Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The primary glomerulonephritides: a systems biology approach

Abstract

Our understanding of the pathogenesis of most primary glomerular diseases, including IgA nephropathy, membranous nephropathy and focal segmental glomerulosclerosis, is limited. Advances in molecular technology now permit genome-wide, high-throughput characterization of genes and gene products from biological samples. Comprehensive examinations of the genome, transcriptome, proteome and metabolome (collectively known as omics analyses), have been applied to the study of IgA nephropathy, membranous nephropathy and focal segmental glomerulosclerosis in both animal models and human patients. However, most omics studies of primary glomerular diseases, with the exception of large genomic studies, have been limited by inadequate sample sizes and the lack of kidney-specific data sets derived from kidney biopsy samples. Collaborative efforts to develop a standardized approach for prospective recruitment of patients, scheduled monitoring of clinical outcomes, and protocols for sampling of kidney tissues will be instrumental in uncovering the mechanisms that drive these diseases. Integration of molecular data sets with the results of clinical and histopathological studies will ultimately enable these diseases to be characterized in a comprehensive and systematic manner, and is expected to improve the diagnosis and treatment of these diseases.

Key Points

  • Novel systems biology techniques that permit comprehensive molecular characterization of biological samples are improving our understanding of the molecular basis underlying primary glomerular diseases

  • Large-scale genomic studies of glomerular diseases have identified genetic loci that are associated with the development of these diseases and have enriched our understanding of their pathogenesis

  • Several novel monogenic forms of focal segmental glomerulosclerosis have been identified, which has improved the classification of hereditary and spontaneous variants of this disease and could potentially influence therapeutic decisions

  • Polymorphisms in APOL1 that increase the risk of developing focal segmental glomerulosclerosis and HIV-associated nephropathy have been identified in African American populations

  • Clinical application of the findings generated from systems-biology-based analysis is currently limited

  • Collaborative efforts for recruiting patients, monitoring clinical outcomes and developing standardized protocols for kidney tissue sampling, are needed to study rare primary glomerular diseases

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sources of biological material for use in 'omics' studies of primary glomerulonephritides.

Similar content being viewed by others

References

  1. United States Renal Data System. 2012 Atlas of CKD and ESRD [online], (2012).

  2. Zuo, L. & Wang, M. Current burden and probable increasing incidence of ESRD in China. Clin. Nephrol. 74 (Suppl. 1), S20–S22 (2010).

    PubMed  Google Scholar 

  3. Greenbaum, L. A., Benndorf, R. & Smoyer, W. E. Childhood nephrotic syndrome—current and future therapies. Nat. Rev. Nephrol. 8, 445–458 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. He, J. C., Chuang, P. Y., Ma'ayan, A. & Iyengar, R. Systems biology of kidney diseases. Kidney Int. 81, 22–39 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Keller, B. J., Martini, S., Sedor, J. R. & Kretzler, M. A systems view of genetics in chronic kidney disease. Kidney Int. 81, 14–21 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Komorowsky, C. V., Brosius, F. C. 3rd, Pennathur, S. & Kretzler, M. Perspectives on systems biology applications in diabetic kidney disease. J. Cardiovasc. Transl. Res. 5, 491–508 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jim, B., Santos, J., Spath, F. & Cijiang He, J. Biomarkers of diabetic nephropathy, the present and the future. Curr. Diabetes Rev. 8, 317–328 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Starkey, J. M. & Tilton, R. G. Proteomics and systems biology for understanding diabetic nephropathy. J. Cardiovasc. Transl. Res. 5, 479–490 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hildebrandt, F. Genetic kidney diseases. Lancet 375, 1287–1295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heeringa, S. F. et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Invest. 121, 2013–2024 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mele, C. et al. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N. Engl. J. Med. 365, 295–306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sanna-Cherchi, S. et al. Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome. Kidney Int. 80, 389–396 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. De Spiegelaere, W. et al. Quantitative mRNA expression analysis in kidney glomeruli using microdissection techniques. Histol. Histopathol. 26, 267–275 (2011).

    CAS  PubMed  Google Scholar 

  14. Cohen, C. D., Frach, K., Schlondorff, D. & Kretzler, M. Quantitative gene expression analysis in renal biopsies: a novel protocol for a high-throughput multicenter application. Kidney Int. 61, 133–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Gadegbeku, C. A. et al. Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int. 83, 749–756 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Compendia Bioscience & Personalized Molecular Nephrology Research Laboratory. Nephromine [online], (2012).

  17. Zurbig, P. et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes 61, 3304–3313 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mullen, W., Delles, C. & Mischak, H. Urinary proteomics in the assessment of chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 20, 654–661 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Thongboonkerd, V. Biomarker discovery in glomerular diseases using urinary proteomics. Proteomics Clin. Appl. 2, 1413–1421 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Portilla, D., Schnackenberg, L. & Beger, R. D. Metabolomics as an extension of proteomic analysis: study of acute kidney injury. Semin. Nephrol. 27, 609–620 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wishart, D. S. Metabolomics: a complementary tool in renal transplantation. Contrib. Nephrol. 160, 76–87 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Hirayama, A. et al. Metabolic profiling reveals new serum biomarkers for differentiating diabetic nephropathy. Anal. Bioanal. Chem. 404, 3101–3109 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Donovan, M. J., Costa, J. & Cordon-Cardo, C. Systems pathology: a paradigm shift in the practice of diagnostic and predictive pathology. Cancer 115, 3078–3084 (2009).

    Article  PubMed  Google Scholar 

  24. Lai, K. N. Pathogenesis of IgA nephropathy. Nat. Rev. Nephrol. 8, 275–283 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Feehally, J. et al. HLA has strongest association with IgA nephropathy in genome-wide analysis. J. Am. Soc. Nephrol. 21, 1791–1797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gharavi, A. G. et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat. Genet. 43, 321–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu, X. Q. et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat. Genet. 44, 178–182 (2012).

    Article  CAS  Google Scholar 

  28. Yang, C. et al. Genome-wide association study identifies TNFSF13 as a susceptibility gene for IgA in a South Chinese population in smokers. Immunogenetics 64, 747–753 (2012).

    Article  PubMed  Google Scholar 

  29. Cox, S. N. et al. Altered modulation of Wnt-β-catenin and PI3K/Akt pathways in IgA nephropathy. Kidney Int. 78, 396–407 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Preston, G. A. et al. Gene expression profiles of circulating leukocytes correlate with renal disease activity in IgA nephropathy. Kidney Int. 65, 420–430 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Woo, K. T. et al. Urotensin 2 and retinoic acid receptor α (RARA) gene expression in IgA nephropathy. Ann. Acad. Med. Singapore 39, 705–709 (2010).

    PubMed  Google Scholar 

  32. Reich, H. N. et al. A molecular signature of proteinuria in glomerulonephritis. PLoS ONE 5, e13451 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tokunaga, K. et al. Insulin-like growth factor binding protein-1 levels are increased in patients with IgA nephropathy. Biochem. Biophys. Res. Commun. 399, 144–149 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Flyvbjerg, A. Role of growth hormone, insulin-like growth factors (IGFs) and IGF-binding proteins in the renal complications of diabetes. Kidney Int. Suppl. 60, S12–S19 (1997).

    CAS  PubMed  Google Scholar 

  35. Doublier, S. et al. Glomerulosclerosis in mice transgenic for human insulin-like growth factor-binding protein-1. Kidney Int. 57, 2299–2307 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Weber, J. A. et al. The microRNA spectrum in 12 body fluids. Clin. Chem. 56, 1733–1741 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Patnaik, S. K., Mallick, R. & Yendamuri, S. Detection of microRNAs in dried serum blots. Anal. Biochem. 407, 147–149 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, J. Y., Yong, T. Y., Michael, M. Z. & Gleadle, J. M. Review: the role of microRNAs in kidney disease. Nephrology (Carlton) 15, 599–608 (2010).

    Article  CAS  Google Scholar 

  39. Kato, M., Arce, L. & Natarajan, R. MicroRNAs and their role in progressive kidney diseases. Clin. J. Am. Soc. Nephrol. 4, 1255–1266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, G. et al. Expression of microRNAs in the urinary sediment of patients with IgA nephropathy. Dis. Markers 28, 79–86 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang, G. et al. Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy. Dis. Markers 30, 171–179 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Serino, G., Sallustio, F., Cox, S. N., Pesce, F. & Schena, F. P. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J. Am. Soc. Nephrol. 23, 814–824 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Park, M. R. et al. Establishment of a 2D human urinary proteomic map in IgA nephropathy. Proteomics 6, 1066–1076 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Yokota, H. et al. Absence of increased α1-microglobulin in IgA nephropathy proteinuria. Mol. Cell Proteomics 6, 738–744 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Haubitz, M. et al. Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int. 67, 2313–2320 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. He, Q. et al. Urinary proteome analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with magnetic beads for identifying the pathologic presentation of clinical early IgA nephropathy. J. Biomed. Nanotechnol. 8, 133–139 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Rocchetti, M. T. et al. Urine protein profile of IgA nephropathy patients may predict the response to ACE-inhibitor therapy. Proteomics 8, 206–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Maisonneuve, P. et al. Distribution of primary renal diseases leading to end-stage renal failure in the United States, Europe, and Australia/New Zealand: results from an international comparative study. Am. J. Kidney Dis. 35, 157–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Kerjaschki, D. & Farquhar, M. G. The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc. Natl Acad. Sci. USA 79, 5557–5561 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Beck, L. H. Jr et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361, 11–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stanescu, H. C. et al. Risk HLA-DQA1 and PLA2R1 alleles in idiopathic membranous nephropathy. N. Engl. J. Med. 364, 616–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Hauser, P. V. et al. Microarray and bioinformatics analysis of gene expression in experimental membranous nephropathy. Nephron Exp. Nephrol. 112, e43–e58 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Ngai, H. H. et al. Serial changes in urinary proteome profile of membranous nephropathy: implications for pathophysiology and biomarker discovery. J. Proteome Res. 5, 3038–3047 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, L. et al. Autophagy can repair endoplasmic reticulum stress damage of the passive Heymann nephritis model as revealed by proteomics analysis. J. Proteomics 75, 3866–3876 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Beck, L. H. Jr et al. Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J. Am. Soc. Nephrol. 22, 1543–1550 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qin, W. et al. Anti-phospholipase A2 receptor antibody in membranous nephropathy. J. Am. Soc. Nephrol. 22, 1137–1143 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cravedi, P., Ruggenenti, P. & Remuzzi, G. Circulating anti-PLA2R autoantibodies to monitor immunological activity in membranous nephropathy. J. Am. Soc. Nephrol. 22, 1400–1402 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Gao, X. et al. Systematic variations associated with renal disease uncovered by parallel metabolomics of urine and serum. BMC Syst. Biol. 6 (Suppl. 1), S14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kitiyakara, C., Kopp, J. B. & Eggers, P. Trends in the epidemiology of focal segmental glomerulosclerosis. Semin. Nephrol. 23, 172–182 (2003).

    Article  PubMed  Google Scholar 

  60. D'Agati, V. D., Kaskel, F. J. & Falk, R. J. Focal segmental glomerulosclerosis. N. Engl. J. Med. 365, 2398–2411 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Thomas, D. B. et al. Clinical and pathologic characteristics of focal segmental glomerulosclerosis pathologic variants. Kidney Int. 69, 920–926 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. D'Agati, V. Pathologic classification of focal segmental glomerulosclerosis. Semin. Nephrol. 23, 117–134 (2003).

    Article  PubMed  Google Scholar 

  63. Lowik, M. M., Groenen, P. J., Levtchenko, E. N., Monnens, L. A. & van den Heuvel, L. P. Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis—a review. Eur. J. Pediatr. 168, 1291–1304 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brown, E. J. et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat. Genet. 42, 72–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Boyer, O. et al. INF2 mutations in Charcot–Marie–Tooth disease with glomerulopathy. N. Engl. J. Med. 365, 2377–2388 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Gharavi, A. G. et al. Mapping a locus for susceptibility to HIV-1-associated nephropathy to mouse chromosome 3. Proc. Natl Acad. Sci. USA 101, 2488–2493 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kopp, J. B. et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat. Genet. 40, 1175–1184 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kao, W. H. et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat. Genet. 40, 1185–1192 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Ghiggeri, G. M. et al. Genetics, clinical and pathological features of glomerulonephritis associated with mutations of nonmuscle myosin IIA (Fechtner syndrome). Am. J. Kidney Dis. 41, 95–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Sekine, T. et al. Patients with Epstein–Fechtner syndromes owing to MYH9 R702 mutations develop progressive proteinuric renal disease. Kidney Int. 78, 207–214 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kanji, Z. et al. Genetic variation in APOL1 associates with younger age at hemodialysis initiation. J. Am. Soc. Nephrol. 22, 2091–2097 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kopp, J. B. et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J. Am. Soc. Nephrol. 22, 2129–2137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Johnstone, D. B. et al. APOL1 null alleles from a rural village in India do not correlate with glomerulosclerosis. PLoS ONE 7, e51546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hodgin, J. B. et al. A molecular profile of focal segmental glomerulosclerosis from formalin-fixed, paraffin-embedded tissue. Am. J. Pathol. 177, 1674–1686 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Berger, S. I. & Iyengar, R. Role of systems pharmacology in understanding drug adverse events. Wiley Interdiscip. Rev. Syst. Biol. Med. 3, 129–135 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Zhao, S. & Iyengar, R. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol. 52, 505–521 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jin, Y. et al. A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. Nat. Med. 18, 580–588 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lamb, J. et al. The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Zhong, Y. et al. Renoprotective effect of combined inhibition of angiotensin-converting enzyme and histone deacetylase. J. Am. Soc. Nephrol. 24, 801–811 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S. Jiang, Z.-H. Liu and J. C. He are supported by Chinese 973 fund 2012CB517601NIH. J. C. He is supported by NIH grant numbers 1R01DK088541, 1R01DK078897, P01DK56492 and 1RC4DK090860, and a Veterans Administration Merit Award; P. Y. Chuang is supported by NIH grant number 5K08DK082760.

Author information

Authors and Affiliations

Authors

Contributions

S. Jiang, P. Y. Chuang, Z.-H. Liu and J. C. He contributed equally to writing the article. Z.-H. Liu and J. C. He also reviewed and edited the manuscript before submission. All authors contributed to researching data for the article and discussions of its content.

Corresponding author

Correspondence to John C. He.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, S., Chuang, P., Liu, ZH. et al. The primary glomerulonephritides: a systems biology approach. Nat Rev Nephrol 9, 500–512 (2013). https://doi.org/10.1038/nrneph.2013.129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing