Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapy for patients with CKD and low bone mineral density

Abstract

Patients with chronic kidney disease (CKD) have a high risk of bone fracture owing to their low bone mineral density, which resembles that of postmenopausal osteoporosis. However, the mineral and bone disorder associated with CKD (CKD–MBD) is more complex than osteoporosis and the same treatments might not be appropriate. In particular, vascular calcifications are strongly associated with CKD–MBD, and must be taken into consideration. Post hoc analyses of data from pivotal osteoporosis studies suggest that in patients with mild stage 3 CKD and normal parathyroid hormone (PTH), calcium and phosphate measurements, conventional medications for osteoporosis (such as raloxifene, bisphosphonates, teriparatide and denosumab) are effective at reducing fracture rates. However, for patients with stage 4–5 CKD, or those with abnormal PTH and mineral values, the available data are insufficient to determine whether these commonly used medications are effective against fractures. Moreover, all medications used to treat osteoporosis have known or potential adverse effects in patients with CKD. Medicines that increase bone formation by upregulating Wnt signalling have shown promise in patients with osteoporosis and might be used to treat CKD–MBD in the future, but off-target effects could limit their use in in this setting.

Key Points

  • Low bone density or fractures in patients with chronic kidney disease (CKD) differ from those with CKD and mineral bone disorder (MBD)

  • Long-term bisphosphonate therapy dramatically reduces bone formation, which could lead to adynamic bone disease

  • Raloxifene might offer some benefit in patients on haemodialysis, but this agent is only effective against vertebral fractures in patients with osteoporosis

  • Teriparatide has only been studied in a small number of patients with low parathyroid hormone levels

  • Fall prevention and exercise programmes should be incorporated into treatment strategies for patients with CKD–MBD

  • Further research on the safety and efficacy of bone strengthening drugs in patients with CKD is required—existing studies are small and do not provide adequate guidance for clinicians

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors that contribute to abnormal bone homeostasis in patients with chronic kidney disease.
Figure 2: Mineralizing surface (as measured by surface deposition of tetracycline in bone biopsy samples) in normal individuals, patients with osteoporosis, and changes in the mineralizing surface in patients receiving osteoporosis treatment.
Figure 3: Factors that affect vascular calcification.
Figure 4: Low bone turnover could result in a vicious cycle of bone disease in patients with CKD–MBD.
Figure 5: Factors that regulate FGF-23 in osteocytes.

Similar content being viewed by others

References

  1. Pendras, J. P. & Erickson, R. V. Hemodialysis: a successful therapy for chronic uremia. Ann. Intern. Med. 64, 293–311 (1966).

    Article  CAS  PubMed  Google Scholar 

  2. Fahrleitner-Pammer, A. et al. Bone markers predict cardiovascular events in chronic kidney disease. J. Bone Miner. Res. 23, 1850–1858 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Alem, A. M. et al. Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int. 58, 396–399 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Mitterbauer, C., Kramar, R. & Oberbauer, R. Age and sex are sufficient for predicting fractures occurring within 1 year of hemodialysis treatment. Bone 40, 516–521 (2007).

    Article  PubMed  Google Scholar 

  5. Jamal, S. A., Leiter, R. E., Jassal, V., Hamilton, C. J. & Bauer, D. C. Impaired muscle strength is associated with fractures in hemodialysis patients. Osteoporos. Int. 17, 1390–1397 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Dooley, A. C., Weiss, N. S. & Kestenbaum, B. Increased risk of hip fracture among men with CKD. Am. J. Kidney Dis. 51, 38–44 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Dukas, L., Schacht, E. & Stahelin, H. B. In elderly men and women treated for osteoporosis a low creatinine clearance of <65 ml/min is a risk factor for falls and fractures. Osteoporos. Int. 16, 1683–1690 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Ensrud, K. E. et al. Renal function and risk of hip and vertebral fractures in older women. Arch. Intern. Med. 167, 133–139 (2007).

    Article  PubMed  Google Scholar 

  9. LaCroix, A. Z. et al. Cystatin-C, renal function and incidence of hip fracture in postmenopausal women. J. Am. Soc. Geriat. 56, 1434–1441 (2008).

    Article  Google Scholar 

  10. Malluche, H. H., Mawad, H. W. & Monier-Faugere, M. C. Renal osteodystrophy in the first decade of the new millennium: analysis of 630 bone biopsies in black and white patients. J. Bone Miner. Res. 26, 1368–1376 (2011).

    Article  PubMed  Google Scholar 

  11. Cejka, D. et al. Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin. J. Am. Soc. Nephrol. 6, 877–882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lavi-Moshayoff, V., Wasserman, G., Meir, T., Silver, J. & Naveh-Many, T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am. J. Physiol. Renal Physiol. 299, F882–F889 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. KDIGO. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD–MBD). Kidney Int. Suppl. 113, S1–S130 (2009).

  14. Evolve Investigators. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N. Engl. J. Med. 367, 2482–2494 (2012).

  15. Klawansky, S. et al. Relationship between age, renal function and bone mineral density in the US population. Osteoporos. Int. 14, 570–576 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Hsu, C. Y., Cummings, S. R., McCulloch, C. E. & Chertow, G. M. Bone mineral density is not diminished by mild to moderate chronic renal insufficiency. Kidney Int. 61, 1814–1820 (2002).

    Article  PubMed  Google Scholar 

  17. Ott, S. M. Review article: bone density in patients with chronic kidney disease stages 4–5 Nephrology (Carlton) 14, 395–403 (2009).

    Article  Google Scholar 

  18. Miller, P. D. et al. Safety and efficacy of risedronate in patients with age-related reduced renal function as estimated by the Cockcroft and Gault method: a pooled analysis of nine clinical trials. J. Bone Miner. Res. 20, 2105–2115 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Jamal, S. A. et al. Alendronate treatment in women with normal to severely impaired renal function: an analysis of the Fracture Intervention Trial. J. Bone Miner. Res. 22, 503–508 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Ishani, A., Blackwell, T., Jamal, S. A., Cummings, S. R. & Ensrud, K. E. The effect of raloxifene treatment in postmenopausal women with CKD. J. Am. Soc. Nephrol. 19, 1430–1438 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miller, P. D., Schwartz, E. N., Chen, P., Misurski, D. A. & Krege, J. H. Teriparatide in postmenopausal women with osteoporosis and mild or moderate renal impairment. Osteoporos. Int. 18, 59–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Anderson, G. L. et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women's Health Initiative randomized controlled trial. JAMA 291, 1701–1712 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Rossouw, J. E. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA 288, 321–333 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Manson, J. E. et al. Estrogen therapy and coronary-artery calcification. N. Engl. J. Med. 356, 2591–2602 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Matuszkiewicz-Rowinska, J. et al. The benefits of hormone replacement therapy in pre-menopausal women with oestrogen deficiency on haemodialysis. Nephrol. Dial. Transplant. 14, 1238–1243 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Stehman-Breen, C., Anderson, G., Gibson, D., Kausz, A. T. & Ott, S. Pharmacokinetics of oral micronized beta-estradiol in postmenopausal women receiving maintenance hemodialysis. Kidney Int. 64, 290–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Albaaj, F. et al. Prevalence of hypogonadism in male patients with renal failure. Postgrad. Med. J. 82, 693–696 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guevara, A. et al. Serum gonadotropin and testosterone levels in uremic males undergoing intermittent dialysis. Metabolism 18, 1062–1066 (1969).

    Article  CAS  PubMed  Google Scholar 

  29. Ott, S. M., Oleksik, A., Lu, Y., Harper, K. & Lips, P. Bone histomorphometric and biochemical marker results of a 2-year placebo-controlled trial of raloxifene in postmenopausal women. J. Bone Miner. Res. 17, 341–348 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Cummings, S. R. et al. The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. Multiple Outcomes of Raloxifene Evaluation. JAMA 281, 2189–2197 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Zanchetta, J. R. & Bogado, C. E. Raloxifene reverses bone loss in postmenopausal women with mild asymptomatic primary hyperparathyroidism. J. Bone Miner. Res. 16, 189–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Eriguchi, R., Umakoshi, J., Miura, S. & Sato, Y. Raloxifene ameliorates progressive bone loss in postmenopausal dialysis patients with controlled parathyroid hormone levels. Clin. Nephrol. 72, 423–429 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Melamed, M. L. et al. Raloxifene, a selective estrogen receptor modulator, is renoprotective: a post-hoc analysis. Kidney Int. 79, 241–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Hernandez, E. et al. Effects of raloxifene on bone metabolism and serum lipids in postmenopausal women on chronic hemodialysis. Kidney Int. 63, 2269–2274 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Tanaka, M. et al. Effects of raloxifene on bone mineral metabolism in postmenopausal Japanese women on hemodialysis. Ther. Apher. Dial. 15 (Suppl. 1), 62–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Bilezikian, J. P. Efficacy of bisphosphonates in reducing fracture risk in postmenopausal osteoporosis. Am. J. Med. 122, S14–S21 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Chavassieux, P. M. et al. Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J. Clin. Invest. 100, 1475–1480 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eriksen, E. F., Melsen, F., Sod, E., Barton, I. & Chines, A. Effects of long-term risedronate on bone quality and bone turnover in women with postmenopausal osteoporosis. Bone 31, 620–625 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Boivin, G. & Meunier, P. J. Effects of bisphosphonates on matrix mineralization. J. Musculoskelet. Neuronal. Interact. 2, 538–543 (2002).

    CAS  PubMed  Google Scholar 

  40. Borah, B. et al. Long-term risedronate treatment normalizes mineralization and continues to preserve trabecular architecture: sequential triple biopsy studies with micro-computed tomography. Bone 39, 345–352 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Bauer, D. C. et al. Pretreatment levels of bone turnover and the antifracture efficacy of alendronate: the fracture intervention trial. J. Bone Miner. Res. 21, 292–299 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Whyte, M. P. et al. Enzyme-replacement therapy in life-threatening hypophosphatasia. N. Engl. J. Med. 366, 904–913 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Russell, R. G., Watts, N. B., Ebetino, F. H. & Rogers, M. J. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos. Int. 19, 733–759 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Gibbs, C. J., Aaron, J. E. & Peacock, M. Osteomalacia in Paget's disease treated with short term, high dose sodium etidronate. Br. Med. J. (Clin. Res. Ed.) 292, 1227–1229 (1986).

    Article  CAS  Google Scholar 

  45. Otero, J. E. et al. Severe skeletal toxicity from protracted etidronate therapy for generalized arterial calcification of infancy. J. Bone Miner. Res. 28, 419–430 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Recker, R. R. et al. Effects of intravenous zoledronic acid once yearly on bone remodeling and bone structure. J. Bone Miner. Res. 23, 6–16 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Dell, R. M. et al. Incidence of atypical nontraumatic diaphyseal fractures of the femur. J. Bone Miner. Res. 27, 2544–2550 (2012).

    Article  PubMed  Google Scholar 

  48. Barreto, F. C. et al. Osteoporosis in hemodialysis patients revisited by bone histomorphometry: a new insight into an old problem. Kidney Int. 69, 1852–1857 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Chavassieux, P. et al. Bone histomorphometry of transiliac paired bone biopsies after 6 or 12 months of treatment with oral strontium ranelate in 387 osteoporotic women. Randomized comparison to alendronate. J. Bone Miner. Res. http://dx.doi.org/10.1002/jbmr.2074.

  50. Perazella, M. A. & Markowitz, G. S. Bisphosphonate nephrotoxicity. Kidney Int. 74, 1385–1393 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Lin, J. H. Bisphosphonates: a review of their pharmacokinetic properties. Bone 18, 75–85 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Buttazzoni, M. et al. Elimination and clearance of pamidronate by haemodialysis. Nephrology (Carlton) 11, 197–200 (2006).

    Article  CAS  Google Scholar 

  53. Amerling, R., Harbord, N. B., Pullman, J. & Feinfeld, D. A. Bisphosphonate use in chronic kidney disease: association with adynamic bone disease in a bone histology series. Blood Purif. 29, 293–299 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Lu, K. C., Yeung, L. K., Lin, S. H., Lin, Y. F. & Chu, P. Acute effect of pamidronate on PTH secretion in postmenopausal hemodialysis patients with secondary hyperparathyroidism. Am. J. Kidney Dis. 42, 1221–1227 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Torregrosa, J. V., Moreno, A., Mas, M., Ybarra, J. & Fuster, D. Usefulness of pamidronate in severe secondary hyperparathyroidism in patients undergoing hemodialysis. Kidney Int. Suppl. 85, S88–S90 (2003).

    Article  CAS  Google Scholar 

  56. Bergner, R. et al. Treatment of reduced bone density with ibandronate in dialysis patients. J. Nephrol. 21, 510–516 (2008).

    CAS  PubMed  Google Scholar 

  57. Mitsopoulos, E. et al. Impact of long-term cinacalcet, ibandronate or teriparatide therapy on bone mineral density of hemodialysis patients: a pilot study. Am. J. Nephrol. 36, 238–244 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Toussaint, N. D., Lau, K. K., Strauss, B. J., Polkinghorne, K. R. & Kerr, P. G. Effect of alendronate on vascular calcification in CKD stages 3 and 4: a pilot randomized controlled trial. Am. J. Kidney Dis. 56, 57–68 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Giachelli, C. M. The emerging role of phosphate in vascular calcification. Kidney Int. 75, 890–897 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shanahan, C. M., Crouthamel, M. H., Kapustin, A. & Giachelli, C. M. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ. Res. 109, 697–711 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Silberstein, E. B., Clark, R. A. & DeLong, S. Clinical and radiographic correlates of femoral artery visualization on bone scan. Int. J. Rad. Appl. Instrum. B 16, 709–713 (1989).

    Article  CAS  PubMed  Google Scholar 

  62. Tamura, K. et al. Prevention of aortic calcification by etidronate in the renal failure rat model. Eur. J. Pharmacol. 558, 159–166 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Ariyoshi, T., Eishi, K., Sakamoto, I., Matsukuma, S. & Odate, T. Effect of etidronic acid on arterial calcification in dialysis patients. Clin. Drug Investig. 26, 215–222 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Tankó, L. B., Qin, G., Alexandersen, P., Bagger, Y. Z. & Christiansen, C. Effective doses of ibandronate do not influence the 3-year progression of aortic calcification in elderly osteoporotic women. Osteoporos. Int. 16, 184–190 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Hill, J. A. et al. Progression of coronary artery calcification in patients taking alendronate for osteoporosis. Acad. Radiol. 9, 1148–1152 (2002).

    Article  PubMed  Google Scholar 

  66. Harris, S. T. Bisphosphonate therapy and vascular calcification. JAMA 283, 1424–1425 (2000).

    Article  Google Scholar 

  67. Black, D. M. et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N. Engl. J. Med. 356, 1809–1822 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Schousboe, J. T. et al. Abdominal aortic calcification detected on lateral spine images from a bone densitometer predicts incident myocardial infarction or stroke in older women. J. Bone Miner. Res. 23, 409–416 (2008).

    Article  PubMed  Google Scholar 

  69. Kang, J. H., Keller, J. J. & Lin, H. C. Bisphosphonates reduced the risk of acute myocardial infarction: a 2-year follow-up study. Osteoporos. Int. 24, 271–277 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Lu, P. Y., Hsieh, C. F., Tsai, Y. W. & Huang, W. F. Alendronate and raloxifene use related to cardiovascular diseases: differentiation by different dosing regimens of alendronate. Clin. Ther. 33, 1173–1179 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Vestergaard, P. Acute myocardial infarction and atherosclerosis of the coronary arteries in patients treated with drugs against osteoporosis: calcium in the vessels and not the bones? Calcif. Tissue Int. 90, 22–29 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Wolfe, F. et al. Bisphosphonate use is associated with reduced risk of myocardial infarction in patients with rheumatoid arthritis. J. Bone Miner. Res. 28, 984–991 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Hartle, J. E. et al. Bisphosphonate therapy, death, and cardiovascular events among female patients with CKD: a retrospective cohort study. Am. J. Kidney Dis. 59, 636–644 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. London, G. M. et al. Arterial calcifications and bone histomorphometry in end-stage renal disease. J. Am. Soc. Nephrol. 15, 1943–1951 (2004).

    Article  PubMed  Google Scholar 

  75. Tomiyama, C. et al. Coronary calcification is associated with lower bone formation rate in CKD patients not yet in dialysis treatment. J. Bone Miner. Res. 25, 499–504 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Barreto, D. V. et al. Association of changes in bone remodeling and coronary calcification in hemodialysis patients: a prospective study. Am. J. Kidney Dis. 52, 1139–1150 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Asci, G. et al. The link between bone and coronary calcifications in CKD-5 patients on haemodialysis. Nephrol. Dial. Transplant. 26, 1010–1015 (2011).

    Article  PubMed  Google Scholar 

  78. Cannata-Andia, J. B., Roman-Garcia, P. & Hruska, K. The connections between vascular calcification and bone health. Nephrol. Dial. Transplant. 26, 3429–3436 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ott, S. M. Bisphosphonate safety and efficacy in chronic kidney disease. Kidney Int. 82, 833–835 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Cejka, D., Kodras, K., Bader, T. & Haas, M. Treatment of hemodialysis-associated adynamic bone disease with teriparatide (PTH(1–34): a pilot study. Kidney Blood Press. Res. 33, 221–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Reid, I. et al. Effects of denosumab on bone histomorphometry: the freedom and stand studies. J. Bone Miner. Res. 25, 2256–2265 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Bone, H. G. et al. Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J. Clin. Endocrinol. Metab. 96, 972–980 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Jamal, S. A. et al. Effects of denosumab on fracture and bone mineral density by level of kidney function. J. Bone Miner. Res. 26, 1829–1835 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Block, G. A., Bone, H. G., Fang, L., Lee, E. & Padhi, D. A single-dose study of denosumab in patients with various degrees of renal impairment. J. Bone Miner. Res. 27, 1471–1479 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. McCormick, B. B., Davis, J. & Burns, K. D. Severe hypocalcemia following denosumab injection in a hemodialysis patient. Am. J. Kidney Dis. 60, 626–628 (2012).

    Article  PubMed  Google Scholar 

  86. Ungprasert, P., Cheungpasitporn, W., Srivali, N., Kittanamongkolchai, W. & Bischof, E. F. Life-threatening hypocalcemia associated with denosumab in a patient with moderate renal insufficiency. Am. J. Emerg. Med. 31, 756.e1–756.e2 (2013).

    Google Scholar 

  87. Qi, W. X., Tang, L. N., He, A. N., Yao, Y. & Shen, Z. Risk of osteonecrosis of the jaw in cancer patients receiving denosumab: a meta-analysis of seven randomized controlled trials. Int. J. Clin. Oncol. http://dx.doi.org/10.1007/s10147-013-0561-0566.

  88. Lam, S. & Zouzias, K. Strontium ranelate for the management of osteoporosis. Consult. Pharm. 23, 531–537 (2008).

    Article  PubMed  Google Scholar 

  89. Oste, L. et al. Time-evolution and reversibility of strontium-induced osteomalacia in chronic renal failure rats. Kidney Int. 67, 920–930 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Yang, Q., Jian, J., Abramson, S. B. & Huang, X. Inhibitory effects of iron on bone morphogenetic protein 2-induced osteoblastogenesis. J. Bone Miner. Res. 26, 1188–1196 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Schrooten, I. et al. Dose-dependent effects of strontium on bone of chronic renal failure rats. Kidney Int. 63, 927–935 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. D'Haese, P. C. et al. Increased bone strontium levels in hemodialysis patients with osteomalacia. Kidney Int. 57, 1107–1114 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Cohen-Solal, M. Strontium overload and toxicity: impact on renal osteodystrophy. Nephrol. Dial. Transplant. 17 (Suppl. 2), 30–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Doublier, A. et al. Distribution of strontium and mineralization in iliac bone biopsies from osteoporotic women treated long-term with strontium ranelate. Eur. J. Endocrinol. 165, 469–476 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. O'Donnell, S., Cranney, A., Wells, G. A., Adachi, J. D. & Reginster, J Y. Strontium ranelate for preventing and treating postmenopausal osteoporosis. Cochrane Database of Systematic Reviews, Issue 3. Art. No.: CD005326. http://dx.doi.org/10.1002/14651858.CD005326.pub2.

  96. Sabbagh, Y. et al. Repression of osteocyte Wnt/beta-catenin signaling is an early event in the progression of renal osteodystrophy. J. Bone Miner. Res. 27, 1757–1772 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Moyer, V. A. Vitamin D and calcium supplementation to prevent fractures in adults: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 158, 691–696 (2013).

    PubMed  Google Scholar 

  98. Coburn, J. W., Mischel, M. G., Goodman, W. G. & Salusky, I. B. Calcium citrate markedly enhances aluminum absorption from aluminum hydroxide. Am. J. Kidney Dis. 17, 708–711 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Moorthi, R. N., Kandula, P. & Moe, S. M. Optimal vitamin D, calcitriol, and vitamin D analog replacement in chronic kidney disease: to D or not to D: that is the question. Curr. Opin. Nephrol. Hypertens. 20, 354–359 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Tentori, F. et al. Mortality risk among hemodialysis patients receiving different vitamin D analogs. Kidney Int. 70, 1858–1865 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Institute of Medicine Standing Committee. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride (National Academies Press, 1997).

  102. West, S. L., Jamal, S. A. & Lok, C. E. Tests of neuromuscular function are associated with fractures in patients with chronic kidney disease. Nephrol. Dial. Transplant. 27, 2384–2388 (2012).

    Article  PubMed  Google Scholar 

  103. Howe, T. E. et al. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database of Systematic Reviews, Issue 7. Art. No.: CD000333. http://dx.doi.org/10.1002/14651858.CD000333.pub2.

  104. Li, M., Tomlinson, G., Naglie, G., Cook, W. L. & Jassal, S. V. Geriatric comorbidities, such as falls, confer an independent mortality risk to elderly dialysis patients. Nephrol. Dial. Transplant. 23, 1396–1400 (2008).

    Article  PubMed  Google Scholar 

  105. Desmet, C., Beguin, C., Swine, C. & Jadoul, M. Falls in hemodialysis patients: prospective study of incidence, risk factors, and complications. Am. J. Kidney Dis. 45, 148–153 (2005).

    Article  PubMed  Google Scholar 

  106. Robling, A. G. et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of sost/sclerostin. J. Biol. Chem. 283, 5866–5875 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Jackson, A. et al. Gene array analysis of Wnt-regulated genes in C3H10T1/2 cells. Bone 36, 585–598 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. van Lierop, A. H. et al. Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J. Bone Miner. Res. 26, 2804–2811 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Thambiah, S. et al. Circulating sclerostin and dickkopf-1 (DKK1) in predialysis chronic kidney disease (CKD): relationship with bone density and arterial stiffness. Calcif. Tissue Int. 90, 473–480 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Atkins, G. J. et al. Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism. J. Bone Miner. Res. 26, 1425–1436 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Rhee, Y. et al. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 49, 636–643 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ryan, Z. C. et al. Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proc. Natl Acad. Sci. USA 110, 6199–6204 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. McClung, M. R., Grauer, A., Boonen, S. & Brown, J. P. Inhibition of sclerostin with AMG 785 in postmenopausal women with low bone mineral density: phase 2 trial results [abstract 1052, online]. http://www.asbmr.org/Meetings/AnnualMeeting/AbstractDetail.aspx?aid=9fa27a06-d9b5-4429-a95f-517048985173 (2012).

  114. Hudson, B., Loots, G., Hum, N. & Thomas, C. SOST inhibits prostate cancer invasion [abstract 1086, online]. http://www.asbmr.org/Meetings/AnnualMeeting/AbstractDetail.aspx?aid=1ae8843c-167d-4945-9cc8-cc8398018b96 (2012).

  115. Shalhoub, V. et al. Chondro/osteoblastic and cardiovascular gene modulation in human artery smooth muscle cells that calcify in the presence of phosphate and calcitriol or paricalcitol. J. Cell Biochem. 111, 911–921 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Roman-Garcia, P. et al. High phosphorus diet induces vascular calcification, a related decrease in bone mass and changes in the aortic gene expression. Bone 46, 121–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, D., Dai, C., Li, Y. & Liu, Y. Canonical Wnt/beta-catenin signaling mediates transforming growth factor-beta1-driven podocyte injury and proteinuria. Kidney Int. 80, 1159–1169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. He, W. et al. Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J. Am. Soc. Nephrol. 20, 765–776 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ix, J. H. et al. Fibroblast growth factor-23 and death, heart failure, and cardiovascular events in community-living individuals: CHS (Cardiovascular Health Study). J. Am. Coll. Cardiol. 60, 200–207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Young, A. et al. Bone and mineral metabolism and fibroblast growth factor 23 levels after kidney donation. Am. J. Kidney Dis. 59, 761–769 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Siomou, E. et al. Serum osteoprotegerin, RANKL and fibroblast growth factor-23 in children with chronic kidney disease. Pediatr. Nephrol. 26, 1105–1114 (2011).

    Article  PubMed  Google Scholar 

  122. FDA. Drugs@FDA [online].

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

S. M. Ott has acted as a consultant for the Group Health Research Institute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ott, S. Therapy for patients with CKD and low bone mineral density. Nat Rev Nephrol 9, 681–692 (2013). https://doi.org/10.1038/nrneph.2013.182

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.182

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing