Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

An approach to cystic kidney diseases: the clinician's view

Key Points

  • Cystic kidney diseases are multisystemic disorders that present with distinct extrarenal manifestations

  • Cystic kidney diseases are regarded as ciliopathies, since almost all of the >70 different genes implicated in these diseases have products that have been linked to the biology and function of primary cilia

  • The most prevalent cystic kidney disease in adulthood is autosomal dominant polycystic kidney disease

  • Diagnosis of cystic kidney diseases requires a thorough clinical workup, taking into account not only kidney size and cyst localization, but also extrarenal manifestations

  • The utility of genetic testing varies greatly between diseases; however, testing is generally warranted in cystic kidney diseases accompanied by renal tumours

  • New techniques such as next-generation sequencing will facilitate the genetic diagnosis of cystic kidney diseases

Abstract

Advances in molecular genetics have led to the identification of more than 70 different genes involved in the development of cystic kidney diseases. Most of these diseases are rare, and interpreting the resultant plethora of disease-causing mutations requires a methodical and meticulous approach to differential diagnosis. In this Review we discuss a clinical approach to the diagnosis of cystic kidney diseases in adults, for use by nephrologists. This approach is based upon a thorough clinical evaluation, which considers both kidney phenotype and extrarenal manifestations of the underlying disorder, in combination with genetic testing in selected patients. In our view, cystic kidney disease can (in the majority of patients) be reliably classified on the basis of clinical findings. We therefore propose that defining clinical situations to precipitate the initiation of genetic testing is mandatory and cost-effective. New techniques such as next-generation sequencing will facilitate the diagnosis of cystic kidney diseases in the future, increasing diagnostic safety in a subset of patients. In renal tumour syndromes, genetic testing is warranted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagnostic work-up of cystic kidney disease.
Figure 2: Imaging findings from patients with ADPKD and ARPKD.
Figure 3: Renal manifestations of rare cystic kidney diseases.
Figure 4: Extrarenal manifestations of rare cystic kidney diseases.

Similar content being viewed by others

References

  1. Badano, J. L., Mitsuma, N., Beales, P. L. & Katsanis, N. The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet. 7, 125–148 (2006).

    CAS  PubMed  Google Scholar 

  2. Fliegauf, M., Benzing, T. & Omran, H. When cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell Biol. 8, 880–893 (2007).

    CAS  PubMed  Google Scholar 

  3. Gerdes, J. M., Davis, E. E. & Katsanis, N. The vertebrate primary cilium in development, homeostasis, and disease. Cell 137, 32–45 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. N. Engl. J. Med. 364, 1533–1543 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee, J. E. & Gleeson, J. G. A systems-biology approach to understanding the ciliopathy disorders. Genome Med. 3, 59 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. Goggolidou, P. Wnt and planar cell polarity signaling in cystic renal disease. Organogenesis 10, 86–95 (2013).

    PubMed  PubMed Central  Google Scholar 

  7. Yuan, S. & Sun, Z. Expanding horizons: ciliary proteins reach beyond cilia. Annu. Rev. Genet. 47, 353–376 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. Coppieters, F., Lefever, S., Leroy, B. P. & De Baere, E. CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum. Mutat. 31, 1097–1108 (2010).

    CAS  PubMed  Google Scholar 

  9. Torres, V. E. & Harris, P. C. Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int. 76, 149–168 (2009).

    PubMed  PubMed Central  Google Scholar 

  10. Harris, P. C. & Torres, V. E. Polycystic kidney disease. Annu. Rev. Med. 60, 321–337 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Stewart, J. H. End-stage renal failure appears earlier in men than in women with polycystic kidney disease. Am. J. Kidney Dis. 24, 181–183 (1994).

    CAS  PubMed  Google Scholar 

  12. Hildebrandt, F. Genetic kidney diseases. Lancet 375, 1287–1295 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Torres, V. E., Harris, P. C. & Pirson, Y. Autosomal dominant polycystic kidney disease. Lancet 369, 1287–1301 (2007).

    PubMed  Google Scholar 

  14. Kim, E. & Walz, G. Sensitive cilia set up the kidney. Nat. Med. 13, 1409–1411 (2007).

    CAS  PubMed  Google Scholar 

  15. Luciano, R. L. & Dahl, N. K. Extra-renal manifestations of ADPKD: considerations for routine screening and management. Nephrol. Dial. Transplant. 29, 247–254.

  16. Torres, V. E. Water for ADPKD? Probably, yes. J. Am. Soc. Nephrol. 17, 2089–2091 (2006).

    PubMed  Google Scholar 

  17. Torres, V. E. et al. Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat. Med. 10, 363–364 (2004).

    CAS  PubMed  Google Scholar 

  18. Nagao, S. et al. Increased water intake decreases progression of polycystic kidney disease in the PCK rat. J. Am. Soc. Nephrol. 17, 2220–2227 (2006).

    CAS  PubMed  Google Scholar 

  19. Klahr, S. et al. Dietary protein restriction, blood pressure control, and the progression of polycystic kidney disease. Modification of Diet in Renal Disease Study Group. J. Am. Soc. Nephrol. 5, 2037–2047 (1995).

    CAS  PubMed  Google Scholar 

  20. Hateboer, N. et al. Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 353, 103–107 (1999).

    CAS  PubMed  Google Scholar 

  21. O'Toole, J. F. et al. Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy. J. Clin. Invest. 120, 791–802 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hurd, T. W. et al. Mutation of the Mg2+ transporter SLC41A1 results in a nephronophthisis-like phenotype. J. Am. Soc. Nephrol. 24, 967–977 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ravine, D., Gibson, R. N., Donlan, J. & Sheffield, L. J. An ultrasound renal cyst prevalence survey: specificity data for inherited renal cystic diseases. Am. J. Kidney Dis. 22, 803–807 (1993).

    CAS  PubMed  Google Scholar 

  24. Sun, Y., Zhou, H. & Yang, B. Drug discovery for polycystic kidney disease. Acta Pharmacol. Sin. 32, 805–816 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Badenas, C. et al. Loss of heterozygosity in renal and hepatic epithelial cystic cells from ADPKD1 patients. Eur. J. Hum. Genet. 8, 487–492 (2000).

    CAS  PubMed  Google Scholar 

  26. Shillingford, J. M. et al. The mTOR pathway is regulated by polycystin 1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl Acad. Sci. USA. 103, 5466–5471 (2006).

    CAS  PubMed  Google Scholar 

  27. Hanaoka, K. & Guggino, W. B. cAMP regulates cell proliferation and cyst formation in autosomal polycystic kidney disease cells. J. Am. Soc. Nephrol. 11, 1179–1187 (2000).

    CAS  PubMed  Google Scholar 

  28. Grantham, J. J., Ye, M., Gattone, V. H. & Sullivan, L. P. In vitro fluid secretion by epithelium from polycystic kidneys. J. Clin. Invest. 95, 195–202 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Torres, V. E. & Harris, P. C. Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J. Am. Soc. Nephrol. 25, 18–32 (2014).

    CAS  PubMed  Google Scholar 

  30. Chang, M. Y. et al. Haploinsufficiency of Pkd2 is associated with increased tubular cell proliferation and interstitial fibrosis in two murine Pkd2 models. Nephrol. Dial. Transplant. 21, 2078–2084 (2006).

    CAS  PubMed  Google Scholar 

  31. Griffin, M. D., Torres, V. E., Grande, J. P. & Kumar, R. Vascular expression of polycystin. J. Am. Soc. Nephrol. 8, 616–626 (1997).

    CAS  PubMed  Google Scholar 

  32. Griffin, M. D. et al. Expression of polycystin in mouse metanephros and extra-metanephric tissues. Kidney Int. 52, 1196–1205 (1997).

    CAS  PubMed  Google Scholar 

  33. Wu, J. et al. Characterization of primary cilia in human airway smooth muscle cells. Chest 136, 561–570 (2009).

    PubMed  PubMed Central  Google Scholar 

  34. Sharif-Naeini, R. et al. Polycystin 1 and 2 dosage regulates pressure sensing. Cell 139, 587–596 (2009).

    CAS  PubMed  Google Scholar 

  35. Masyuk, A. I. et al. Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 131, 911–920 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cobben, J. M., Breuning, M. H., Schoots, C., ten Kate, L. P. & Zerres, K. Congenital hepatic fibrosis in autosomal-dominant polycystic kidney disease. Kidney Int. 38, 880–885 (1990).

    CAS  PubMed  Google Scholar 

  37. Fick, G. M. et al. The spectrum of autosomal dominant polycystic kidney disease in children. J. Am. Soc. Nephrol. 4, 1654–1660 (1994).

    CAS  PubMed  Google Scholar 

  38. Harris, P. C. et al. Cyst number but not the rate of cystic growth is associated with the mutated gene in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 17, 3013–3019 (2006).

    CAS  PubMed  Google Scholar 

  39. Fick-Brosnahan, G. M., Belz, M. M., McFann, K. K., Johnson, A. M. & Schrier, R. W. Relationship between renal volume growth and renal function in autosomal dominant polycystic kidney disease: a longitudinal study. Am. J. Kidney Dis. 39, 1127–1134 (2002).

    PubMed  Google Scholar 

  40. Johnson, A. M. & Gabow, P. A. Identification of patients with autosomal dominant polycystic kidney disease at highest risk for end-stage renal disease. J. Am. Soc. Nephrol. 8, 1560–1567 (1997).

    CAS  PubMed  Google Scholar 

  41. Torres, V. E. et al. Potentially modifiable factors affecting the progression of autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 640–647 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Higashihara, E. et al. Does increased water intake prevent disease progression in autosomal dominant polycystic kidney disease? Nephrol. Dial. Transplant. 29, 1710–1719 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hebert, L. A., Greene, T., Levey, A., Falkenhain, M. E. & Klahr, S. High urine volume and low urine osmolality are risk factors for faster progression of renal disease. Am. J. Kidney Dis. 41, 962–971 (2003).

    PubMed  Google Scholar 

  44. Ravine, D. et al. Evaluation of ultrasonographic diagnostic criteria for autosomal dominant polycystic kidney disease 1. Lancet 343, 824–827 (1994).

    CAS  PubMed  Google Scholar 

  45. Nicolau, C. et al. Autosomal dominant polycystic kidney disease types 1 and 2: assessment of US sensitivity for diagnosis. Radiology 213, 273–276 (1999).

    CAS  PubMed  Google Scholar 

  46. Pei, Y. et al. Unified criteria for ultrasonographic diagnosis of ADPKD. J. Am. Soc. Nephrol. 20, 205–212 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Grantham, J. J. et al. Detected renal cysts are tips of the iceberg in adults with ADPKD. Clin. J. Am. Soc. Nephrol. 7, 1087–1093 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. Orskov, B., Sørensen, V. R., Feldt-Rasmussen, B. & Strandgaard, S. Changes in causes of death and risk of cancer in Danish patients with autosomal dominant polycystic kidney disease and end-stage renal disease. Nephrol. Dial. Transplant. 27, 1607–1613 (2012).

    PubMed  Google Scholar 

  49. O'Callaghan, F. J., Noakes, M. J., Martyn, C. N. & Osborne, J. P. An epidemiological study of renal pathology in tuberous sclerosis complex. BJU Int. 94, 853–857 (2004).

    PubMed  Google Scholar 

  50. Kaelin, W. G. Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer 2, 673–682 (2002).

    CAS  PubMed  Google Scholar 

  51. Gambaro, G., Danza, F. M. & Fabris, A. Medullary sponge kidney. Curr. Opin. Nephrol. Hypertens. 22, 421–426 (2013).

    PubMed  Google Scholar 

  52. Fabris, A., Anglani, F., Lupo, A. & Gambaro, G. Medullary sponge kidney: state of the art. Nephrol. Dial. Transplant. 28, 1111–1119 (2013).

    PubMed  Google Scholar 

  53. Sherstha, R. et al. Postmenopausal estrogen therapy selectively stimulates hepatic enlargement in women with autosomal dominant polycystic kidney disease. Hepatology 26, 1282–1286 (1997).

    CAS  PubMed  Google Scholar 

  54. Alvaro, D. et al. Estrogens and the pathophysiology of the biliary tree. World J. Gastroenterol. 12, 3537–3545 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Stamm, E. R. et al. Frequency of ovarian cysts in patients with autosomal dominant polycystic kidney disease. Am. J. Kidney Dis. 34, 120–124 (1999).

    CAS  PubMed  Google Scholar 

  56. Rozenfeld, M. N. et al. Should patients with autosomal dominant polycystic kidney disease be screened for cerebral aneurysms? Am. J. Neuroradiol. 35, 3–9 (2014).

    CAS  PubMed  Google Scholar 

  57. Pirson, Y., Chauveau, D. & Torres, V. Management of cerebral aneurysms in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 13, 269–276 (2002).

    PubMed  Google Scholar 

  58. Xu, H. W., Yu, S. Q., Mei, C. L. & Li, M. H. Screening for intracranial aneurysm in 355 patients with autosomal-dominant polycystic kidney disease. Stroke 42, 204–206 (2011).

    CAS  PubMed  Google Scholar 

  59. Irazabal, M. V. et al. Extended follow-up of unruptured intracranial aneurysms detected by presymptomatic screening in patients with autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 1274–1285 (2011).

    PubMed  PubMed Central  Google Scholar 

  60. Hossack, K. F., Leddy, C. L., Johnson, A. M., Schrier, R. W. & Gabow, P. A. Echocardiographic findings in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 319, 907–912 (1988).

    CAS  PubMed  Google Scholar 

  61. Fick, G. M., Johnson, A. M., Hammond, W. S. & Gabow, P. A. Causes of death in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. 5, 2048–2056 (1995).

    CAS  PubMed  Google Scholar 

  62. Hughes, L. E. Postmortem survey of diverticular disease of the colon. I. Diverticulosis and diverticulitis. Gut 10, 336–344 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Guay-Woodford, L. M. & Desmond, R. A. Autosomal recessive polycystic kidney disease: the clinical experience in North America. Pediatrics 111, 1072–1080 (2003).

    PubMed  Google Scholar 

  64. Bergmann, C. et al. PKHD1 mutations in autosomal recessive polycystic kidney disease (ARPKD). Hum. Mutat. 23, 453–463 (2004).

    CAS  PubMed  Google Scholar 

  65. Fonck, C., Chauveau, D., Gagnadoux, M. F., Pirson, Y. & Grünfeld, J. P. Autosomal recessive polycystic kidney disease in adulthood. Nephrol. Dial. Transplant. 16, 1648–1652 (2001).

    CAS  PubMed  Google Scholar 

  66. Adeva, M. et al. Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD). Medicine (Baltimore) 85, 1–21 (2006).

    Google Scholar 

  67. Sweeney, W. E., Jr & Avner, E. D. Diagnosis and management of childhood polycystic kidney disease. Pediatr. Nephrol. 26, 675–692 (2011).

    PubMed  Google Scholar 

  68. Khan, K., Schwarzenberg, S. J., Sharp, H. L., Matas, A. J. & Chavers, B. M. Morbidity from congenital hepatic fibrosis after renal transplantation for autosomal recessive polycystic kidney disease. Am. J. Transplant. 2, 360–365 (2002).

    PubMed  Google Scholar 

  69. Kern, S., Zimmerhackl, L. B., Hildebrandt, F. & Uhl, M. Rare MR urography- a new diagnostic method in autosomal recessive polycystic kidney disease. Acta Radiol. 40, 543–544 (1999).

    CAS  PubMed  Google Scholar 

  70. Zerres, K. et al. Autosomal recessive polycystic kidney disease in 115 children: clinical presentation, course and influence of gender. Arbeitsgemeinschaft für Pädiatrische, Nephrologie. Acta Paediatr. 85, 437–445 (1996).

    CAS  PubMed  Google Scholar 

  71. Büscher, R. et al. Clinical manifestations of autosomal recessive polycystic kidney disease (ARPKD): kidney-related and non kidney related phenotypes. Pediatr. Nephrol. (2013). http://dx.doi.org/10.1007/s004670132634-1.

  72. Hildebrandt, F., Attanasio, M. & Otto, E. Nephronophthisis: Disease Mechanisms of a Ciliopathy. J. Am. Soc. Nephrol. 20, 23–35 (2009).

    CAS  PubMed  Google Scholar 

  73. Hildebrandt, F. & Zhou, W. Nephronophthisis-Associated Ciliopathies. J. Am. Soc. Nephrol. 18, 1855–1871 (2007).

    CAS  PubMed  Google Scholar 

  74. Salomon, R., Saunier, S. & Niaudet, P. Nephronophthisis. Pediatr. Nephrol. 24, 2333–2344 (2009).

    PubMed  Google Scholar 

  75. Hildebrandt, F. & Otto, E. Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat. Rev. Genet. 6, 928–940 (2005).

    CAS  PubMed  Google Scholar 

  76. Wolf, M. T. F. & Hildebrandt, F. Nephronophthisis. Pediatr. Nephrol. 26, 181–194 (2011).

    PubMed  Google Scholar 

  77. Halbritter, J. et al. Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum. Genet. 132, 865–884 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Nonaka, S. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 (1998).

    CAS  PubMed  Google Scholar 

  79. Chen, J., Knowles, H. J., Hebert, J. L. & Hackett, B. P. Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left-right asymmetry. J. Clin. Invest. 102, 1077–1082 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Schneider, H. & Brueckner, M. Of mice and men: dissecting the genetic pathway that controls left-right asymmetry in mice and humans. Am. J. Med. Genet. 97, 258–270 (2000).

    CAS  PubMed  Google Scholar 

  81. Betz, R. et al. Children with ocular motor apraxia type Cogan carry deletions in the gene (NPHP1) for juvenile nephronophthisis. J. Pediatr. 136, 828–831 (2000).

    CAS  PubMed  Google Scholar 

  82. Johnson, C. A. Molecular pathology and genetics of congenital hepatorenal fibrocystic syndromes. J. Med. Genet. 40, 311–319 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mainzer, F., Saldino, R. M., Ozonoff, M. B. & Minagi, H. Familial nephropathy associated with retinitis pigmentosa, cerebellar ataxia and skeletal abnormalities. Am. J. Med. 49, 556–562 (1970).

    CAS  PubMed  Google Scholar 

  84. Halbritter, J. et al. Defects in the IFT B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am. J. Hum. Genet. 93, 915–925 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. McInerney-Leo, A. M. et al. Short-rib polydactyly and Jeune syndromes are caused by mutations in WDR60. Am. J. Hum. Genet. 93, 515–523 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Huber, C. et al. WDR34 mutations that cause short-rib polydactyly syndrome type III/severe asphyxiating thoracic dysplasia reveal a role for the NFκB pathway in cilia. Am. J. Hum. Genet. 93, 926–931 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin, A. E. et al. Sensenbrenner syndrome (Cranioectodermal dysplasia): clinical and molecular analyses of 39 patients including two new patients. Am. J. Med. Genet. A 161, 2762–2776 (2013).

    CAS  Google Scholar 

  88. Parisi, M. A. Clinical and molecular features of Joubert syndrome and related disorders. Am. J. Med. Genet. C Semin. Med. Genet. 151, 326–340 (2009).

    Google Scholar 

  89. Brancati, F., Dallapiccola, B. & Valente, E. M. Joubert Syndrome and related disorders. Orphanet J. Rare Dis. 5, 20 (2010).

    PubMed  PubMed Central  Google Scholar 

  90. Dafinger, C. et al. Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics. J. Clin. Invest. 121, 2662–2667 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. O'Dea, D. et al. The importance of renal impairment in the natural history of Bardet-Biedl syndrome. Am. J. Kidney Dis. 27, 776–783 (1996).

    CAS  PubMed  Google Scholar 

  92. Imhoff, O. et al. Bardet-Biedl syndrome: a study of the renal and cardiovascular phenotypes in a French cohort. Clin. J. Am. Soc. Nephrol. 6, 22–29 (2011).

    PubMed  PubMed Central  Google Scholar 

  93. Putoux, A., Attie-Bitach, T., Martinovic, J. & Gubler, M. C. Phenotypic variability of Bardet-Biedl syndrome: focusing on the kidney. Pediatr. Nephrol. 27, 7–15 (2012).

    PubMed  Google Scholar 

  94. Bergmann, C. Educational paper: ciliopathies. Eur. J. Pediatr. 171, 1285–1300 (2012).

    PubMed  Google Scholar 

  95. Zaghloul, N. A. & Katsanis, N. Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J. Clin. Invest. 119, 428–437 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bollée, G. et al. Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to UMOD mutations. Clin. J. Am. Soc. Nephrol. 6, 2429–2438 (2011).

    PubMed  PubMed Central  Google Scholar 

  97. Wolf, M. T. F. et al. Mutations of the Uromodulin gene in MCKD type 2 patients cluster in exon 4, which encodes three EGF-like domains. Kidney Int. 64, 1580–1587 (2003).

    CAS  PubMed  Google Scholar 

  98. Scolari, F. et al. Identification of a new locus for medullary cystic disease, on chromosome 16p12. Am. J. Hum. Genet. 64, 1655–1660 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Dahan, K. et al. A cluster of mutations in the UMOD gene causes familial juvenile hyperuricemic nephropathy with abnormal expression of uromodulin. J. Am. Soc. Nephrol. 14, 2883–2893 (2003).

    CAS  PubMed  Google Scholar 

  100. Christodoulou, K. et al. Chromosome 1 localization of a gene for autosomal dominant medullary cystic kidney disease. Hum. Mol. Genet. 7, 905–911 (1998).

    CAS  PubMed  Google Scholar 

  101. Hart, T. C. et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J. Med. Genet. 39, 882–892 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kirby, A. et al. Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing. Nat. Genet. 45, 299–303 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zivná, M. et al. Dominant Renin Gene Mutations Associated with Early-Onset Hyperuricemia, Anemia, and Chronic Kidney Failure. Am. J. Hum. Genet. 85, 204–213 (2009).

    PubMed  PubMed Central  Google Scholar 

  104. Osborne, J. P., Fryer, A. & Webb, D. Epidemiology of tuberous sclerosis. Ann. N. Y. Acad. Sci. 615, 125–127 (1991).

    CAS  PubMed  Google Scholar 

  105. Crino, P. B., Nathanson, K. L. & Henske, E. P. The tuberous sclerosis complex. N. Engl. J. Med. 355, 1345–1356 (2006).

    CAS  PubMed  Google Scholar 

  106. Cook, J. A., Oliver, K., Mueller, R. F. & Sampson, J. A cross sectional study of renal involvement in tuberous sclerosis. J. Med. Genet. 33, 480–484 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Rakowski, S. K. et al. Renal manifestations of tuberous sclerosis complex: Incidence, prognosis, and predictive factors. Kidney Int. 70, 1777–1782 (2006).

    CAS  PubMed  Google Scholar 

  108. Shepherd, C. W., Gomez, M. R., Lie, J. T. & Crowson, C. S. Causes of death in patients with tuberous sclerosis. Mayo Clin. Proc. 66, 792–796 (1991).

    CAS  PubMed  Google Scholar 

  109. Washecka, R. & Hanna, M. Malignant renal tumors in tuberous sclerosis. Urology 37, 340–343 (1991).

    CAS  PubMed  Google Scholar 

  110. Ferlay, J. et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur. J. Cancer 49, 1374–1403 (2013).

    CAS  PubMed  Google Scholar 

  111. Kopp, C. M. C., Muzykewicz, D. A., Staley, B. A., Thiele, E. A. & Pulsifer, M. B. Behavior problems in children with tuberous sclerosis complex and parental stress. Epilepsy Behav. 13, 505–510 (2008).

    PubMed  Google Scholar 

  112. Joinson, C. et al. Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex. Psychol. Med. 33, 335–344 (2003).

    CAS  PubMed  Google Scholar 

  113. Mizuguchi, M. & Takashima, S. Neuropathology of tuberous sclerosis. Brain Dev. 23, 508–515 (2001).

    CAS  PubMed  Google Scholar 

  114. Yates, J. R. W. et al. The Tuberous Sclerosis 2000 Study: presentation, initial assessments and implications for diagnosis and management. Arch. Dis. Child. 96, 1020–1025 (2011).

    PubMed  Google Scholar 

  115. Ryu, J. H. et al. The NHLBI lymphangioleiomyomatosis registry: characteristics of 230 patients at enrollment. Am. J. Respir. Crit. Care Med. 173, 105–111 (2006).

    PubMed  Google Scholar 

  116. Webb, D. W., Clarke, A., Fryer, A. & Osborne, J. P. The cutaneous features of tuberous sclerosis: a population study. Br. J. Dermatol. 135, 1–5 (1996).

    CAS  PubMed  Google Scholar 

  117. Van Slegtenhorst, M. et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277, 805–808 (1997).

    CAS  PubMed  Google Scholar 

  118. European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75, 1305–1315 (1993).

  119. Rosner, M., Hanneder, M., Siegel, N., Valli, A. & Hengstschläger, M. The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners. Mutat. Res. 658, 234–246 (2008).

    CAS  PubMed  Google Scholar 

  120. Siroky, B. J., Yin, H. & Bissler, J. J. Clinical and Molecular Insights into Tuberous Sclerosis Complex Renal Disease. Pediatr. Nephrol. 26, 839–852 (2010).

    PubMed  Google Scholar 

  121. Lee, D. F. et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130, 440–455 (2007).

    CAS  PubMed  Google Scholar 

  122. Bissler, J. J. et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med. 358, 140–151 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. FDA approval for Everolimus, US National Cancer Institute, [online], (2014).

  124. Franz, D. N. & Weiss, B. D. Molecular therapies for tuberous sclerosis and neurofibromatosis. Curr. Neurol. Neurosci. Rep. 12, 294–301 (2012).

    CAS  PubMed  Google Scholar 

  125. Jones, A. C. et al. Molecular genetic and phenotypic analysis reveals differences between TSC1 and TSC2 associated familial and sporadic tuberous sclerosis. Hum. Mol. Genet. 6, 2155–2161 (1997).

    CAS  PubMed  Google Scholar 

  126. Brook-Carter, P. T. et al. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease- a contiguous gene syndrome. Nat. Genet. 8, 328–332 (1994).

    CAS  PubMed  Google Scholar 

  127. Bausch, B. et al. Renal cancer in von Hippel-Lindau disease and related syndromes. Nat. Rev. Nephrol. 9, 529–538 (2013).

    CAS  PubMed  Google Scholar 

  128. Neumann, H. P. & Wiestler, O. D. Clustering of features of von Hippel-Lindau syndrome: evidence for a complex genetic locus. Lancet 337, 1052–1054 (1991).

    CAS  PubMed  Google Scholar 

  129. Molino, D., Sepe, J., Anastasio, P. & De Santo, N. G. The history of von Hippel-Lindau disease. J. Nephrol. 19, S119–S123 (2006).

    PubMed  Google Scholar 

  130. Siemeister, G. et al. Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein. Cancer Res. 56, 2299–2301 (1996).

    CAS  PubMed  Google Scholar 

  131. Maher, E. R., Neumann, H. P. & Richard, S. von Hippel-Lindau disease: a clinical and scientific review. Eur. J. Hum. Genet. 19, 617–623 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Maher, E. R. et al. Clinical features and natural history of von Hippel-Lindau disease. Q. J. Med. 77, 1151–1163 (1990).

    CAS  PubMed  Google Scholar 

  133. Vogelzang, N. J. & Stadler, W. M. Kidney cancer. Lancet 352, 1691–1696 (1998).

    CAS  PubMed  Google Scholar 

  134. Lonser, R. R. et al. von Hippel-Lindau disease. Lancet 361, 2059–2067 (2003).

    CAS  PubMed  Google Scholar 

  135. Maddock, I. R. et al. A genetic register for von Hippel-Lindau disease. J. Med. Genet. 33, 120–127 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Bergmann, C. ARPKD and early manifestations of ADPKD: the original polycystic kidney disease and phenocopies. Pediatr. Nephrol. (2014). http://dx.doi.org/10.1007/s004670132706-2.

  137. Harris, P. C. & Rossetti, S. Molecular diagnostics for autosomal dominant polycystic kidney disease. Nat. Rev. Nephrol. 6, 197–206 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Woo, Y. M. et al. Genome-wide methylation profiling of ADPKD identified epigenetically regulated genes associated with renal cyst development. Hum. Genet. 133, 281–297 (2014).

    CAS  PubMed  Google Scholar 

  139. Daoust, M. C., Reynolds, D. M., Bichet, D. G. & Somlo, S. Evidence for a third genetic locus for autosomal dominant polycystic kidney disease. Genomics 25, 733–736 (1995).

    CAS  PubMed  Google Scholar 

  140. De Almeida, S. et al. Autosomal dominant polycystic kidney disease: evidence for the existence of a third locus in a Portuguese family. Hum. Genet. 96, 83–88 (1995).

    CAS  PubMed  Google Scholar 

  141. Edghill, E. L., Bingham, C., Ellard, S. & Hattersley, A. T. Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J. Med. Genet. 43, 84–90 (2006).

    CAS  PubMed  Google Scholar 

  142. Faguer, S. et al. Massively enlarged polycystic kidneys in monozygotic twins with TCF2/HNF-1beta (hepatocyte nuclear factor-1beta) heterozygous whole-gene deletion. Am. J. Kidney Dis. 50, 1023–1027 (2007).

    CAS  PubMed  Google Scholar 

  143. Drenth, J. P. H. et al. Abnormal hepatocystin caused by truncating PRKCSH mutations leads to autosomal dominant polycystic liver disease. Hepatology 39, 924–931 (2004).

    CAS  PubMed  Google Scholar 

  144. Davila, S. et al. Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat. Genet. 36, 575–577 (2004).

    CAS  PubMed  Google Scholar 

  145. Onuchic, L. F. et al. PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin transcription factor domains and parallel beta-helix 1 repeats. Am. J. Hum. Genet. 70, 1305–1317 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Ward, C. J. et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat. Genet. 30, 259–269 (2002).

    PubMed  Google Scholar 

  147. Denamur, E. et al. Genotype-phenotype correlations in fetuses and neonates with autosomal recessive polycystic kidney disease. Kidney Int. 77, 350–358 (2010).

    CAS  PubMed  Google Scholar 

  148. Rossetti, S. & Harris, P. C. Genotype-phenotype correlations in autosomal dominant and autosomal recessive polycystic kidney disease. J. Am. Soc. Nephrol. 18, 1374–1380 (2007).

    CAS  PubMed  Google Scholar 

  149. Furu, L. et al. Milder presentation of recessive polycystic kidney disease requires presence of amino acid substitution mutations. J. Am. Soc. Nephrol. 14, 2004–2014 (2003).

    CAS  PubMed  Google Scholar 

  150. Bergmann, C. et al. Spectrum of mutations in the gene for autosomal recessive polycystic kidney disease (ARPKD/PKHD1). J. Am. Soc. Nephrol. 14, 76–89 (2003).

    CAS  PubMed  Google Scholar 

  151. Rossetti, S. et al. A complete mutation screen of PKHD1 in autosomal-recessive polycystic kidney disease (ARPKD) pedigrees. Kidney Int. 64, 391–403 (2003).

    CAS  PubMed  Google Scholar 

  152. Harris, P. C. & Rossetti, S. Molecular genetics of autosomal recessive polycystic kidney disease. Mol. Genet. Metab. 81, 75–85 (2004).

    CAS  PubMed  Google Scholar 

  153. Romani, M., Micalizzi, A. & Valente, E. M. Joubert syndrome: congenital cerebellar ataxia with the molar tooth. Lancet Neurol. 12, 894–905 (2013).

    PubMed  Google Scholar 

  154. Barker, A. R., Thomas, R. & Dawe, H. R. Meckel-Gruber syndrome and the role of primary cilia in kidney, skeleton, and central nervous system development. Organogenesis 10, 96–107 (2014).

    PubMed  Google Scholar 

Download references

Acknowledgements

R.-U.M. receives funding from the Deutsche Forschungsgemeinschaft (MU 3629/2-1). B.S. receives funding from the Deutsche Forschungsgemeinschaft SFB 832 and DFG SCHE 1562-2. T.B. receives funding from the Deutsche Forschungsgemeinschaft (BE2212) and the BMBF (Sybacol).

Author information

Authors and Affiliations

Authors

Contributions

C.E.K., R.-U.M., M.F., D.M. and B.S. researched data for the article; C.E.K., R.-U.M., M.F., B.S. and T.B. contributed to discussion of the article's content; C.E.K. and T.B. wrote the manuscript; and C.E.K., R.-U.M., B.S. and T.B. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Thomas Benzing.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurschat, C., Müller, RU., Franke, M. et al. An approach to cystic kidney diseases: the clinician's view. Nat Rev Nephrol 10, 687–699 (2014). https://doi.org/10.1038/nrneph.2014.173

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing