Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The peritoneal–renal syndrome

Abstract

In patients on peritoneal dialysis (PD), a strong inter-relationship exists between the peritoneal membrane and the kidney. This Perspectives article will focus on the mechanisms by which alterations in peritoneal membrane function may influence residual renal function and vice versa. In addition, it will discuss how exposure to PD solutions and inhibitors of the renin–angiotensin–aldosterone system can simultaneously affect both the peritoneal membrane and the kidney. Similar to the cardiorenal syndrome, where changes in one organ system result in changes in the other, we propose the existence of a 'peritoneal–renal syndrome', with this novel term encompassing the complex interaction between the peritoneal membrane and the kidneys among patients on PD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bongartz, L. G., Cramer, M. J., Doevendans, P. A., Joles, J. A. & Braam, B. The severe cardiorenal syndrome: 'Guyton revisited'. Eur. Heart J. 26, 11–17 (2005).

    Article  Google Scholar 

  2. Combet, S. et al. Chronic uremia induces permeability changes, increased nitric oxide synthase expression, and structural modifications in the peritoneum. J. Am. Soc. Nephrol. 12, 2146–2157 (2001).

    CAS  PubMed  Google Scholar 

  3. Williams, J. D. et al. Morphologic changes in the peritoneal membrane of patients with renal disease. J. Am. Soc. Nephrol. 13, 470–479 (2002).

    Google Scholar 

  4. Chung, S. H., Heimburger, O., Stenvinkel, P., Bergstrom, J. & Lindholm, B. Association between inflammation and changes in residual renal function and peritoneal transport rate during the first year of dialysis. Nephrol. Dial. Transplant. 16, 2240–2245 (2001).

    Article  CAS  Google Scholar 

  5. Davies, S. J. et al. Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription. Kidney Int. 67, 1609–1615 (2005).

    Article  CAS  Google Scholar 

  6. Noh, H. et al. Angiotensin II mediates high glucose-induced TGF-beta1 and fibronectin upregulation in HPMC through reactive oxygen species. Perit. Dial. Int. 25, 38–47 (2005).

    CAS  Google Scholar 

  7. Ha, H., Yu, M. R. & Lee, H. B. High glucose-induced PKC activation mediates TGF-beta 1 and fibronectin synthesis by peritoneal mesothelial cells. Kidney Int. 59, 463–470 (2001).

    Article  CAS  Google Scholar 

  8. [No authors listed] Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J. Am. Soc. Nephrol. 7, 198–207 (1996).

  9. Churchill, D. N. et al. Increased peritoneal membrane transport is associated with decreased patient and technique survival for continuous peritoneal dialysis patients. The Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J. Am. Soc. Nephrol. 9, 1285–1292 (1998).

    CAS  Google Scholar 

  10. Chung, S. H., Heimburger, O., Stenvinkel, P., Qureshi, A. R. & Lindholm, B. Association between residual renal function, inflammation and patient survival in new peritoneal dialysis patients. Nephrol. Dial. Transplant. 18, 590–597 (2003).

    Article  CAS  Google Scholar 

  11. Oh, K. H. et al. Baseline peritoneal solute transport rate is not associated with markers of systemic inflammation or comorbidity in incident Korean peritoneal dialysis patients. Nephrol. Dial. Transplant. 23, 2356–2364 (2008).

    Article  CAS  Google Scholar 

  12. Rumpsfeld, M., McDonald, S. P., Purdie, D. M., Collins, J. & Johnson, D. W. Predictors of baseline peritoneal transport status in Australian and New Zealand peritoneal dialysis patients. Am. J. Kidney Dis. 43, 492–501 (2004).

    Article  Google Scholar 

  13. Chung, S. H., Heimburger, O., Stenvinkel, P., Wang, T. & Lindholm, B. Influence of peritoneal transport rate, inflammation, and fluid removal on nutritional status and clinical outcome in prevalent peritoneal dialysis patients. Perit. Dial. Int. 23, 174–183 (2003).

    PubMed  Google Scholar 

  14. Lui, S. L. et al. Cefazolin plus netilmicin versus cefazolin plus ceftazidime for treating CAPD peritonitis: effect on residual renal function. Kidney Int. 68, 2375–2380 (2005).

    Article  CAS  Google Scholar 

  15. Shin, S. K. et al. Risk factors influencing the decline of residual renal function in continuous ambulatory peritoneal dialysis patients. Perit. Dial. Int. 19, 138–142 (1999).

    CAS  PubMed  Google Scholar 

  16. Badve, S. V. et al. Use of aminoglycosides for peritoneal dialysis-associated peritonitis does not affect residual renal function. Nephrol. Dial. Transplant. 27, 381–387 (2012).

    Article  CAS  Google Scholar 

  17. Baker, R. J., Senior, H., Clemenger, M. & Brown, E. A. Empirical aminoglycosides for peritonitis do not affect residual renal function. Am. J. Kidney Dis. 41, 670–675 (2003).

    Article  CAS  Google Scholar 

  18. Shemin, D., Maaz, D., St Pierre, D., Kahn, S. I. & Chazan, J. A. Effect of aminoglycoside use on residual renal function in peritoneal dialysis patients. Am. J. Kidney Dis. 34, 14–20 (1999).

    Article  CAS  Google Scholar 

  19. Han, S. H. et al. Reduced residual renal function is a risk of peritonitis in continuous ambulatory peritoneal dialysis patients. Nephrol. Dial. Transplant. 22, 2653–2658 (2007).

    Article  Google Scholar 

  20. Perez Fontan, M. et al. Peritonitis-related mortality in patients undergoing chronic peritoneal dialysis. Perit. Dial. Int. 25, 274–284 (2005).

    PubMed  Google Scholar 

  21. Szeto, C. C. et al. Independent effects of residual renal function and dialysis adequacy on nutritional status and patient outcome in continuous ambulatory peritoneal dialysis. Am. J. Kidney Dis. 34, 1056–1064 (1999).

    Article  CAS  Google Scholar 

  22. Girndt, M., Sester, M., Sester, U., Kaul, H. & Kohler, H. Defective expression of B7–2 (CD86) on monocytes of dialysis patients correlates to the uremia-associated immune defect. Kidney Int. 59, 1382–1389 (2001).

    Article  CAS  Google Scholar 

  23. Lim, W. H., Kireta, S., Leedham, E., Russ, G. R. & Coates, P. T. Uremia impairs monocyte and monocyte-derived dendritic cell function in hemodialysis patients. Kidney Int. 72, 1138–1148 (2007).

    Article  CAS  Google Scholar 

  24. Davies, S. J. Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int. 66, 2437–2445 (2004).

    Article  CAS  Google Scholar 

  25. Moist, L. M. et al. Predictors of loss of residual renal function among new dialysis patients. J. Am. Soc. Nephrol. 11, 556–564 (2000).

    CAS  PubMed  Google Scholar 

  26. Bajo, M. A. et al. Icodextrin effluent leads to a greater proliferation than glucose effluent of human mesothelial cells studied ex vivo. Perit. Dial. Int. 20, 742–747 (2000).

    CAS  PubMed  Google Scholar 

  27. Liberek, T. et al. Cell function and viability in glucose polymer peritoneal dialysis fluids. Perit. Dial. Int. 13, 104–111 (1993).

    CAS  PubMed  Google Scholar 

  28. Posthuma, N. et al. Peritoneal kinetics and mesothelial markers in CCPD using icodextrin for daytime dwell for two years. Perit. Dial. Int. 20, 174–180 (2000).

    CAS  Google Scholar 

  29. Nakao, A. et al. Effects of icodextrin peritoneal dialysis solution on the peritoneal membrane in the STZ-induced diabetic rat model with partial nephrectomy. Nephrol. Dial. Transplant. 25, 1479–1488 (2010).

    Article  CAS  Google Scholar 

  30. Takatori, Y. et al. Icodextrin increases technique survival rate in peritoneal dialysis patients with diabetic nephropathy by improving body fluid management: a randomized controlled trial. Clin. J. Am. Soc. Nephrol. 6, 1337–1344 (2011).

    Article  CAS  Google Scholar 

  31. Davies, S. J. et al. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J. Am. Soc. Nephrol. 14, 2338–2344 (2003).

    Article  CAS  Google Scholar 

  32. Davies, S. J. et al. Longitudinal relationships between fluid status, inflammation, urine volume and plasma metabolites of icodextrin in patients randomized to glucose or icodextrin for the long exchange. Nephrol. Dial. Transplant. 23, 2982–2988 (2008).

    Article  CAS  Google Scholar 

  33. Paniagua, R. et al. Icodextrin improves metabolic and fluid management in high and high-average transport diabetic patients. Perit. Dial. Int. 29, 422–432 (2009).

    CAS  PubMed  Google Scholar 

  34. Qi, H., Xu, C., Yan, H. & Ma, J. Comparison of icodextrin and glucose solutions for long dwell exchange in peritoneal dialysis: a meta-analysis of randomized controlled trials. Perit. Dial. Int. 31, 179–188 (2011).

    Article  CAS  Google Scholar 

  35. Jansen, M. A. et al. Predictors of the rate of decline of residual renal function in incident dialysis patients. Kidney Int. 62, 1046–1053 (2002).

    Article  Google Scholar 

  36. Nakamoto, H. et al. Role of the renin-angiotensin system in the pathogenesis of peritoneal fibrosis. Perit. Dial. Int. 28 (Suppl. 3), S83–S87 (2008).

    CAS  PubMed  Google Scholar 

  37. Mortier, S., Faict, D., Lameire, N. H. & De Vriese, A. S. Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int. 67, 1559–1565 (2005).

    Article  CAS  Google Scholar 

  38. Forbes, J. M., Cooper, M. E., Oldfield, M. D. & Thomas, M. C. Role of advanced glycation end products in diabetic nephropathy. J. Am. Soc. Nephrol. 14 (Suppl. 3), S254–S258 (2003).

    Article  CAS  Google Scholar 

  39. Justo, P., Sanz, A. B., Egido, J. & Ortiz, A. 3,4-Dideoxyglucosone-3-ene induces apoptosis in renal tubular epithelial cells. Diabetes 54, 2424–2429 (2005).

    Article  CAS  Google Scholar 

  40. Kim, C. D. et al. Effects of low glucose degradation products peritoneal dialysis fluid on the peritoneal fibrosis and vascularization in a chronic rat model. Ther. Apher. Dial. 11, 56–64 (2007).

    Article  CAS  Google Scholar 

  41. Kawanishi, K., Honda, K., Tsukada, M., Oda, H. & Nitta, K. Neutral solution low in glucose degradation products is associated with less peritoneal fibrosis and vascular sclerosis in patients receiving peritoneal dialysis. Perit. Dial. Int. http://dx.doi.org/10.3747/pdi.2011.00270.

  42. Williams, J. D. et al. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int. 66, 408–418 (2004).

    Article  Google Scholar 

  43. Kim, S. et al. Benefits of biocompatible PD fluid for preservation of residual renal function in incident CAPD patients: a 1-year study. Nephrol. Dial. Transplant. 24, 2899–2908 (2009).

    Article  Google Scholar 

  44. Montenegro, J. et al. Use of pure bicarbonate-buffered peritoneal dialysis fluid reduces the incidence of CAPD peritonitis. Nephrol. Dial. Transplant. 22, 1703–1708 (2007).

    Article  CAS  Google Scholar 

  45. Fan, S. L., Pile, T., Punzalan, S., Raftery, M. J. & Yaqoob, M. M. Randomized controlled study of biocompatible peritoneal dialysis solutions: effect on residual renal function. Kidney Int. 73, 200–206 (2008).

    Article  CAS  Google Scholar 

  46. Choi, H. Y. et al. The clinical usefulness of peritoneal dialysis fluids with neutral pH and low glucose degradation product concentration: an open randomized prospective trial. Perit. Dial. Int. 28, 174–182 (2008).

    CAS  PubMed  Google Scholar 

  47. Szeto, C. C. et al. Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products--a 1-year randomized control trial. Nephrol. Dial. Transplant. 22, 552–559 (2007).

    Article  CAS  Google Scholar 

  48. Johnson, D. W. et al. Effects of biocompatible versus standard fluid on peritoneal dialysis outcomes. J. Am. Soc. Nephrol. 23, 1097–1107 (2012).

    Article  Google Scholar 

  49. Haag-Weber, M. et al. Low-GDP fluid (Gambrosol trio) attenuates decline of residual renal function in PD patients: a prospective randomized study. Nephrol. Dial. Transplant. 25, 2288–2296 (2010).

    Article  CAS  Google Scholar 

  50. Kiribayashi, K. et al. Angiotensin II induces fibronectin expression in human peritoneal mesothelial cells via ERK1/2 and p38 MAPK. Kidney Int. 67, 1126–1135 (2005).

    Article  CAS  Google Scholar 

  51. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 1456–1462 (1993).

    Article  CAS  Google Scholar 

  52. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    Article  CAS  Google Scholar 

  53. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  Google Scholar 

  54. [No authors listed] Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Lancet 349, 1857–1863 (1997).

  55. Sauter, M. et al. ACE inhibitor and AT1-receptor blocker attenuate the production of VEGF in mesothelial cells. Perit. Dial. Int. 27, 167–172 (2007).

    CAS  PubMed  Google Scholar 

  56. Duman, S. et al. Does enalapril prevent peritoneal fibrosis induced by hypertonic (3.86%) peritoneal dialysis solution? Perit. Dial. Int. 21, 219–224 (2001).

    CAS  PubMed  Google Scholar 

  57. Duman, S., Sen, S., Duman, C. & Oreopoulos, D. G. Effect of valsartan versus lisinopril on peritoneal sclerosis in rats. Int. J. Artif. Organs 28, 156–163 (2005).

    Article  CAS  Google Scholar 

  58. Kolesnyk, I. et al. Impact of ACE inhibitors and AII receptor blockers on peritoneal membrane transport characteristics in long-term peritoneal dialysis patients. Perit. Dial. Int. 27, 446–453 (2007).

    CAS  Google Scholar 

  59. Kolesnyk, I., Noordzij, M., Dekker, F. W., Boeschoten, E. W. & Krediet, R. T. A positive effect of AII inhibitors on peritoneal membrane function in long-term PD patients. Nephrol. Dial. Transplant. 24, 272–277 (2009).

    Article  CAS  Google Scholar 

  60. Johnson, D. W. et al. Predictors of decline of residual renal function in new peritoneal dialysis patients. Perit. Dial. Int. 23, 276–283 (2003).

    PubMed  Google Scholar 

  61. Singhal, M. K. et al. Rate of decline of residual renal function in patients on continuous peritoneal dialysis and factors affecting it. Perit. Dial. Int. 20, 429–438 (2000).

    CAS  PubMed  Google Scholar 

  62. Li, P. K., Chow, K. M., Wong, T. Y., Leung, C. B. & Szeto, C. C. Effects of an angiotensin-converting enzyme inhibitor on residual renal function in patients receiving peritoneal dialysis. A randomized, controlled study. Ann. Intern. Med. 139, 105–112 (2003).

    Article  CAS  Google Scholar 

  63. Suzuki, H., Kanno, Y., Sugahara, S., Okada, H. & Nakamoto, H. Effects of an angiotensin II receptor blocker, valsartan, on residual renal function in patients on CAPD. Am. J. Kidney Dis. 43, 1056–1064 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. J. Nessim researched data for the article. Both authors made substantial contributions to discussion of content, writing the article and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Joanne M. Bargman.

Ethics declarations

Competing interests

S. J. Nessim declares an association with the following company: Baxter Healthcare (speaker honoraria). J. M. Bargman declares associations with the following companies: Amgen (speaker honoraria; consultant), Baxter Healthcare (speaker honoraria; consultant), DaVita Healthcare (speaker honoraria), Otsuka (speaker honoraria; consultant).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nessim, S., Bargman, J. The peritoneal–renal syndrome. Nat Rev Nephrol 9, 302–306 (2013). https://doi.org/10.1038/nrneph.2013.43

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.43

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing