Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Proteomic biomarkers in kidney disease: issues in development and implementation

Key Points

  • A useful clinical biomarker must have an exact and well-defined context of use, generally linked to a therapeutic consequence, and every new biomarker identified must be validated in independent studies

  • Proteomic studies have detected initial sets of biomarkers that have demonstrated potential in the context of kidney disease, but they have not yet been fully integrated into clinical use

  • High-dimensional classifiers based on multiple, well-defined biomarkers generally outperform individual markers, because such classifiers account for disease complexity and molecular heterogeneity

  • Guidance from professional, clinical and scientific societies on the clinical use of biomarkers and their development would substantially improve clinical biomarker research

  • The lack of appropriate samples in sufficient numbers is a major barrier to the further development of effective proteomic biomarkers; publicly funded biobanks could substantially improve this situation

  • Evaluation of proteomics data employing systems biology approaches has the potential to yield information that cannot be established using proteomics alone

Abstract

Proteomic biomarkers offer the hope of improving the management of patients with kidney diseases by enabling more accurate and earlier detection of renal pathology than is possible with currently available biomarkers, serum creatinine and urinary albumin. In addition, proteomic biomarkers could also be useful to define the most suitable therapeutic targets in a given patient or disease setting. This Review describes the current status of proteomic and protein biomarkers in the context of kidney diseases. The valuable lessons learned from early clinical studies of potential proteomic biomarkers in kidney disease are presented to give context to the newly identified biomarkers, which have potential for actual clinical implementation. This article also includes an overview of protein-based biomarker candidates that are undergoing development for use in nephrology, focusing on those with the greatest potential for clinical implementation. Relevant issues and problems associated with the discovery, validation and clinical application of proteomic biomarkers are discussed, along with suggestions for solutions that might help to guide the design of future proteomic studies. These improvements might remove some of the current obstacles to the utilization of proteomic biomarkers, with potentially beneficial results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Research interest in biomarkers of kidney disease.
Figure 2: The two main routes of proteomic biomarker development.

Similar content being viewed by others

References

  1. Biomarkers definitions working group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89 (2001).

  2. Stevens, L. A. & Levey, A. S. Measured GFR as a confirmatory test for estimated GFR. J. Am. Soc. Nephrol. 20, 2305–2313 (2009).

    PubMed  Google Scholar 

  3. Gross, J. L. et al., Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 28, 164–176 (2005).

    PubMed  Google Scholar 

  4. Naresh, C. N. et al. Day-to-day variability in spot urine albumin-creatinine ratio. Am. J. Kidney Dis. 62, 1095–1101 (2013).

    CAS  PubMed  Google Scholar 

  5. Mischak, H., Vlahou, A. & Ioannidis, J. P. Technical aspects and inter-laboratory variability in native peptide profiling: the CE-MS experience. Clin. Biochem. 46, 432–443 (2013).

    CAS  PubMed  Google Scholar 

  6. Perkins, B. A. et al. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 77, 57–64 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zachwieja, J. et al. Normal-range albuminuria does not exclude nephropathy in diabetic children. Pediatr. Nephrol. 25, 1445–1451 (2010).

    PubMed  Google Scholar 

  8. van der Tol, A. et al. Towards a rational screening strategy for albuminuria: results from the unreferred renal insufficiency trial. PLoS ONE 5, e13328 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. Halbesma, N. et al. Macroalbuminuria is a better risk marker than low estimated GFR to identify individuals at risk for accelerated GFR loss in population screening. J. Am. Soc. Nephrol. 17, 2582–2590 (2006).

    PubMed  Google Scholar 

  10. El Nahas, A. M. & Bello, A. K. Chronic kidney disease: the global challenge. Lancet 365, 331–340 (2005).

    Google Scholar 

  11. Kronenberg, F. Emerging risk factors and markers of chronic kidney disease progression. Nat. Rev. Nephrol. 5, 677–689 (2009).

    CAS  PubMed  Google Scholar 

  12. Fassett, R. G. et al. Biomarkers in chronic kidney disease: a review. Kidney Int. 80, 806–821 (2011).

    CAS  PubMed  Google Scholar 

  13. Hojs, R. et al. Serum cystatin C as an endogenous marker of renal function in patients with mild to moderate impairment of kidney function. Nephrol. Dial. Transplant. 21, 1855–1862 (2006).

    CAS  PubMed  Google Scholar 

  14. O'Riordan, S. E. et al. Cystatin C improves the detection of mild renal dysfunction in older patients. Ann. Clin. Biochem. 40, 648–655 (2003).

    CAS  PubMed  Google Scholar 

  15. Madero, M. Sarnak, M. J. & Stevens, L. A. Serum cystatin C as a marker of glomerular filtration rate. Curr. Opin. Nephrol. Hypertens. 15, 610–616 (2006).

    CAS  PubMed  Google Scholar 

  16. Grubb, A. et al. A cystatin C-based formula without anthropometric variables estimates glomerular filtration rate better than creatinine clearance using the Cockcroft-Gault formula. Scand. J. Clin. Lab. Invest. 65, 153–162 (2005).

    CAS  PubMed  Google Scholar 

  17. Conti, M. et al. Urinary cystatin C as a specific marker of tubular dysfunction. Clin. Chem. Lab. Med. 44, 288–291 (2006).

    CAS  PubMed  Google Scholar 

  18. Menon, V. et al. Cystatin C as a risk factor for outcomes in chronic kidney disease. Ann. Intern. Med. 147, 19–27 (2007).

    PubMed  Google Scholar 

  19. Astor, B. C. et al. Novel markers of kidney function as predictors of ESRD, cardiovascular disease, and mortality in the general population. Am. J. Kidney Dis. 59, 653–662 (2012).

    CAS  PubMed  Google Scholar 

  20. Peralta, C. A. et al. Detection of chronic kidney disease with creatinine, cystatin C, and urine albumin-to-creatinine ratio and association with progression to end-stage renal disease and mortality. JAMA 305, 1545–1552 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Peralta, C. A. et al. Cystatin C identifies chronic kidney disease patients at higher risk for complications. J. Am. Soc. Nephrol. 22, 147–155 (2011).

    PubMed  PubMed Central  Google Scholar 

  22. Jeon, Y. K. et al. Cystatin C as an early biomarker of nephropathy in patients with type 2 diabetes. J. Korean Med. Sci. 26, 258–263 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Malyszko, J. et al. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in non-diabetic patients with stage 2–4 chronic kidney disease. Ren. Fail. 30, 625–628 (2008).

    CAS  PubMed  Google Scholar 

  24. Smith, E. R. et al. Urinary neutrophil gelatinase-associated lipocalin may aid prediction of renal decline in patients with non-proteinuric Stages 3 and 4 chronic kidney disease (CKD). Nephrol. Dial. Transplant. 28, 1569–1579 (2013).

    CAS  PubMed  Google Scholar 

  25. Bolignano, D. et al. Neutrophil gelatinase-associated lipocalin reflects the severity of renal impairment in subjects affected by chronic kidney disease. Kidney Blood Press. Res. 31, 255–258 (2008).

    CAS  PubMed  Google Scholar 

  26. Bolignano, D. et al. Neutrophil gelatinase-associated lipocalin in patients with autosomal-dominant polycystic kidney disease. Am. J. Nephrol. 27, 373–378 (2007).

    CAS  PubMed  Google Scholar 

  27. Makris, K. et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) as an early marker of acute kidney injury in critically ill multiple trauma patients. Clin. Chem. Lab. Med. 47, 79–82 (2009).

    CAS  PubMed  Google Scholar 

  28. Zappitelli, M. et al. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study. Crit. Care 11, R84 (2007).

    PubMed  PubMed Central  Google Scholar 

  29. Bolignano, D. et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am. J. Kidney Dis. 52, 595–605 (2008).

    CAS  PubMed  Google Scholar 

  30. Haase, M. et al. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am. J. Kidney Dis. 54, 1012–1024 (2009).

    CAS  PubMed  Google Scholar 

  31. Niemann, C. U. et al. Acute kidney injury during liver transplantation as determined by neutrophil gelatinase-associated lipocalin. Liver Transpl. 15, 1852–1860 (2009).

    PubMed  Google Scholar 

  32. Viau, A. et al. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans. J. Clin. Invest. 120, 4065–4076 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mitsnefes, M. M. et al. Serum neutrophil gelatinase-associated lipocalin as a marker of renal function in children with chronic kidney disease. Pediatr. Nephrol. 22, 101–108 (2007).

    PubMed  Google Scholar 

  34. Bolignano, D. et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin. J. Am. Soc. Nephrol. 4, 337–344 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bolignano, D., Coppolino, G., Lacquaniti, A. & Buemi, M. From kidney to cardiovascular diseases: NGAL as a biomarker beyond the confines of nephrology. Eur. J. Clin. Invest. 40, 273–276 (2010).

    CAS  PubMed  Google Scholar 

  36. Bolignano, D. et al. Neutrophil gelatinase-associated lipocalin (NGAL) in human neoplasias: a new protein enters the scene. Cancer Lett. 288, 10–16 (2010).

    CAS  PubMed  Google Scholar 

  37. Parikh, C. R., Lu, J. C., Coca, S. G. & Devarajan, P. Tubular proteinuria in acute kidney injury: a critical evaluation of current status and future promise. Ann. Clin. Biochem. 47, 301–312 (2010).

    CAS  PubMed  Google Scholar 

  38. Vaidya, V. S. et al. Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-beta-D-glucosaminidase. Kidney Int. 79, 464–470 (2011).

    CAS  PubMed  Google Scholar 

  39. Nauta, F. L. et al. Glomerular and tubular damage markers are elevated in patients with diabetes. Diabetes Care. 34, 975–981 (2011).

    PubMed  PubMed Central  Google Scholar 

  40. Washburn, K. K. et al. Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children. Nephrol. Dial. Transplant. 23, 566–572 (2008).

    CAS  PubMed  Google Scholar 

  41. Wagener, G. et al. Urinary neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery. Am. J. Kidney Dis. 52, 425–433 (2008).

    CAS  PubMed  Google Scholar 

  42. Metzger, J. et al. Urinary excretion of twenty peptides forms an early and accurate diagnostic pattern of acute kidney injury. Kidney Int. 78, 1252–1262 (2010).

    PubMed  Google Scholar 

  43. Siew, E. D. et al. Urine neutrophil gelatinase-associated lipocalin moderately predicts acute kidney injury in critically ill adults. J. Am. Soc. Nephrol. 20, 1823–1832 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Haase, M. et al., Urinary interleukin-18 does not predict acute kidney injury after adult cardiac surgery: a prospective observational cohort study. Crit. Care 12, R96 (2008).

    PubMed  PubMed Central  Google Scholar 

  45. Martensson, J. et al. Neutrophil gelatinase-associated lipocalin in adult septic patients with and without acute kidney injury. Intensive Care Med. 36, 1333–1340 (2010).

    CAS  PubMed  Google Scholar 

  46. Shlipak, M. G. et al. Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. Circulation 107, 87–92 (2003).

    CAS  PubMed  Google Scholar 

  47. Oberg, B. P. et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 65, 1009–1016 (2004).

    PubMed  Google Scholar 

  48. Tong, M. et al. Plasma pentraxin 3 in patients with chronic kidney disease: associations with renal function, protein-energy wasting, cardiovascular disease, and mortality. Clin. J. Am. Soc. Nephrol. 2, 889–897 (2007).

    CAS  PubMed  Google Scholar 

  49. Axelsson, J. et al. Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance. Kidney Int. 69, 596–604 (2006).

    CAS  PubMed  Google Scholar 

  50. Fried, L. et al. Inflammatory and prothrombotic markers and the progression of renal disease in elderly individuals. J. Am. Soc. Nephrol. 15, 3184–3191 (2004).

    PubMed  Google Scholar 

  51. Tonelli, M. et al. Biomarkers of inflammation and progression of chronic kidney disease. Kidney Int. 68, 237–245 (2005).

    CAS  PubMed  Google Scholar 

  52. Menon, V. et al. Relationship between C-reactive protein, albumin, and cardiovascular disease in patients with chronic kidney disease. Am. J. Kidney Dis. 42, 44–52 (2003).

    CAS  PubMed  Google Scholar 

  53. Orenes-Pinero, E. et al. β-Trace protein: from GFR marker to cardiovascular risk predictor. Clin. J. Am. Soc. Nephrol. 8, 873–881 (2013).

    CAS  PubMed  Google Scholar 

  54. Lewis, J. R. et al. Elevated osteoprotegerin predicts declining renal function in elderly women: a 10-year prospective cohort study. Am. J. Nephrol. 39, 66–74 (2014).

    CAS  PubMed  Google Scholar 

  55. Saulnier, P. J. et al. Association of serum concentration of TNFR1 with all-cause mortality in patients with type 2 diabetes and chronic kidney disease: follow- up of the SURDIAGENE cohort. Diabetes Care 37, 1425–1431 (2014).

    CAS  PubMed  Google Scholar 

  56. Desjardins, L. et al. FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages. Osteoporos. Int. 23, 2017–2025 (2012).

    CAS  PubMed  Google Scholar 

  57. Shimamura, Y. et al. Serum levels of soluble secreted α-Klotho are decreased in the early stages of chronic kidney disease, making it a probable novel biomarker for early diagnosis. Clin. Exp. Nephrol. 16, 722–729 (2012).

    CAS  PubMed  Google Scholar 

  58. Devaraj, S., Syed, B., Chien, A. & Jialal, I. Validation of an immunoassay for soluble klotho protein decreased levels in diabetes and increased levels in chronic kidney disease. Am. J. Clin. Pathol. 137, 479–485 (2012).

    CAS  PubMed  Google Scholar 

  59. Lundberg, S. et al. FGF23, Albuminuria, and disease progression in patients with chronic IgA nephropathy. Clin. J. Am. Soc. Nephrol. 7, 727–734 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim, H. R. et al. Circulating α-klotho levels in CKD and relationship to progression. Am. J. Kidney Dis. 61, 899–909 (2013).

    CAS  PubMed  Google Scholar 

  61. Targher, G., Kendrick, J., Smits, G. & Chonchol, M. Relationship between serum gamma-glutamyltransferase and chronic kidney disease in the United States adult population. Findings from the National Health and Nutrition Examination Survey 2001–2006 Nutr. Metab. Cardiovasc. Dis. 20, 583–590 (2010).

    CAS  PubMed  Google Scholar 

  62. Dieplinger, B. et al. Pro-A-type natriuretic peptide and pro-adrenomedullin predict progression of chronic kidney disease: the MMKD Study. Kidney Int. 75, 408–414 (2009).

    CAS  PubMed  Google Scholar 

  63. Yilmaz, M. I. et al. Serum visfatin concentration and endothelial dysfunction in chronic kidney disease, Nephrol. Dial. Transplant. 23, 959–965 (2008).

    CAS  PubMed  Google Scholar 

  64. Axelsson, J. et al. Circulating levels of visfatin/pre-B-cell colony-enhancing factor 1 in relation to genotype, GFR, body composition, and survival in patients with CKD. Am. J. Kidney Dis. 49, 237–244 (2007).

    CAS  PubMed  Google Scholar 

  65. Lin, J., Hu, F. B. & Curhan, G. Serum adiponectin and renal dysfunction in men with type 2 diabetes. Diabetes Care 30, 239–244 (2007).

    CAS  PubMed  Google Scholar 

  66. Bruchfeld, A. et al. High Mobility Group Box Protein-1 correlates with renal function in chronic kidney disease (CKD). Mol. Med. 14, 109–115 (2008).

    CAS  PubMed  Google Scholar 

  67. Kamijo, A. et al. Clinical evaluation of urinary excretion of liver-type fatty acid-binding protein as a marker for the monitoring of chronic kidney disease: a multicenter trial. J. Lab. Clin. Med. 145, 125–133 (2005).

    CAS  PubMed  Google Scholar 

  68. Nakamura, T. et al. Urinary excretion of liver-type fatty acid-binding protein in contrast medium-induced nephropathy. Am. J. Kidney Dis. 47, 439–444 (2006).

    CAS  PubMed  Google Scholar 

  69. Ferguson, M. A. et al. Urinary liver-type fatty acid-binding protein predicts adverse outcomes in acute kidney injury. Kidney Int. 77, 708–714 (2010).

    CAS  PubMed  Google Scholar 

  70. Vickery, S. et al. B-type natriuretic peptide (BNP) and amino-terminal proBNP in patients with CKD: relationship to renal function and left ventricular hypertrophy. Am. J. Kidney Dis. 46, 610–620 (2005).

    CAS  PubMed  Google Scholar 

  71. Hutchison, C. A. et al. Quantitative assessment of serum and urinary polyclonal free light chains in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 3, 1684–1690 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Yamamoto, T. et al. Urinary angiotensinogen as a marker of intrarenal angiotensin II activity associated with deterioration of renal function in patients with chronic kidney disease. J. Am. Soc. Nephrol. 18, 1558–1565 (2007).

    CAS  PubMed  Google Scholar 

  73. Zhao, N. et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 82, 790–796 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Beisswenger, P. J. et al. Early progression of diabetic nephropathy correlates with methylglyoxal-derived advanced glycation end products. Diabetes Care 36, 3234–3239 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

  76. Otu, H. H. et al. Prediction of diabetic nephropathy using urine proteomic profiling 10 years prior to development of nephropathy. Diabetes Care 30, 638–643 (2007).

    CAS  PubMed  Google Scholar 

  77. Schaub, S. et al. Proteomic-based identification of cleaved urinary β2-microglobulin as a potential marker for acute tubular injury in renal allografts. Am. J. Transplant. 5, 729–738 (2005).

    CAS  PubMed  Google Scholar 

  78. Wittke, S. et al. Detection of acute tubulointerstitial rejection by proteomic analysis of urinary samples in renal transplant recipients. Am. J. Transplant. 5, 2479–2488 (2005).

    CAS  PubMed  Google Scholar 

  79. Rossing, K. et al. Impact of diabetic nephropathy and angiotensin II receptor blockade on urinary polypeptide patterns. Kidney Int. 68, 193–205 (2005).

    CAS  PubMed  Google Scholar 

  80. Weissinger, E. M. et al. Proteomic patterns established with capillary electrophoresis and mass spectrometry for diagnostic purposes. Kidney Int. 65, 2426–2434 (2004).

    CAS  PubMed  Google Scholar 

  81. Mischak, H. et al. Recommendations for biomarker identification and qualification in clinical proteomics. Sci. Transl. Med. 2, 46ps42 (2010).

    PubMed  Google Scholar 

  82. Mischak, H. et al. Clinical proteomics: a need to define the field and to begin to set adequate standards. Proteomics Clin. Appl. 1, 148–156 (2007).

    CAS  PubMed  Google Scholar 

  83. Mischak, H., Vlahou, A., Righetti, P. G. & Calvete, J. J. Putting value in biomarker research and reporting. J. Proteomics 96, A1–A3 (2014).

    CAS  PubMed  Google Scholar 

  84. Manolis, E., Vamvakas, S. & Isaac, M. New pathway for qualification of novel methodologies in the European medicines agency. Proteomics Clin. Appl. 5, 248–255 (2011).

    CAS  PubMed  Google Scholar 

  85. Vitzthum, F., Behrens, F., Anderson, N. L. & Shaw, J. H. Proteomics: from basic research to diagnostic application. A review of requirements & needs, J. Proteome. Res. 4, 1086–1097 (2005).

    CAS  PubMed  Google Scholar 

  86. Petricoin, E. F. et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577 (2002).

    CAS  PubMed  Google Scholar 

  87. Baggerly, K. A., Morris, J. S. & Coombes, K. R. Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 20, 777–785 (2002).

    Google Scholar 

  88. Sorace, J. M. & Zhan, M. A data review and re-assessment of ovarian cancer serum proteomic profiling. BMC Bioinformatics 4, 24 (2003).

    PubMed  PubMed Central  Google Scholar 

  89. Check, E. Running before we can walk. Nature 429, 496–497 (2004).

    CAS  PubMed  Google Scholar 

  90. Dakna, M. et al. Addressing the challenge of defining valid proteomic biomarkers and classifiers. BMC Bioinformatics 11, 594 (2010).

    PubMed  PubMed Central  Google Scholar 

  91. Jantos-Siwy, J. et al. Quantitative urinary proteome analysis for biomarker evaluation in chronic kidney disease. J. Proteome. Res. 8, 268–281 (2009).

    CAS  PubMed  Google Scholar 

  92. Kistler, A. D. et al. Identification of a unique urinary biomarker profile in patients with autosomal dominant polycystic kidney disease. Kidney Int. 76, 89–96 (2009).

    CAS  PubMed  Google Scholar 

  93. Snell-Bergeon, J. K. et al. Evaluation of urinary biomarkers for coronary artery disease, diabetes, and diabetic kidney disease. Diabetes Technol. Ther. 11, 1–9 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Rossing, K. et al. Urinary proteomics in diabetes and CKD. J. Am. Soc. Nephrol. 19, 1283–1290 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Haubitz, M. et al. Identification and validation of urinary biomarkers for differential diagnosis and evaluation of therapeutic intervention in ANCA associated vasculitis. Mol. Cell. Proteomics 8, 2296–2307 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sharma, K. et al. Two-dimensional fluorescence difference gel electrophoresis analysis of the urine proteome in human diabetic nephropathy. Proteomics 5, 2648–2655 (2005).

    CAS  PubMed  Google Scholar 

  97. Zürbig, P. et al. Biomarker discovery by CE-MS enables sequence analysis via MS/MS with platform-independent separation. Electrophoresis 27, 2111–2125 (2006).

    PubMed  Google Scholar 

  98. Merchant, M. L. et al. Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria. J. Am. Soc. Nephrol. 20, 2065–2074 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Good, D. M. et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol. Cell. Proteomics 9, 2424–2437 (2010).

    PubMed  PubMed Central  Google Scholar 

  100. Molin, L. et al. A comparison between MALDI-MS and CE-MS data for biomarker assessment in chronic kidney diseases. J. Proteomics 75, 5888–5897 (2012).

    CAS  PubMed  Google Scholar 

  101. Lapolla, A. et al. A further investigation on a MALDI-based method for evaluation of markers of renal damage. J. Mass Spectrom. 44, 1754–1760 (2009).

    CAS  PubMed  Google Scholar 

  102. Zurbig, P. et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes 61, 3304–3313 (2012).

    PubMed  PubMed Central  Google Scholar 

  103. Schanstra, J. P. et al. Diagnosis and prediction of CKD progression by assessment of urinary peptides. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2014050423.

  104. Gu, Y. M. et al. The urinary proteome as correlate and predictor of renal function in a population study. Nephrol. Dial. Transplant. 29, 2260–2268 (2014).

    CAS  PubMed  Google Scholar 

  105. Argiles, A. et al. CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS ONE 8, e62837 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Roscioni, S. S. et al. A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. Diabetologia 56, 259–267 (2013).

    CAS  PubMed  Google Scholar 

  107. Andersen, S. et al. Urinary proteome analysis enables assessment of renoprotective treatment in type 2 diabetic patients with microalbuminuria. BMC Nephrol. 11, 29 (2010).

    PubMed  PubMed Central  Google Scholar 

  108. Nkuipou-Kenfack, E. et al., Assessment of metabolomic and proteomic biomarkers in detection and prognosis of progression of renal function in chronic kidney disease. PLoS ONE 9, e96955 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. Siwy, J. et al. Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy. Nephrol. Dial. Transplant. 29, 1563–1570 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Alkhalaf, A. et al. Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy. PLoS ONE 5, e13421 (2010).

    PubMed  PubMed Central  Google Scholar 

  111. Rossing, K. et al. The urinary proteome in diabetes and diabetes-associated complications: new ways to assess disease progression and evaluate therapy. Proteomics Clin. Appl. 2, 997–1007 (2008).

    CAS  PubMed  Google Scholar 

  112. Zurbig, P. et al. The human urinary proteome reveals high similarity between kidney aging and chronic kidney disease. Proteomics 9, 2108–2117 (2009).

    PubMed  PubMed Central  Google Scholar 

  113. Anderson, N. L. & Anderson, N. G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell Proteomics 1, 845–867 (2002).

    CAS  PubMed  Google Scholar 

  114. Kolch, W., Neususs, C., Pelzing, M. & Mischak, H. Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom. Rev. 24, 959–977 (2005).

    CAS  PubMed  Google Scholar 

  115. Thongboonkerd, V. & Malasit, P. Renal and urinary proteomics: current applications and challenges. Proteomics 5, 1033–1042 (2005).

    CAS  PubMed  Google Scholar 

  116. Waikar, S. S., Sabbisetti, V. S. & Bonventre, J. V. Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney Int. 78, 486–494 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Siwy, J. et al. Evaluation of the Zucker Diabetic Fatty (ZDF) rat as a model for human disease based on urinary peptidomic profiles. PLoS ONE 7, e51334 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Dominiczak, A. F. et al. Systems biology to battle vascular disease. Nephrol. Dial. Transplant. 25, 1019–1022 (2010).

    PubMed  Google Scholar 

  119. Molina, F. et al. Systems biology: opening new avenues in clinical research. Nephrol. Dial. Transplant. 25, 1015–1018 (2010).

    PubMed  Google Scholar 

  120. Fliser, D. et al. Advances in urinary proteome analysis and biomarker discovery. J. Am. Soc. Nephrol. 18, 1057–1071 (2007).

    CAS  PubMed  Google Scholar 

  121. Dakna, M. et al. Technical, bioinformatical and statistical aspects of liquid chromatography-mass spectrometry (LC-MS) and capillary electrophoresis-mass spectrometry (CE-MS) based clinical proteomics: a critical assessment. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877, 1250–1258 (2009).

    CAS  PubMed  Google Scholar 

  122. Kolch, W., Mischak, H. & Pitt, A. R. The molecular make-up of a tumour: proteomics in cancer research. Clin. Sci. (Lond.) 108, 369–383 (2005).

    CAS  Google Scholar 

  123. Mullen, W. et al. Performance of different separation methods interfaced in the same MS-reflection TOF detector: A comparison of performance between CE versus HPLC for biomarker analysis. Electrophoresis 33, 567–574 (2012).

    CAS  PubMed  Google Scholar 

  124. Klein, J., Papadopoulos, T., Mischak, H. & Mullen, W. Comparison of CE-MS/MS and LC-MS/MS sequencing demonstrates significant complementarity in natural peptide identification. Electrophoresis 35, 1060–1064 (2014).

    CAS  PubMed  Google Scholar 

  125. Wisniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    CAS  PubMed  Google Scholar 

  126. Neiman, M. et al. Plasma profiling reveals human fibulin-1 as candidate marker for renal impairment. J. Proteome Res. 10, 4925–4934 (2011).

    CAS  PubMed  Google Scholar 

  127. Gold, L. et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5, e15004 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Jin, Y. et al. A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. Nat. Med. 18, 580–588 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. He, J. C., Chuang, P. Y., Ma'ayan, A. & Iyengar, R. Systems biology of kidney diseases, Kidney Int. 81, 22–39 (2012).

    CAS  PubMed  Google Scholar 

  130. Keller, B. J., Martini, S., Sedor, J. R. & Kretzler, M. A systems view of genetics in chronic kidney disease. Kidney Int. 81, 14–21 (2012).

    CAS  PubMed  Google Scholar 

  131. Fechete, R. et al. Mapping of molecular pathways, biomarkers and drug targets for diabetic nephropathy. Proteomics Clin. Appl. 5, 354–366 (2011).

    CAS  PubMed  Google Scholar 

  132. Husi, H. et al. A combinatorial approach of proteomics and systems biology in unravelling the mechanisms of acute kidney injury (AKI): involvement of NMDA receptor GRIN1 in murine AKI. BMC Syst. Biol. 7, 110 (2013).

    PubMed  PubMed Central  Google Scholar 

  133. Klein, J. et al. Proteasix: a tool for automated and large-scale prediction of proteases involved in naturally-occurring peptide generation. Proteomics 13, 1077–1082 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research is supported in part by the European Commission Seventh Framework Programme (FP7) projects Clinical and System–Omics for Identification of the Molecular Determinants of Established Chronic Kidney Disease (iMODE-CKD, PEOPLE-ITN-GA-2013-608332), Markers for Sub-Clinical Cardiovascular Risk Assessment (EU-MASCARA, HEALTH-2011 278,249), Systems Biology to Identify Molecular Targets for Vascular Disease Treatment (SysVasc, HEALTH-2013 603288) and Systems Biology: Towards Novel Chronic Kidney Disease Diagnosis and Treatment (SysKID HEALTH–F2–2009–241544). The authors are grateful to Gert Mayer, University of Innsbruck, Austria, and Claudia Pontillo, Mosaiques Diagnostics, Germany, for critically reviewing the manuscript and to Clemens Gutzeit for help with preparing the original artwork.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to writing this article, researching the data, reviewing and/or editing of the manuscript before submission, and discussion of its content.

Corresponding author

Correspondence to Raymond Vanholder.

Ethics declarations

Competing interests

H.M. is the co-founder and co-owner of Mosaiques Diagnostics and DiaPat—companies that provide clinical proteomics services—and developed the CKD273 urinary proteomic classifier. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mischak, H., Delles, C., Vlahou, A. et al. Proteomic biomarkers in kidney disease: issues in development and implementation. Nat Rev Nephrol 11, 221–232 (2015). https://doi.org/10.1038/nrneph.2014.247

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.247

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research