Regulation of fibrotic signalling by TGF- β receptor tyrosine phosphorylation

TGF- β is a key mediator of fibrosis, and understanding the mechanisms by which this cytokine exerts its profibrotic effects is important for the identification of new antifibrotic targets. Findings from a new study show a pivotal role for integrin a1 β 1 signalling and TGF- β receptor II (T β RII) tyrosine phosphorylation in this process.

"The novelty of this paper resides in the fact that we show that levels of tyrosine phosphorylation of T β RII directly regulate fibrotic signalling," explains researcher Ambra Pozzi. "In addition, we show that the levels of tyrosine phosphorylation are negatively regulated by integrin α 1 β 1 via activation of a specific tyrosine phosphatase, called TCPTP."

Pozzi and colleagues previously reported that mice lacking the integrin α1 subunit (α1KO) develop more severe fibrosis following kidney injury than do wild-type mice, suggesting that integrin α1β1 acts as a negative regulator of fibrosis. In their new study, the researchers found that this increase in kidney fibrosis is accompanied by increased TGF- β signalling. To study the mechanisms whereby loss of $\alpha 1\beta 1$ leads to increased TGF- β signalling, they first generated primary cultures of collecting duct cells from wild-type, $\alpha 1 KO$, and conditional TGF- β receptor-null mice. They then used mutagenesis assays to identify key tyrosine residues within the cytoplasmic tail of the T βRII that control profibrotic signalling.

"When we think of TGF- β receptors, we think of receptors controlled by serine and threonine phosphorylation," says Pozzi. "The cytoplasmic domain of T β RII contains five tyrosines; however, whether they have a role in controlling receptor activation and profibrotic signalling was unknown. Here we show that in cells expressing integrin a1 β 1, TCPTP is activated and this leads to dephosphorylation of T β RII. On the other hand, in cells lacking this integrin, TCPTP is not functional, and this results in

μ...levels of tyrosine phosphorylation of TβRII directly regulate fibrotic signalling... **77**

increased TβRII tyrosine phosphorylation and activation of profibrotic signalling."

The researchers now hope to identify the tyrosine kinases involved in T β RII phosphorylation and to determine whether other tyrosine phosphatases, in addition to TCPTP, can regulate T β RII signalling. "Finally, it is important to further confirm whether *in vivo* T β RII tyrosine dephosphorylation can be viewed as a novel tool to reduce the unwanted TGF- β receptor activation that is seen in the course of fibrosis," says Pozzi.

Susan J. Allison

Original article Chen, X. *et al.* Integrin-mediated type II TGF- β receptor tyrosine dephosphorylation controls SMAD-dependent profibrotic signaling. *J. Clin. Invest.* doi:10.1172/JCI71668