Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Podocyte dysfunction in atypical haemolytic uraemic syndrome

Abstract

Genetic or autoimmune defects that lead to dysregulation of the alternative pathway of complement have been associated with the development of atypical haemolytic uraemic syndrome (aHUS), which is characterized by thrombocytopenia, haemolytic anaemia and acute kidney injury. The relationship between aHUS, podocyte dysfunction and the resultant proteinuria has not been adequately investigated. However, the report of mutations in diacylglycerol kinase ε (DGKE) as a cause of recessive infantile aHUS characterized by proteinuria, highlighted podocyte dysfunction as a potential complication of aHUS. DGKE deficiency was originally thought to trigger aHUS through pathogenetic mechanisms distinct from complement dysregulation; however, emerging findings suggest an interplay between DGKE and complement systems. Podocyte dysfunction with nephrotic-range proteinuria can also occur in forms of aHUS associated with genetic or autoimmune complement dysregulation without evidence of DGKE mutations. Furthermore, proteinuric glomerulonephritides can be complicated by aHUS, possibly as a consequence of podocyte dysfunction inducing endothelial injury and prothrombotic abnormalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The phosphatidylinositol cycle regenerates PI from PA at the plasma membrane.
Figure 2: The effect of AADAG signalling in endothelium, platelets and podocytes.
Figure 3: Mechanisms of complement-mediated injury in the podocyte.

Similar content being viewed by others

Jeffrey B. Kopp, Hans-Joachim Anders, … Paola Romagnani

References

  1. Noris, M. & Remuzzi, G. Atypical hemolytic-uremic syndrome. N. Engl. J. Med. 361, 1676–1687 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Mele, C., Remuzzi, G. & Noris, M. Hemolytic uremic syndrome. Semin. Immunopathol. 36, 399–420 (2014).

    CAS  PubMed  Google Scholar 

  3. Valoti, E. et al. A novel atypical hemolytic uremic syndrome-associated hybrid CFHR1/CFH gene encoding a fusion protein that antagonizes factor H-dependent complement regulation. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2013121339.

  4. Dragon-Durey, M. A. et al. Anti-Factor H autoantibodies associated with atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 16, 555–563 (2005).

    CAS  PubMed  Google Scholar 

  5. Noris, M., Mescia, F. & Remuzzi, G. STEC-HUS, atypical HUS and TTP are all diseases of complement activation. Nat. Rev. Nephrol. 8, 622–633 (2012).

    CAS  PubMed  Google Scholar 

  6. Caprioli, J. et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood 108, 1267–1279 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Noris, M. et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin. J. Am. Soc. Nephrol. 5, 1844–1859 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Legendre, C. M. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 368, 2169–2181 (2013).

    CAS  PubMed  Google Scholar 

  9. Zuber, J. et al. Eculizumab for atypical hemolytic uremic syndrome recurrence in renal transplantation. Am. J. Transplant. 12, 3337–3354 (2012).

    CAS  PubMed  Google Scholar 

  10. Lemaire, M. et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat. Genet. 45, 531–536 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Orth, S. R. & Ritz, E. The nephrotic syndrome. N. Engl. J. Med. 338, 1202–1211 (1998).

    CAS  PubMed  Google Scholar 

  12. Sanchez Chinchilla, D. et al. Complement Mutations in diacylglycerol kinase-epsilon-associated atypical hemolytic uremic syndrome. Clin. J. Am. Soc. Nephrol. http://dx.doi.org/10.2215/CJN.01640214.

  13. Westland, R. et al. Phenotypic expansion of DGKE-associated diseases. J. Am. Soc. Nephrol. 25, 1408–1414 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Remuzzi, G. & Ruggenenti, P. Thrombotic microangiopathies. in Renal Pathology (eds Tisher, C. & Brenner, B.) 1154–1184 (J. B. Lippincott, 1994).

    Google Scholar 

  15. Landau, D. et al. Familial hemolytic uremic syndrome associated with complement factor H deficiency. J. Pediatr. 138, 412–417 (2001).

    CAS  PubMed  Google Scholar 

  16. Faul, C., Asanuma, K., Yanagida-Asanuma, E., Kim, K. & Mundel, P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol. 17, 428–437 (2007).

    CAS  PubMed  Google Scholar 

  17. Barisoni, L., Schnaper, H. W. & Kopp, J. B. A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases. Clin. J. Am. Soc. Nephrol 2, 529–542 (2007).

    PubMed  Google Scholar 

  18. Ozaltin, F. et al. DGKE variants cause a glomerular microangiopathy that mimics membranoproliferative GN. J. Am. Soc. Nephrol. 24, 377–384 (2013).

    CAS  PubMed  Google Scholar 

  19. Rodriguez de Turco, E. B. et al. Diacylglycerol kinase epsilon regulates seizure susceptibility and long-term potentiation through arachidonoyl- inositol lipid signaling. Proc. Natl Acad. Sci. USA 98, 4740–4745 (2001).

    CAS  PubMed  Google Scholar 

  20. Shulga, Y. V., Topham, M. K. & Epand, R. M. Regulation and functions of diacylglycerol kinases. Chem. Rev. 111, 6186–6208 (2011).

    CAS  PubMed  Google Scholar 

  21. Lung, M. et al. Diacylglycerol kinase epsilon is selective for both acyl chains of phosphatidic acid or diacylglycerol. J. Biol. Chem. 284, 31062–31073 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shulga, Y. V., Topham, M. K. & Epand, R. M. Substrate specificity of diacylglycerol kinase-epsilon and the phosphatidylinositol cycle. FEBS Lett. 585, 4025–4028 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Shulga, Y. V. et al. Molecular species of phosphatidylinositol-cycle intermediates in the endoplasmic reticulum and plasma membrane. Biochemistry 49, 312–317 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rhee, S. G. Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281–312 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pettitt, T. R. et al. Diacylglycerol and phosphatidate generated by phospholipases C and D, respectively, have distinct fatty acid compositions and functions. Phospholipase D-derived diacylglycerol does not activate protein kinase C in porcine aortic endothelial cells. J. Biol. Chem. 272, 17354–17359 (1997).

    CAS  PubMed  Google Scholar 

  26. Carew, M. A., Paleolog, E. M. & Pearson, J. D. The roles of protein kinase C and intracellular Ca2+ in the secretion of von Willebrand factor from human vascular endothelial cells. Biochem. J. 286, 631–635 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ren, S., Shatadal, S. & Shen, G. X. Protein kinase C-beta mediates lipoprotein-induced generation of PAI-1 from vascular endothelial cells. Am. J. Physiol. Endocrinol. Metab. 278, E656–E662 (2000).

    CAS  PubMed  Google Scholar 

  28. Herbert, J. M., Savi, P., Laplace, M. C., Dumas, A. & Dol, F. Chelerythrine, a selective protein kinase C inhibitor, counteracts pyrogen-induced expression of tissue factor without effect on thrombomodulin down-regulation in endothelial cells. Thromb. Res. 71, 487–493 (1993).

    CAS  PubMed  Google Scholar 

  29. Chakraborti, T., Das, S. & Chakraborti, S. Proteolytic activation of protein kinase Calpha by peroxynitrite in stimulating cytosolic phospholipase A2 in pulmonary endothelium: involvement of a pertussis toxin sensitive protein. Biochemistry 44, 5246–5257 (2005).

    CAS  PubMed  Google Scholar 

  30. Garcia, J. G., Stasek, J., Natarajan, V., Patterson, C. E. & Dominguez, J. Role of protein kinase C in the regulation of prostaglandin synthesis in human endothelium. Am. J. Respir. Cell. Mol. Biol. 6, 315–325 (1992).

    CAS  PubMed  Google Scholar 

  31. Gomez, I., Foudi, N., Longrois, D. & Norel, X. The role of prostaglandin E2 in human vascular inflammation. Prostaglandins Leukot. Essent. Fatty Acids 89, 55–63 (2013).

    CAS  PubMed  Google Scholar 

  32. Giannarelli, C., Zafar, M. U. & Badimon, J. J. Prostanoid and TP-receptors in atherothrombosis: is there a role for their antagonism? Thromb. Haemost. 104, 949–954 (2010).

    CAS  PubMed  Google Scholar 

  33. Offermanns, S. Activation of platelet function through G protein-coupled receptors. Circ. Res. 99, 1293–1304 (2006).

    CAS  PubMed  Google Scholar 

  34. Stegner, D. & Nieswandt, B. Platelet receptor signaling in thrombus formation. J. Mol. Med. (Berl.) 89, 109–121 (2011).

    CAS  Google Scholar 

  35. Nunn, D. L. & Watson, S. P. A diacylglycerol kinase inhibitor, R59022, potentiates secretion by and aggregation of thrombin-stimulated human platelets. Biochem. J. 243, 809–813 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hofmann, T. et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397, 259–263 (1999).

    CAS  PubMed  Google Scholar 

  37. Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).

    CAS  PubMed  Google Scholar 

  38. Moller, C. C. et al. Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J. Am. Soc. Nephrol. 18, 29–36 (2007).

    CAS  PubMed  Google Scholar 

  39. Krall, P. et al. Podocyte-specific overexpression of wild type or mutant trpc6 in mice is sufficient to cause glomerular disease. PLoS ONE 5, e12859 (2010).

    PubMed  PubMed Central  Google Scholar 

  40. Marie, J. et al. Hemolytic and uremic syndrome associated with an idiopathic nephrotic syndrome of 4 years' development [French]. Ann. Pediatr. (Paris) 16, 7–12 (1969).

    CAS  Google Scholar 

  41. Zhang, W. et al. Clinicopathological characteristics and outcome of Chinese patients with thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: a 9-year retrospective study. Nephron Clin. Pract. 112, c177–c183 (2009).

    PubMed  Google Scholar 

  42. Sinha, R., AlAbbas, A., Dionne, J. M. & Hurley, R. M. Simultaneous occurrence of atypical hemolytic uremic syndrome and acute lymphoblastic leukemia: a case report and literature review. Pediatr. Nephrol. 23, 835–839 (2008).

    PubMed  Google Scholar 

  43. Kimura, M. et al. A patient with thrombotic microangiopathy accompanied by glomerular subendothelial electron dense deposits. Am. J. Nephrol. 18, 155–159 (1998).

    CAS  PubMed  Google Scholar 

  44. Izumi, T. et al. An adult with acute poststreptococcal glomerulonephritis complicated by hemolytic uremic syndrome and nephrotic syndrome. Am. J. Kidney Dis. 46, e59–e63 (2005).

    PubMed  Google Scholar 

  45. Jha, V. et al. Secondary membranoproliferative glomerulonephritis due to hemolytic uremic syndrome: an unusual presentation. Ren. Fail. 20, 845–850 (1998).

    CAS  PubMed  Google Scholar 

  46. Alsina Segui, E., Martin Conde, M. L., Craver Hospital, L. & Fernandez Giraldez, E. Postpartum hemolytic uremic syndrome: a rare entity and a treatment challenge [Spanish]. Nefrologia 28, 120–121 (2008).

    CAS  PubMed  Google Scholar 

  47. Nathanson, S., Ulinski, T., Fremeaux-Bacchi, V. & Deschenes, G. Secondary failure of plasma therapy in factor H deficiency. Pediatr. Nephrol. 21, 1769–1771 (2006).

    PubMed  Google Scholar 

  48. Sinha, A. et al. Prompt plasma exchanges and immunosuppressive treatment improves the outcomes of anti-factor H autoantibody-associated hemolytic uremic syndrome in children. Kidney Int. 85, 1151–1160 (2014).

    CAS  PubMed  Google Scholar 

  49. Sana, G. et al. Long-term remission of atypical HUS with anti-factor H antibodies after cyclophosphamide pulses. Pediatr. Nephrol. 29, 75–83 (2014).

    PubMed  Google Scholar 

  50. Noone, D. et al. Successful treatment of DEAP-HUS with eculizumab. Pediatr. Nephrol. 29, 841–851 (2014).

    PubMed  Google Scholar 

  51. Green, H. et al. Atypical HUS due to factor H antibodies in an adult patient successfully treated with eculizumab. Ren. Fail. 36, 1119–1121 (2014).

    CAS  PubMed  Google Scholar 

  52. Cayci, F. S. et al. Eculizumab therapy in a child with hemolytic uremic syndrome and CFI mutation. Pediatr. Nephrol. 27, 2327–2331 (2012).

    PubMed  Google Scholar 

  53. University College London FH aHUS mutation database [online], (2014).

  54. Couser, W. G. Mediation of immune glomerular injury. J. Am. Soc. Nephrol. 1, 13–29 (1990).

    CAS  PubMed  Google Scholar 

  55. Cybulsky, A. V., Quigg, R. J. & Salant, D. J. Experimental membranous nephropathy redux. Am. J. Physiol. Renal Physiol. 289, F660–F671 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mathieson, P. W. What has the immune system got against the glomerular podocyte? Clin. Exp. Immunol. 134, 1–5 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Torbohm, I. et al. C5b-8 and C5b-9 modulate the collagen release of human glomerular epithelial cells. Kidney Int. 37, 1098–1104 (1990).

    CAS  PubMed  Google Scholar 

  58. Chen, Z. H. et al. Triptolide reduces proteinuria in experimental membranous nephropathy and protects against C5b-9-induced podocyte injury in vitro. Kidney Int. 77, 974–988 (2010).

    CAS  PubMed  Google Scholar 

  59. Pippin, J. W. et al. DNA damage is a novel response to sublytic complement C5b-9-induced injury in podocytes. J. Clin. Invest. 111, 877–885 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ma, H., Sandor, D. G. & Beck, L. H. Jr. The role of complement in membranous nephropathy. Semin. Nephrol. 33, 531–542 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin, F., Emancipator, S. N., Salant, D. J. & Medof, M. E. Decay-accelerating factor confers protection against complement-mediated podocyte injury in acute nephrotoxic nephritis. Lab. Invest. 82, 563–569 (2002).

    CAS  PubMed  Google Scholar 

  62. Alexander, J. J. et al. Mouse podocyte complement factor H: the functional analog to human complement receptor 1. J. Am. Soc. Nephrol 18, 1157–1166 (2007).

    CAS  PubMed  Google Scholar 

  63. Lenderink, A. M. et al. The alternative pathway of complement is activated in the glomeruli and tubulointerstitium of mice with adriamycin nephropathy. Am. J. Physiol. Renal Physiol. 293, F555–F564 (2007).

    CAS  PubMed  Google Scholar 

  64. Morita, Y. et al. Complement activation products in the urine from proteinuric patients. J. Am. Soc. Nephrol. 11, 700–707 (2000).

    CAS  PubMed  Google Scholar 

  65. Onda, K. et al. Excretion of complement proteins and its activation marker C5b-9 in IgA nephropathy in relation to renal function. BMC Nephrol. 12, 64 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Endo, M. et al. Glomerular deposition and urinary excretion of complement factor H in idiopathic membranous nephropathy. Nephron Clin. Pract. 97, c147–c153 (2004).

    PubMed  Google Scholar 

  67. Cybulsky, A. V., Papillon, J. & McTavish, A. J. Complement activates phospholipases and protein kinases in glomerular epithelial cells. Kidney Int. 54, 360–372 (1998).

    CAS  PubMed  Google Scholar 

  68. Cybulsky, A. V., Takano, T., Papillon, J. & McTavish, A. J. Complement-induced phospholipase A2 activation in experimental membranous nephropathy. Kidney Int. 57, 1052–1062 (2000).

    CAS  PubMed  Google Scholar 

  69. Panesar, M., Papillon, J., McTavish, A. J. & Cybulsky, A. V. Activation of phospholipase A2 by complement C5b-9 in glomerular epithelial cells. J. Immunol. 159, 3584–3594 (1997).

    CAS  PubMed  Google Scholar 

  70. Takano, T. & Cybulsky, A. V. Complement C5b-9-mediated arachidonic acid metabolism in glomerular epithelial cells: role of cyclooxygenase-1 and -2. Am. J. Pathol. 156, 2091–2101 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Takano, T. et al. Inhibition of cyclooxygenases reduces complement-induced glomerular epithelial cell injury and proteinuria in passive Heymann nephritis. J. Pharmacol. Exp. Ther. 305, 240–249 (2003).

    CAS  PubMed  Google Scholar 

  72. Cybulsky, A. V. et al. Complement C5b-9 membrane attack complex increases expression of endoplasmic reticulum stress proteins in glomerular epithelial cells. J. Biol. Chem. 277, 41342–41351 (2002).

    CAS  PubMed  Google Scholar 

  73. Cybulsky, A. V. et al. The actin cytoskeleton facilitates complement-mediated activation of cytosolic phospholipase A2. Am. J. Physiol. Renal Physiol. 286, F466–F476 (2004).

    CAS  PubMed  Google Scholar 

  74. Manenti, L. et al. Atypical haemolytic uraemic syndrome with underlying glomerulopathies. A case series and a review of the literature. Nephrol. Dial. Transplant. 28, 2246–2259 (2013).

    CAS  PubMed  Google Scholar 

  75. Morita, S. et al. Hemolytic uremic syndrome associated with immunoglobulin A nephropathy: a case report and review of cases of hemolytic uremic syndrome with glomerular disease. Intern. Med. 38, 495–499 (1999).

    CAS  PubMed  Google Scholar 

  76. Chang, A., Kowalewska, J., Smith, K. D., Nicosia, R. F. & Alpers, C. E. A clinicopathologic study of thrombotic microangiopathy in the setting of IgA nephropathy. Clin. Nephrol. 66, 397–404 (2006).

    CAS  PubMed  Google Scholar 

  77. Krensky, A. M., Ingelfinger, J. R., Grupe, W. E. & Rosen, S. Hemolytic uremic syndrome and crescentic glomerulonephritis complicating childhood nephrosis. Clin. Nephrol. 19, 99–106 (1983).

    CAS  PubMed  Google Scholar 

  78. Siegler, R. L., Brewer, E. D. & Pysher, T. J. Hemolytic uremic syndrome associated with glomerular disease. Am. J. Kidney Dis. 13, 144–147 (1989).

    CAS  PubMed  Google Scholar 

  79. Sherbotie, J. R. et al. Hemolytic uremic syndrome associated with Denys–Drash syndrome. Pediatr. Nephrol. 14, 1092–1097 (2000).

    CAS  PubMed  Google Scholar 

  80. Chen, G., Liu, H. & Liu, F. A glimpse of the glomerular milieu: from endothelial cell to thrombotic disease in nephrotic syndrome. Microvasc. Res. 89, 1–6 (2013).

    CAS  PubMed  Google Scholar 

  81. Tkaczyk, M., Czupryniak, A., Owczarek, D., Lukamowicz, J. & Nowicki, M. Markers of endothelial dysfunction in children with idiopathic nephrotic syndrome. Am. J. Nephrol. 28, 197–202 (2008).

    CAS  PubMed  Google Scholar 

  82. Isome, M. et al. Involvement of endothelial cell adhesion molecules in the development of anti-Thy-1 nephritis. Exp. Nephrol. 10, 338–347 (2002).

    CAS  PubMed  Google Scholar 

  83. Gao, C. et al. Procoagulant activity of erythrocytes and platelets through phosphatidylserine exposure and microparticles release in patients with nephrotic syndrome. Thromb. Haemost. 107, 681–689 (2012).

    CAS  PubMed  Google Scholar 

  84. Zoja, C. et al. Mesenchymal stem cell therapy promotes renal repair by limiting glomerular podocyte and progenitor cell dysfunction in adriamycin-induced nephropathy. Am. J. Physiol. Renal Physiol. 303, F1370–F1381 (2012).

    CAS  PubMed  Google Scholar 

  85. Katavetin, P. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 359, 205–206; author reply 206–207 (2008).

    CAS  PubMed  Google Scholar 

  86. Eremina, V. et al. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 358, 1129–1136 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Amore, A. et al. Aberrantly glycosylated IgA molecules downregulate the synthesis and secretion of vascular endothelial growth factor in human mesangial cells. Am. J. Kidney Dis. 36, 1242–1252 (2000).

    CAS  PubMed  Google Scholar 

  88. Qin, W. et al. Anti-phospholipase A2 receptor antibody in membranous nephropathy. J. Am. Soc. Nephrol. 22, 1137–1143 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fogo, A. B. & Kon, V. The glomerulus-—a view from the inside—the endothelial cell. Int. J. Biochem. Cell Biol. 42, 1388–1397 (2010).

    CAS  PubMed  Google Scholar 

  90. Wilkinson, G. F., Purkiss, J. R. & Boarder, M. R. The regulation of aortic endothelial cells by purines and pyrimidines involves co-existing P2y-purinoceptors and nucleotide receptors linked to phospholipase C. Br. J. Pharmacol. 108, 689–693 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Pueyo, M. E., N'Diaye, N. & Michel, J. B. Angiotensin II-elicited signal transduction via AT1 receptors in endothelial cells. Br. J. Pharmacol. 118, 79–84 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Brock, T. A. & Capasso, E. A. Thrombin and histamine activate phospholipase C in human endothelial cells via a phorbol ester-sensitive pathway. J. Cell Physiol. 136, 54–62 (1988).

    CAS  PubMed  Google Scholar 

  93. Asselin, J. et al. A collagen-like peptide stimulates tyrosine phosphorylation of syk and phospholipase C gamma2 in platelets independent of the integrin α2β1. Blood 89, 1235–1242 (1997).

    CAS  PubMed  Google Scholar 

  94. Keely, P. J. & Parise, L. V. The α2β1 integrin is a necessary co-receptor for collagen-induced activation of Syk and the subsequent phosphorylation of phospholipase Cγ2 in platelets. J. Biol. Chem. 271, 26668–26676 (1996).

    CAS  PubMed  Google Scholar 

  95. Bhagyalakshmi, A., Berthiaume, F., Reich, K. M. & Frangos, J. A. Fluid shear stress stimulates membrane phospholipid metabolism in cultured human endothelial cells. J. Vasc. Res. 29, 443–449 (1992).

    CAS  PubMed  Google Scholar 

  96. Anderson, M., Roshanravan, H., Khine, J. & Dryer, S. E. Angiotensin II activation of TRPC6 channels in rat podocytes requires generation of reactive oxygen species. J. Cell Physiol. 229, 434–442 (2014).

    CAS  PubMed  Google Scholar 

  97. Reiser, J., Sever, S. & Faul, C. Signal transduction in podocytes—spotlight on receptor tyrosine kinases. Nat. Rev. Nephrol. 10, 104–115 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hong, M., Sandor, D. G. & Laurence H. B. The role of complement in membranous nephropathy. Semin. Nephrol. 33, 531–542 (2013).

    Google Scholar 

  99. Pickering, M. C. et al. C3 glomerulopathy: consensus report. Kidney Int. 84, 1079–1089 (2013).

    PubMed  PubMed Central  Google Scholar 

  100. Wang, Z. et al. NADPH oxidase-derived ROS contributes to upregulation of TRPC6 expression in puromycin aminonucleoside-induced podocyte injury. Cell Physiol. Biochem. 24, 619–626 (2009).

    CAS  PubMed  Google Scholar 

  101. Kim, E. Y., Anderson, M. & Dryer, S. E. Insulin increases surface expression of TRPC6 channels in podocytes: role of NADPH oxidase and reactive oxygen species. Am. J. Physiol. Renal Physiol. 302, F298–F307 (2012).

    CAS  PubMed  Google Scholar 

  102. Cybulsky, A. V., Papillon, J. & McTavish, A. J. Complement activates phospholipases and protein kinases in glomerular epithelial cells. Kidney Int. 54, 360–372 (1998).

    CAS  PubMed  Google Scholar 

  103. Ren, G., Takano, T., Papillon, J. & Cybulsky, A. V. Cytosolic phospholipases A(2)-α enhances induction of endoplasmic reticulum stress. Biochim. Biophys. Acta 1803, 468–481 (2010).

    CAS  PubMed  Google Scholar 

  104. Kim, E. Y., Anderson, M., Wilson, C., Hagmann, H., Benzing, T. & Dryer, S. E. NOX2 interacts with podocyte TRPC6 channels and contributes to their activation by diacylglycerol: essential role of podocin in formation of this complex: Am. J. Physiol. Cell Physiol. 305, C960–C971 (2013).

    CAS  PubMed  Google Scholar 

  105. Jiang, L. et al. Over-expressing transient receptor potential cation channel 6 in podocytes induces cytoskeleton rearrangement through increases of intracellular Ca2+ and RhoA activation. Exp. Biol. Med. 236, 184–193 (2011).

    CAS  Google Scholar 

  106. Bruneau, S. et al. Loss of DGKε induces endothelial cell activation and death independently of complement activation. Blood http://dx.doi.org/10.1182/blood-2014-06-579953.

Download references

Acknowledgements

The authors' work is supported by Fondazione ART per la Ricerca sui Trapianti ART ONLUS (Milano, Italy), the European Union Seventh Framework Programme FP7-EURenOmics project number 305608 and by Telethon (grant #GGP09075).

Author information

Authors and Affiliations

Authors

Contributions

M.N. and C.M researched data for the article. M.N. wrote the article. All authors contributed to discussion of the article's content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Marina Noris.

Ethics declarations

Competing interests

M.N. has received honoraria from Alexion Pharmaceuticals for giving lectures and participating on advisory boards. G.R. has consultancy agreements with AbbVie, Alexion Pharmaceuticals, Bayer Healthcare, Reata Pharmaceuticals, Novartis Pharma, AstraZeneca, Otsuka Pharmaceutical Europe and Concert Pharmaceuticals but receives no personal remuneration; compensations are instead paid to his institution for research and educational activities. C.M. declares no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noris, M., Mele, C. & Remuzzi, G. Podocyte dysfunction in atypical haemolytic uraemic syndrome. Nat Rev Nephrol 11, 245–252 (2015). https://doi.org/10.1038/nrneph.2014.250

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing