renal CD133+/CD73+ progenitors produce erythropoietin under hypoxia and prolyl hydroxylase inhibition. J. Am. Soc. Nephrol. 24, 1234–1241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Buzhor, E. et al. Reactivation of NCAM1 defines a subpopulation of human adult kidney epithelial cells with clonogenic and stem/progenitor properties. Am. J. Pathol. 183, 1621–1633 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Lazzeri, E. et al. Human urine-derived renal progenitors for personalized modeling of genetic kidney disorders. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2014010057.

  66. Bombelli, S. et al. PKHhigh cells within clonal human nephrospheres provide a purified adult renal stem cell population. Stem Cell Res. 11, 1163–1177 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Abbate, M., Brown, D. & Bonventre, J. V. Expression of NCAM recapitulates tubulogenic development in kidneys recovering from acute ischemia. Am. J. Physiol. 277, F454–F463 (1999).

    CAS  PubMed  Google Scholar 

  68. Zhang, Y. et al. Urine derived cells are a potential source for urological tissue reconstruction. J. Urol. 180, 2226–2233 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Bharadwaj, S. et al. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells 31, 1840–1856 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Da Sacco, S. et al. Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. J. Urol. 183, 1193–1200 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, H. et al. Adult renal mesenchymal stem cell-like cells contribute to juxtaglomerular cell recruitment. J. Am. Soc. Nephrol. 24, 1263–1273 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, J. et al. Collecting duct-derived cells display mesenchymal stem cell properties and retain selective in vitro and in vivo epithelial capacity. J. Am. Soc. Nephrol. 26, 81–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Pelekanos, R. A. et al. Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities. Stem Cell Res. 8, 58–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Bruno, S. et al. Isolation and characterization of resident mesenchymal stem cells in human glomeruli. Stem Cells Dev. 18, 867–880 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Kusaba, T. & Humphreys, B. D. Controversies on the origin of proliferating epithelial cells after kidney injury. Pediatr. Nephrol. 29, 673–679 (2014).

    Article  PubMed  Google Scholar 

  77. Witzgall, R., Brown, D., Schwarz, C. & Bonventre, J. V. Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J. Clin. Invest. 93, 2175–2188 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sallustio, F. et al. miR-1915 and miR-1225-5p regulate the expression of CD133, PAX2 and TLR2 in adult renal progenitor cells. PLoS ONE 8, e68296 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Araoka, T. et al. Efficient and rapid induction of human iPSCs/ESCs into nephrogenic intermediate mesoderm using small molecule-based differentiation methods. PLoS ONE 9, e84881 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lam, A. Q. et al. Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J. Am. Soc. Nephrol. 25, 1211–1225 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Taguchi, A. et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14, 53–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Takasato, M. et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol. 16, 118–126 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Hendry, C. E. et al. Direct transcriptional reprogramming of adult cells to embryonic nephron progenitors. J. Am. Soc. Nephrol. 24, 1424–1434 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Diep, C. Q. et al. Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature 470, 95–100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Imberti, B. et al. Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury. Sci. Rep. 5, 8826 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kinomura, M. et al. Amelioration of cisplatin-induced acute renal injury by renal progenitor-like cells derived from the adult rat kidney. Cell Transplant. 17, 143–158 (2008).

    Article  PubMed  Google Scholar 

  87. Grange, C. et al. Protective effect and localization by optical imaging of human renal CD133+ progenitor cells in an acute kidney injury model. Physiol. Rep. 2, e12009 (2004).

    Article  CAS  Google Scholar 

  88. De Chiara, L. et al. Renal cells from spermatogonial germline stem cells protect against kidney injury. J. Am. Soc. Nephrol. 25, 316–328 (2014).

    Article  PubMed  Google Scholar 

  89. Bruno, S. et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol. 20, 1053–1067 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Giron-Michel, J. et al. Interleukin-15 is a major regulator of the cell–microenvironment interactions in human renal homeostasis. Cytokine Growth Factor Rev. 24, 13–22 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Sallustio, F. et al. Human renal stem/progenitor cells repair tubular epithelial cell injury through TLR2-driven inhibin-A and microvesicle-shuttled decorin. Kidney Int. 83, 392–403 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Chen, J. et al. Kidney-derived mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial repair. Kidney Int. 74, 879–889 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Choi, H. Y. et al. Microparticles from kidney-derived mesenchymal stem cells act as carriers of proangiogenic signals and contribute to recovery from acute kidney injury. PLoS ONE 9, e87853 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhuo, W. et al. Efficiency of endovenous versus arterial administration of mesenchymal stem cells for ischemia–reperfusion-induced renal dysfunction in rats. Transplant. Proc. 45, 503–510 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Yamaleyeva, L. M. et al. Cell therapy with human renal cell cultures containing erythropoietin-positive cells improves chronic kidney injury. Stem Cells Transl. Med. 1, 373–383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kelley, R. et al. Tubular cell-enriched subpopulation of primary renal cells improves survival and augments kidney function in rodent model of chronic kidney disease. Am. J. Physiol. Renal Physiol. 299, F1026–F1039 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Kelley, R. et al. A population of selected renal cells augments renal function and extends survival in the ZSF1 model of progressive diabetic nephropathy. Cell Transplant. 22, 1023–1039 (2013).

    Article  PubMed  Google Scholar 

  98. Genheimer, C. W. et al. Molecular characterization of the regenerative response induced by intrarenal transplantation of selected renal cells in a rodent model of chronic kidney disease. Cells Tissues Organs 196, 374–384 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Giovanni Camussi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bussolati, B., Camussi, G. Therapeutic use of human renal progenitor cells for kidney regeneration. Nat Rev Nephrol 11, 695–706 (2015). https://doi.org/10.1038/nrneph.2015.126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing