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CORRESPONDENCE

We thank Fujian Zhang and colleagues for 
their interesting comment (The Drosophila 
nephrocyte has a glomerular filtration 
system. Nat. Rev. Nephrol., 12 August 2014; 
doi:10.1038/nrneph.2012.290‑c1)1 on our 
Review (Renal progenitors: an evolution‑
ary conserved strategy for kidney regen‑
eration. Nat. Rev. Nephrol. 9, 137–146; 
2013).2 Several papers have highlighted 
similarities between the podocyte and the 
Drosophila nephrocyte; however, podocytes 
are an integ ral part of the nephron, whereas 
nephro cytes are spatially separated from 
renal (Malpighian) tubules.3,4 Although 
analogies between the Drosophila nephro‑
cyte and the mammalian podocyte had 
been reported when we wrote our Review, 
the relationship between nephrocytes and 
Malpighian tubules had not been fully 
established.5 As highlighted in their cor‑
respondence,1 two studies published by 
Zhang et al. in 2013 strongly suggest that 
the nephrocyte is an integral constitu‑
ent of the Drosophila kidney system and 
is functionally and molecularly related 
to mammalian podocytes and proximal 
tubular cells.6,7

The observation that Drosophila nephro‑
cytes show phenotypic features of both 
mammalian podocytes and proximal 
tubular cells is particularly intriguing. In 
the human adult kidney, a subset of renal 
progenitors is bipotent and displays the 
potential to differentiate into podocytes8 
and proximal tubular cells.8–10 The bipotent 
progenitor localizes at the urinary pole of 
the Bowman capsule and is characterized 
by the expression of the renal progenitor 
markers CD133 and CD24 in the absence 
of expression of lineage markers. Starting 
from this bipotent progenitor (which can 
be observed during kidney development 
from the vesicle stage onwards) all mature 
nephron epithelial cells emerge through a 
hierarchical series of lineage decisions via 
various committed progenitor cells.11 The 
intermediate cellular states are the tubular 
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progenitors and the podocyte progenitor. 
The tubular progenitors, characterized by 
expression of CD133 and CD24 as well as 
low levels of tubular progenitor markers, 
can proliferate and differentiate into proxi‑
mal tubular cells, cells of the loop of Henle, 
distal tubular cells and cells of the connect‑
ing segment, through a series of cell‑type‑
committed progenitors.9–10 In adult human 
kidneys these committed progenitors are 
localized as scattered cells along the proxi‑
mal tubule (particularly the S3 segment), 
distal tubule and connecting segment.10 
The podocyte progenitor localizes along 
the Bowman capsule and is characterized 
by coexpression of CD133, CD24 and low 
levels of podocyte markers.8 Podocyte pro‑
genitors can proliferate but can differentiate 
only into functional podocytes.8

Consistent with human data, lineage 
tracing experiments performed in our lab‑
oratory using the Confetti reporter system 
under the control of a progenitor‑specific 
promoter, have confirmed that murine 
podocytes and tubular cells share a common 
progenitor during kidney development that 
generates precursors with more restricted 
potential, such as podocyte‑ committed or 
tubular‑committed progenitors, and then 
generates a series of committed progeni‑
tors.12,13 Rinkevich et al. also recently pro‑
posed the existence within the nephron 
of a series of lineage‑restricted progenitor 
cells that drive murine kidney develop‑
ment, maintenance and regeneration.14 
In the zebrafish, recent data suggest that a 
common progenitor can generate podocytes 
and tubular cells through a graded series of 
committed progenitors.15,16 Interestingly, 
even the signalling pathways that control 
the proliferation and differentiation of renal 
progenitors toward the podocyte and proxi‑
mal tubular lineage (which involve OSR1,15,17 
Pax‑2,16,18 WT1,16 Wnt/β‑catenin,14 Notch16,19 
and retinoic acid16,20,21) seem to be highly 
conserved between zebrafish, mice and 
humans, further underlining the critical role 

of renal progenitors in kidney development 
and regeneration following injury.

Taken together, these observations 
suggest that the renal properties of filtra‑
tion and protein reabsorption are closely 
related and probably evolved together in 
very simple organisms. However, when the 
structural complexity and requirements of 
organisms increased, these essential kidney 
functions required distinct cell types. 
Highly specialized cells generated from 
a common renal progenitor enabled the 
progressive separation of the functions of 
filtration and protein reabsorption through 
the generation of a graded series of com‑
mitted progenitors that could eventually 
differentiate into podocytes and various 
subsets of  tubular cells as observed in the 
mammalian kidney.
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