Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Management of hyperkalaemia in chronic kidney disease

Key Points

  • Hyperkalaemia is common in patients with chronic kidney disease (CKD), especially when CKD is accompanied by exacerbating factors

  • Hyperkalaemia is associated with adverse outcomes in patients with CKD, and can restrict the use of beneficial medications, such as renin–angiotensin–aldosterone-system (RAAS) inhibitors

  • Current therapeutic paradigms for hyperkalaemia emphasize intermittent acute interventions and the elimination of exacerbating factors (including RAAS inhibitors)

  • Proactive treatment strategies to prevent the development of hyperkalaemia could also benefit patients by enabling more liberal use of RAAS inhibitors

  • The emergence of new potassium binders may result in more widespread implementation of strategies for hyperkalaemia prevention

Abstract

Hyperkalaemia is common in patients with chronic kidney disease (CKD), in part because of the effects of kidney dysfunction on potassium homeostasis and in part because of the cluster of comorbidities (and their associated treatments) that occur in patients with CKD. Owing to its electrophysiological effects, severe hyperkalaemia represents a medical emergency that usually requires prompt intervention, whereas the prevention of hazardous hyperkalaemic episodes in at-risk patients requires measures aimed at the long-term normalization of potassium homeostasis. The options for effective and safe medical interventions to restore chronic potassium balance are few, and long-term management of hyperkalaemia is primarily limited to the correction of modifiable exacerbating factors. This situation can result in a difficult trade-off in patients with CKD, because drugs that are beneficial to these patients (for example, renin–angiotensin–aldosterone-system antagonists) are often the most prominent cause of their hyperkalaemia. Maintaining the use of these beneficial medications while implementing various strategies to control potassium balance is desirable; however, discontinuation rates remain high. The emergence of new medications that specifically target hyperkalaemia could lead to a therapeutic paradigm shift, emphasizing preventive management over ad hoc treatment of incidentally discovered elevations in serum potassium levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms contributing to the development of hyperkalaemia in patients with chronic kidney disease and associated comorbidities.

Similar content being viewed by others

References

  1. Lowrie, E. G. & Lew, N. L. Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am. J. Kidney Dis. 15, 458–482 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Iseki, K. et al. Impact of the initial levels of laboratory variables on survival in chronic dialysis patients. Am. J. Kidney Dis. 28, 541–548 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Hayes, J. et al. Association of hypo- and hyperkalemia with disease progression and mortality in males with chronic kidney disease: the role of race. Nephron Clin. Pract. 120, c8–c16 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Kovesdy, C. P. et al. Serum and dialysate potassium concentrations and survival in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2, 999–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Gonick, H. C., Kleeman, C. R., Rubini, M. E. & Maxwell, M. H. Functional impairment in chronic renal disease. III. Studies of potassium excretion. Am. J. Med. Sci. 261, 281–290 (1971).

    Article  CAS  PubMed  Google Scholar 

  6. Hayes, C. P. Jr & Robinson, R. R. Fecal potassium excretion in patients on chronic intermittent hemodialysis. Trans. Am. Soc. Artif. Intern. Organs 11, 242–246 (1965).

    Article  PubMed  Google Scholar 

  7. Hayes, C. P. Jr, McLeod, M. E. & Robinson, R. R. An extrarenal mechanism for the maintenance of potassium balance in severe chronic renal failure. Trans. Assoc. Am. Physicians 80, 207–216 (1967).

    PubMed  Google Scholar 

  8. Kopple, J. D. & Coburn, J. W. Metabolic studies of low protein diets in uremia. I. Nitrogen and potassium. Medicine (Baltimore) 52, 583–595 (1973).

    Article  CAS  Google Scholar 

  9. Schrier, R. W. & Regal, E. M. Influence of aldosterone on sodium, water and potassium metabolism in chronic renal disease. Kidney Int. 1, 156–168 (1972).

    Article  CAS  PubMed  Google Scholar 

  10. Bourgoignie, J. J., Kaplan, M., Pincus, J., Gavellas, G. & Rabinovitch, A. Renal handling of potassium in dogs with chronic renal insufficiency. Kidney Int. 20, 482–490 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. Simmons, D. H. & Avedon, M. Acid-base alterations and plasma potassium concentration. Am. J. Physiol. 197, 319–326 (1959).

    Article  CAS  PubMed  Google Scholar 

  12. Adrogué, H. J. & Madias, N. E. Changes in plasma potassium concentration during acute acid-base disturbances. Am. J. Med. 71, 456–467 (1981).

    Article  PubMed  Google Scholar 

  13. Graber, M. A model of the hyperkalemia produced by metabolic acidosis. Am. J. Kidney Dis. 22, 436–444 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Magner, P. O., Robinson, L., Halperin, R. M., Zettle, R. & Halperin, M. L. The plasma potassium concentration in metabolic acidosis: a re-evaluation. Am. J. Kidney Dis. 11, 220–224 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Oster, J. R., Perez, G. O. & Vaamonde, C. A. Relationship between blood pH and potassium and phosphorus during acute metabolic acidosis. Am. J. Physiol. 235, F345–F351 (1978).

    CAS  PubMed  Google Scholar 

  16. Michael, J. M., Dorner, I., Bruns, D., Ladenson, J. H. & Sherman, L. A. Potassium load in CPD-preserved whole blood and two types of packed red blood cells. Transfusion 15, 144–149 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Palmer, B. F. Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system. N. Engl. J. Med. 351, 585–592 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Heering, P. J. et al. Aldosterone resistance in kidney transplantation is in part induced by a down-regulation of mineralocorticoid receptor expression. Clin. Transplant. 18, 186–192 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Laine, J. & Holmberg, C. Renal and adrenal mechanisms in cyclosporine-induced hyperkalaemia after renal transplantation. Eur. J. Clin. Invest. 25, 670–676 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. DeFronzo, R. A., Sherwin, R. S., Felig, P. & Bia, M. Nonuremic diabetic hyperkalemia. Possible role of insulin deficiency. Arch. Intern. Med. 137, 842–843 (1977).

    Article  CAS  PubMed  Google Scholar 

  21. Glassock, R. J., Goldstein, D. A., Goldstone, R. & Hsueh, W. A. Diabetes mellitus, moderate renal insufficiency and hyperkalemia. Am. J. Nephrol. 3, 233–240 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Tuck, M. L., Sambhi, M. P. & Levin, L. Hyporeninemic hypoaldosteronism in diabetes mellitus. Studies of the autonomic nervous system's control of renin release. Diabetes 28, 237–241 (1979).

    Article  CAS  PubMed  Google Scholar 

  23. Arrizabalaga, P. et al. Increase in serum potassium caused by β-2 adrenergic blockade in terminal renal failure: absence of mediation by insulin or aldosterone. Proc. Eur. Dial. Transplant Assoc. 20, 572–576 (1983).

    CAS  PubMed  Google Scholar 

  24. Edes, T. E. & Sunderrajan, E. V. Heparin-induced hyperkalemia. Arch. Intern. Med. 145, 1070–1072 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Bismuth, C., Gaultier, M., Conso, F. & Efthymiou, M. L. Hyperkalemia in acute digitalis poisoning: prognostic significance and therapeutic implications. Clin. Toxicol. 6, 153–162 (1973).

    Article  CAS  PubMed  Google Scholar 

  26. Bühler, F. R. et al. Antihypertensive β blocking action as related to renin and age: a pharmacologic tool to identify pathogenetic mechanisms in essential hypertension. Am. J. Cardiol. 36, 653–669 (1975).

    Article  PubMed  Google Scholar 

  27. Pedersen, E. B. & Kornerup, H. J. Relationship between plasma aldosterone concentration and plasma potassium in patients with essential hypertension during alprenolol treatment. Acta Med. Scand. 200, 263–267 (1976).

    Article  CAS  PubMed  Google Scholar 

  28. Bakris, G. L. et al. ACE inhibition or angiotensin receptor blockade: impact on potassium in renal failure. VAL-K Study Group. Kidney Int. 58, 2084–2092 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Weir, M. R. & Rolfe, M. Potassium homeostasis and renin-angiotensin-aldosterone system inhibitors. Clin. J. Am. Soc. Nephrol. 5, 531–548 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Molnar, M. Z. et al. Angiotensin-converting enzyme inhibitor and angiotensin receptor blocker use and mortality in patients with chronic kidney disease. J. Am. Coll. Cardiol. 63, 650–658 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Pun, P. H., Lehrich, R. W., Smith, S. R. & Middleton, J. P. Predictors of survival after cardiac arrest in outpatient hemodialysis clinics. Clin. J. Am. Soc. Nephrol. 2, 491–500 (2007).

    Article  PubMed  Google Scholar 

  32. Fleet, J. L. et al. Validity of the International Classification of Diseases 10th revision code for hyperkalaemia in elderly patients at presentation to an emergency department and at hospital admission. BMJ Open 2, e002011 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Einhorn, L. M. et al. The frequency of hyperkalemia and its significance in chronic kidney disease. Arch. Intern. Med. 169, 1156–1162 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Drawz, P. E., Babineau, D. C. & Rahman, M. Metabolic complications in elderly adults with chronic kidney disease. J. Am. Geriatr. Soc. 60, 310–315 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sarafidis, P. A. et al. Prevalence and factors associated with hyperkalemia in predialysis patients followed in a low-clearance clinic. Clin. J. Am. Soc. Nephrol. 7, 1234–1241 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Makani, H., Bangalore, S., Desouza, K. A., Shah, A. & Messerli, F. H. Efficacy and safety of dual blockade of the renin–angiotensin system: meta-analysis of randomised trials. BMJ 346, f360 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Susantitaphong, P. et al. Efficacy and safety of combined vs. single renin-angiotensin-aldosterone system blockade in chronic kidney disease: a meta-analysis. Am. J. Hypertens. 26, 424–441 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 1456–1462 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Maschio, G. et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N. Engl. J. Med. 334, 939–945 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. [No authors listed] Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet 349, 1857–1863 (1997).

  41. Ruggenenti, P. et al. Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomised controlled trial. Lancet 365, 939–946 (2005).

    Article  PubMed  Google Scholar 

  42. Mann, J. F., Gerstein, H. C., Pogue, J., Bosch, J. & Yusuf, S. Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann. Intern. Med. 134, 629–636 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Weinberg, J. M. et al. Risk of hyperkalemia in nondiabetic patients with chronic kidney disease receiving antihypertensive therapy. Arch. Intern. Med. 169, 1587–1594 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Iino, Y. et al. Renoprotective effect of losartan in comparison to amlodipine in patients with chronic kidney disease and hypertension—a report of the Japanese Losartan Therapy Intended for the Global Renal Protection in Hypertensive Patients (JLIGHT) study. Hypertens. Res. 27, 21–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Miao, Y. et al. Increased serum potassium affects renal outcomes: a post hoc analysis of the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. Diabetologia 54, 44–50 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Fried, L. F. et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N. Engl. J Med. 369, 1892–1903 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Sanofi Aventis US. Avapro© package insert [online], (2014).

  48. Hou, F. F. et al. Efficacy and safety of benazepril for advanced chronic renal insufficiency. N. Engl. J. Med. 354, 131–140 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Bozkurt, B., Agoston, I. & Knowlton, A. A. Complications of inappropriate use of spironolactone in heart failure: when an old medicine spirals out of new guidelines. J. Am. Coll. Cardiol. 41, 211–214 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Shah, K. B., Rao, K., Sawyer, R. & Gottlieb, S. S. The adequacy of laboratory monitoring in patients treated with spironolactone for congestive heart failure. J. Am. Coll. Cardiol. 46, 845–849 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Juurlink, D. N. et al. Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. N. Engl. J. Med. 351, 543–551 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Knoll, G. A. et al. Renin–angiotensin system blockade and the risk of hyperkalemia in chronic hemodialysis patients. Am. J. Med. 112, 110–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Ito, Y. et al. Long-Term effects of spironolactone in peritoneal dialysis patients. J. Am. Soc. Nephrol. 25, 1094–1102 (2014).

    Article  PubMed  Google Scholar 

  54. Vazquez-Rangel, A. et al. Spironolactone to prevent peritoneal fibrosis in peritoneal dialysis patients: a randomized controlled trial. Am. J. Kidney Dis. 63, 1072–1074 (2014).

    Article  PubMed  Google Scholar 

  55. Matsumoto, Y. et al. Spironolactone reduces cardiovascular and cerebrovascular morbidity and mortality in hemodialysis patients. J. Am. Coll. Cardiol. 63, 528–536 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Flevari, P. et al. Spironolactone improves endothelial and cardiac autonomic function in non heart failure hemodialysis patients. J. Hypertens. 31, 1239–1244 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Shavit, L., Neykin, D., Lifschitz, M. & Slotki, I. Effect of eplerenone on blood pressure and the renin-angiotensin-aldosterone system in oligo-anuric chronic hemodialysis patients—a pilot study. Clin. Nephrol. 76, 388–395 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Vukusich, A. et al. A randomized, double-blind, placebo-controlled trial of spironolactone on carotid intima–media thickness in nondiabetic hemodialysis patients. Clin. J. Am. Soc. Nephrol. 5, 1380–1387 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Hammer, F. et al. Rationale and design of the Mineralocorticoid Receptor Antagonists in End-Stage Renal Disease Study (MiREnDa). Nephrol. Dial. Transplant. 29, 400–405 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Dittrich, K. L. & Walls, R. M. Hyperkalemia: ECG manifestations and clinical considerations. J. Emerg. Med. 4, 449–455 (1986).

    Article  CAS  PubMed  Google Scholar 

  61. Parham, W. A., Mehdirad, A. A., Biermann, K. M. & Fredman, C. S. Hyperkalemia revisited. Tex. Heart Inst. J. 33, 40–47 (2006).

    PubMed  PubMed Central  Google Scholar 

  62. Korgaonkar, S. et al. Serum potassium and outcomes in CKD: insights from the RRI-CKD cohort study. Clin. J. Am. Soc. Nephrol. 5, 762–769 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Pun, P. H., Lehrich, R. W., Honeycutt, E. F., Herzog, C. A. & Middleton, J. P. Modifiable risk factors associated with sudden cardiac arrest within hemodialysis clinics. Kidney Int. 79, 218–227 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Jadoul, M. et al. Modifiable practices associated with sudden death among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Clin. J. Am. Soc. Nephrol. 7, 765–774 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Xu, Q. et al. Serum potassium levels and its variability in incident peritoneal dialysis patients: associations with mortality. PLoS ONE 9, e86750 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Epstein, F. H. Signs and symptoms of electrolyte disorders. In Clinical disorders of fluid and electrolyte metabolism (eds Maxwell, M. H. & Kleeman, C. R.) 499–516 (McGraw-Hill, 1980).

    Google Scholar 

  67. Fisch, C. Electrolytes and the heart. In The Heart (ed. Hurst, J. W.) 1466–1479 (McGraw-Hill, 1986).

    Google Scholar 

  68. Kleeman, K. & Singh, B. N. Serum electrolytes and the heart. In Clinical disorders of fluid and electrolyte metabolism (eds Maxwell, M. H. & Kleeman, C. R.) 145–180 (McGraw-Hill, 1980).

    Google Scholar 

  69. Marques, J. S. & Diogo, A. N. Dead man walking: an extreme case of sinusoidal wave pattern in severe hyperkalemia. J. Am. Coll. Cardiol. 59, 2118 (2012).

    Article  PubMed  Google Scholar 

  70. Petrov, D. B. Images in clinical medicine. An electrocardiographic sine wave in hyperkalemia. N. Engl. J. Med. 366, 1824 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Siniorakis, E. et al. Hyperkalaemia, pseudohyperkalaemia and electrocardiographic correlates. Int. J. Cardiol. 148, 242–243 (2011).

    Article  PubMed  Google Scholar 

  72. Fordjour, K. N., Walton, T. & Doran, J. J. Management of hyperkalemia in hospitalized patients. Am. J. Med. Sci. 347, 93–100 (2014).

    Article  PubMed  Google Scholar 

  73. Montague, B. T., Ouellette, J. R. & Buller, G. K. Retrospective review of the frequency of ECG changes in hyperkalemia. Clin. J. Am. Soc. Nephrol. 3, 324–330 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Green, D., Green, H. D., New, D. I. & Kalra, P. A. The clinical significance of hyperkalaemia-associated repolarization abnormalities in end-stage renal disease. Nephrol. Dial. Transplant. 28, 99–105 (2013).

    Article  PubMed  Google Scholar 

  75. Welch, A., Maroz, N. & Wingo, C. S. Hyperkalemia: getting to the heart of the matter. Nephrol. Dial. Transplant. 28, 15–16 (2013).

    Article  PubMed  Google Scholar 

  76. Garcia-Palmieri, M. R. Reversal of hyperkalemic cardiotoxicity with hypertonic saline. Am. Heart. J. 64, 483–488 (1962).

    Article  CAS  PubMed  Google Scholar 

  77. Weisberg, L. S. Management of severe hyperkalemia. Crit. Care Med. 36, 3246–3251 (2008).

    Article  PubMed  Google Scholar 

  78. Beeler, G. W. Jr & Reuter, H. Membrane calcium current in ventricular myocardial fibres. J. Physiol. 207, 191–209 (1970).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Chen, C. M., Gettes, L. S. & Katzung, B. G. Effect of lidocaine and quinidine on steady-state characteristics and recovery kinetics of (dV/dt)max in guinea pig ventricular myocardium. Circ. Res. 37, 20–29 (1975).

    Article  CAS  PubMed  Google Scholar 

  80. Winkler, A. W., Hoff, H. E. & Smith, P. K. Factors affecting the toxicity of potassium. Am. J. Physiol. 127, 430–436 (1939).

    Article  CAS  Google Scholar 

  81. Eliakim, M., Rosenberg, S. Z. & Braun, K. Electrocardiographic changes following the administration of hypertonic saline to dogs. Am. Heart J. 58, 97–101 (1959).

    Article  CAS  PubMed  Google Scholar 

  82. Kaplan, J. L. et al. Hypertonic saline treatment of severe hyperkalemia in nonnephrectomized dogs. Acad. Emerg. Med. 7, 965–973 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Ballantyne, F. 3rd, Davis, L. D. & Reynolds, E. W. Jr. Cellular basis for reversal of hyperkalemic electrocardiographic changes by sodium. Am. J. Physiol. 229, 935–940 (1975).

    Article  CAS  PubMed  Google Scholar 

  84. Lens, X. M., Montoliu, J., Cases, A., Campistol, J. M. & Revert, L. Treatment of hyperkalaemia in renal failure: salbutamol v. insulin. Nephrol. Dial. Transplant 4, 228–232 (1989).

    Article  CAS  PubMed  Google Scholar 

  85. Alvestrand, A., Wahren, J., Smith, D. & DeFronzo, R. A. Insulin-mediated potassium uptake is normal in uremic and healthy subjects. Am. J. Physiol. 246, E174–E180 (1984).

    CAS  PubMed  Google Scholar 

  86. Schwarz, K. C., Cohen, B. D., Lubash, G. D. & Rubin, A. L. Severe acidosis and hyperpotassemia treated with sodium bicarbonate infusion. Circulation 19, 215–220 (1959).

    Article  CAS  PubMed  Google Scholar 

  87. Allon, M. & Shanklin, N. Effect of bicarbonate administration on plasma potassium in dialysis patients: interactions with insulin and albuterol. Am. J. Kidney Dis. 28, 508–514 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Mahoney, B. A. et al. Emergency interventions for hyperkalaemia. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD003235. http://dx.doi.org/10.1002/14651858.CD003235.pub2.

  89. Scherr, L., Ogden, D. A., Mead, A. W., Spritz, N. & Rubin, A. L. Management of hyperkalemia with a cation-exchange resin. N. Engl. J. Med. 264, 115–119 (1961).

    Article  CAS  PubMed  Google Scholar 

  90. Flinn, R. B., Merrill, J. P. & Welzant, W. R. Treatment of the oliguric patient with a new sodium-exchange resin and sorbitol; a preliminary report. N. Engl. J. Med. 264, 111–115 (1961).

    Article  CAS  PubMed  Google Scholar 

  91. Emmett, M. et al. Effect of three laxatives and a cation exchange resin on fecal sodium and potassium excretion. Gastroenterology 108, 752–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Kamel, K. S. & Wei, C. Controversial issues in the treatment of hyperkalaemia. Nephrol. Dial. Transplant. 18, 2215–2218 (2003).

    Article  PubMed  Google Scholar 

  93. Kamel, K. S. & Schreiber, M. Asking the question again: are cation exchange resins effective for the treatment of hyperkalemia? Nephrol. Dial. Transplant. 27, 4294–4297 (2012).

    Article  PubMed  Google Scholar 

  94. Sterns, R. H., Rojas, M., Bernstein, P. & Chennupati, S. Ion-exchange resins for the treatment of hyperkalemia: are they safe and effective? J. Am. Soc. Nephrol. 21, 733–735 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Gruy-Kapral, C. et al. Effect of single dose resin-cathartic therapy on serum potassium concentration in patients with end-stage renal disease. J. Am. Soc. Nephrol. 9, 1924–1930 (1998).

    CAS  PubMed  Google Scholar 

  96. Kayexalate® (sodium polystyrene sulfonate, USP cation-exchange resin) FDA Drug Label [online], (2009).

  97. Chelcun, J. L., Sable, R. A. & Friedman, K. Colonic ulceration in a patient with renal disease and hyperkalemia. JAAPA 25, 34, 37–38 (2012).

    Article  PubMed  Google Scholar 

  98. Gorospe, E. C., Lewis, J. T. & Bruining, D. H. Kayexalate-induced esophageal ulcer in a patient with gastroparesis. Clin. Gastroenterol. Hepatol. 10, A28 (2012).

    Article  PubMed  Google Scholar 

  99. Joo, M., Bae, W. K., Kim, N. H. & Han, S. R. Colonic mucosal necrosis following administration of calcium polystryrene sulfonate (Kalimate) in a uremic patient. J. Korean Med. Sci. 24, 1207–1211 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Takeuchi, N. et al. Development of colonic perforation during calcium polystyrene sulfonate administration: a case report. Case Rep. Med. 2013, 102614 (2013).

    PubMed  PubMed Central  Google Scholar 

  101. Harel, Z. et al. Gastrointestinal adverse events with sodium polystyrene sulfonate (Kayexalate) use: a systematic review. Am. J. Med. 126, 264.e9–264.e24 (2013).

    Article  CAS  Google Scholar 

  102. Gerstman, B. B., Kirkman, R. & Platt, R. Intestinal necrosis associated with postoperative orally administered sodium polystyrene sulfonate in sorbitol. Am. J. Kidney Dis. 20, 159–161 (1992).

    Article  CAS  PubMed  Google Scholar 

  103. Watson, M. A. et al. Association of prescription of oral sodium polystyrene sulfonate with sorbitol in an inpatient setting with colonic necrosis: a retrospective cohort study. Am. J. Kidney Dis. 60, 409–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Lillemoe, K. D. et al. Intestinal necrosis due to sodium polystyrene (Kayexalate) in sorbitol enemas: clinical and experimental support for the hypothesis. Surgery 101, 267–272 (1987).

    CAS  PubMed  Google Scholar 

  105. US Food and Drug Administration. Kayexalate (sodium polystyrene sulfonate) powder. Safety labeling changes approved by FDA Center for Drug Evaluation and Research (CDER) [online], (2009).

  106. Watson, M., Abbott, K. C. & Yuan, C. M. Damned if you do, damned if you don't: potassium binding resins in hyperkalemia. Clin. J. Am. Soc. Nephrol. 5, 1723–1726 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. DeFronzo, R. A. Hyperkalemia and hyporeninemic hypoaldosteronism. Kidney Int. 17, 118–134 (1980).

    Article  CAS  PubMed  Google Scholar 

  108. Pitt, B. et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94–8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur. Heart J. 34, 2453–2463 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. US National Library of Medicine. ClinicalTrials.gov[online], (2014).

  110. Chernin, G. et al. Secondary prevention of hyperkalemia with sodium polystyrene sulfonate in cardiac and kidney patients on renin-angiotensin-aldosterone system inhibition therapy. Clin. Cardiol. 35, 32–36 (2012).

    Article  PubMed  Google Scholar 

  111. Pitt, B. et al. Evaluation of the efficacy and safety of RLY5016, a polymeric potassium binder, in a double-blind, placebo-controlled study in patients with chronic heart failure (the PEARL-HF) trial. Eur. Heart J. 32, 820–828 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Buysse, J. M., Huang, I. Z. & Pitt, B. PEARL-HF: prevention of hyperkalemia in patients with heart failure using a novel polymeric potassium binder, RLY5016. Future Cardiol. 8, 17–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Yang, A., Leon, A., Nuttall, M., Low, J. J., Rasmussen, H. S. In vitro ion exchange capacity and selectivity of ZS-9, a novel, selective cation trap for the treatment of hyperkalemia. Am. J. Kidney Dis. 63, B115 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

C.P.K. is supported by grants RO1 DK096920 and UO1DK102163 from the US NIH-NIDDK. He is an employee of the US Department of Veterans Affairs. Opinions expressed in this paper are those of the author and do not necessarily represent those of the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba P. Kovesdy.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovesdy, C. Management of hyperkalaemia in chronic kidney disease. Nat Rev Nephrol 10, 653–662 (2014). https://doi.org/10.1038/nrneph.2014.168

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2014.168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing