Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diets and enteral supplements for improving outcomes in chronic kidney disease

Abstract

Protein-energy wasting (PEW), which is manifested by low serum levels of albumin or prealbumin, sarcopenia and weight loss, is one of the strongest predictors of mortality in patients with chronic kidney disease (CKD). Although PEW might be engendered by non-nutritional conditions, such as inflammation or other comorbidities, the question of causality does not refute the effectiveness of dietary interventions and nutritional support in improving outcomes in patients with CKD. The literature indicates that PEW can be mitigated or corrected with an appropriate diet and enteral nutritional support that targets dietary protein intake. In-center meals or oral supplements provided during dialysis therapy are feasible and inexpensive interventions that might improve survival and quality of life in patients with CKD. Dietary requirements and enteral nutritional support must also be considered in patients with CKD and diabetes mellitus, in patients undergoing peritoneal dialysis, renal transplant recipients, and in children with CKD. Adjunctive pharmacological therapies, such as appetite stimulants, anabolic hormones, and antioxidative or anti-inflammatory agents, might augment dietary interventions. Intraperitoneal or intradialytic parenteral nutrition should be considered for patients with PEW whenever enteral interventions are not possible or are ineffective. Controlled trials are needed to better assess the effectiveness of in-center meals and oral supplements.

Key Points

  • Protein-energy wasting (PEW) is common in patients with chronic kidney disease (CKD) and is manifested by low serum levels of albumin or prealbumin, sarcopenia, and weight loss

  • PEW is one of the strongest predictors of mortality in patients with CKD

  • Although PEW might be the result of non-nutritional conditions, dietary interventions such as enteral feeding with high-protein meals or supplements might improve nutritional status and outcomes

  • In-center meals and oral supplements during dialysis therapy and at home are inexpensive interventions that might improve survival and quality of life in patients with CKD

  • Adjunctive pharmacological therapies, such as appetite stimulants, anabolic hormones, and antioxidative or anti-inflammatory agents, might augment dietary interventions

  • Intraperitoneal or intradialytic parenteral nutrition should be considered for patients with PEW whenever enteral interventions are not possible or ineffective

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Baseline serum albumin concentration and survival in patients on hemodialysis.
Figure 2: Change in serum albumin levels and survival in hemodialysis patients.
Figure 3: Effect of nutritional therapy modality on forearm muscle homeostasis.
Figure 4: Serum albumin concentration and survival in patients with nondialysis-dependent CKD.
Figure 5: Proposed algorithm for enteral nutritional support in patients with CKD.

Similar content being viewed by others

References

  1. Pupim, L. B., Caglar, K., Hakim, R. M., Shyr, Y. & Ikizler, T. A. Uremic malnutrition is a predictor of death independent of inflammatory status. Kidney Int. 66, 2054–2060 (2004).

    Article  PubMed  Google Scholar 

  2. Fouque, D. et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 73, 391–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Kovesdy, C. P. & Kalantar-Zadeh, K. Why is protein-energy wasting associated with mortality in chronic kidney disease? Semin. Nephrol. 29, 3–14 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kalantar-Zadeh, K., Kovesdy, C. P., Derose, S. F., Horwich, T. B. & Fonarow, G. C. Racial and survival paradoxes in chronic kidney disease. Nat. Clin. Pract. Nephrol. 3, 493–506 (2007).

    Article  PubMed  Google Scholar 

  5. Oreopoulos, A. et al. Body mass index and mortality in heart failure: a meta-analysis. Am. Heart J. 156, 13–22 (2008).

    Article  PubMed  Google Scholar 

  6. Cano, N. J. et al. C-reactive protein and body mass index predict outcome in end-stage respiratory failure. Chest 126, 540–546 (2004).

    Article  PubMed  Google Scholar 

  7. Oreopoulos, A., Kalantar-Zadeh, K., Sharma, A. M. & Fonarow, G. C. The obesity paradox in the elderly: potential mechanisms and clinical implications. Clin. Geriatr. Med. 25, 643–659 (2009).

    Article  PubMed  Google Scholar 

  8. Kalantar-Zadeh, K., Block, G., Horwich, T. & Fonarow, G. C. Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure. J. Am. Coll. Cardiol. 43, 1439–1444 (2004).

    Article  PubMed  Google Scholar 

  9. Wanner, C. et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 353, 238–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Fellström, B. C. et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 360, 1395–1407 (2009).

    Article  PubMed  CAS  Google Scholar 

  11. Kato, A., Takita, T., Furuhashi, M., Maruyama, Y. & Hishida, A. Comparison of serum albumin, C-reactive protein and carotid atherosclerosis as predictors of 10-year mortality in hemodialysis patients. Hemodial. Int. 14, 226–232 (2010).

    Article  PubMed  Google Scholar 

  12. Lacson, E. Jr, Wang, W., Hakim, R. M., Teng, M. & Lazarus, J. M. Associates of mortality and hospitalization in hemodialysis: potentially actionable laboratory variables and vascular access. Am. J. Kidney Dis. 53, 79–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Beddhu, S. et al. Association of serum albumin and atherosclerosis in chronic hemodialysis patients. Am. J. Kidney Dis. 40, 721–727 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Kalantar-Zadeh, K. et al. Revisiting mortality predictability of serum albumin in the dialysis population: time dependency, longitudinal changes and population-attributable fraction. Nephrol. Dial. Transplant. 20, 1880–1888 (2005).

    Article  PubMed  Google Scholar 

  15. Lacson, E. Jr, Ikizler, T. A., Lazarus, J. M., Teng, M. & Hakim, R. M. Potential impact of nutritional intervention on end-stage renal disease hospitalization, death, and treatment costs. J. Ren. Nutr. 17, 363–371 (2007).

    Article  PubMed  Google Scholar 

  16. Rambod, M., Kovesdy, C. P., Bross, R., Kopple, J. D. & Kalantar-Zadeh, K. Association of serum prealbumin and its changes over time with clinical outcomes and survival in patients receiving hemodialysis. Am. J. Clin. Nutr. 88, 1485–1494 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Cano, N. J. et al. Intradialytic parenteral nutrition does not improve survival in malnourished hemodialysis patients: a 2-year multicenter, prospective, randomized study. J. Am. Soc. Nephrol. 18, 2583–2591 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Rambod, M. et al. Association of Malnutrition-Inflammation Score with quality of life and mortality in hemodialysis patients: a 5-year prospective cohort study. Am. J. Kidney Dis. 53, 298–309 (2009).

    Article  PubMed  Google Scholar 

  19. [No authors listed] Clinical practice guidelines for nutrition in chronic renal failure. K/DOQI, National Kidney Foundation. Am. J. Kidney Dis. 35 (Suppl. 2), S1–S140 (2000).

  20. Kovesdy, C. P., George, S. M., Anderson, J. E. & Kalantar-Zadeh, K. Outcome predictability of biomarkers of protein-energy wasting and inflammation in moderate and advanced chronic kidney disease. Am. J. Clin. Nutr. 90, 407–414 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Friedman, A. N. & Fadem, S. Z. Reassessment of albumin as a nutritional marker in kidney disease. J. Am. Soc. Nephrol. 21, 223–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. de Mutsert, R. et al. Association between serum albumin and mortality in dialysis patients is partly explained by inflammation, and not by malnutrition. J. Ren. Nutr. 19, 127–135 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Rigaud, D., Hassid, J., Meulemans, A., Poupard, A. T. & Boulier, A. A paradoxical increase in resting energy expenditure in malnourished patients near death: the king penguin syndrome. Am. J. Clin. Nutr. 72, 355–360 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Lacson, E. Jr, Wang, W., Lazarus, J. M. & Hakim, R. M. Hemodialysis facility-based quality-of-care indicators and facility-specific patient outcomes. Am. J. Kidney Dis. 54, 490–497 (2009).

    Article  PubMed  Google Scholar 

  25. Noori, N. et al. Mid-arm muscle circumference and quality of life and survival in maintenance hemodialysis patients. Clin. J. Am. Soc. Nephrol. 5, 2258–2268 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kalantar-Zadeh, K. et al. The obesity paradox and mortality associated with surrogates of body size and muscle mass in patients receiving hemodialysis. Mayo Clin. Proc. 85, 991–1001 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kalantar-Zadeh, K. et al. Associations of body fat and its changes over time with quality of life and prospective mortality in hemodialysis patients. Am. J. Clin. Nutr. 83, 202–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Kalantar-Zadeh, K., Block, G., McAllister, C. J., Humphreys, M. H. & Kopple, J. D. Appetite and inflammation, nutrition, anemia and clinical outcome in hemodialysis patients. Am. J. Clin. Nutr. 80, 299–307 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Carrero, J. J. et al. Comparison of nutritional and inflammatory markers in dialysis patients with reduced appetite. Am. J. Clin. Nutr. 85, 695–701 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Shinaberger, C. S. et al. Longitudinal associations between dietary protein intake and survival in hemodialysis patients. Am. J. Kidney Dis. 48, 37–49 (2006).

    Article  PubMed  Google Scholar 

  31. Shinaberger, C. S. et al. Is controlling phosphorus by decreasing dietary protein intake beneficial or harmful in persons with chronic kidney disease? Am. J. Clin. Nutr. 88, 1511–1518 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Bross, R. et al. Association of serum total iron-binding capacity and its changes over time with nutritional and clinical outcomes in hemodialysis patients. Am. J. Nephrol. 29, 571–581 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kalantar-Zadeh, K. et al. Total iron-binding capacity-estimated transferrin correlates with the nutritional subjective global assessment in hemodialysis patients. Am. J. Kidney Dis. 31, 263–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Steiber, A. L. et al. Subjective Global Assessment in chronic kidney disease: a review. J. Ren. Nutr. 14, 191–200 (2004).

    Article  PubMed  Google Scholar 

  35. Kalantar-Zadeh, K. & Kopple, J. D. Relative contributions of nutrition and inflammation to clinical outcome in dialysis patients. Am. J. Kidney Dis. 38, 1343–1350 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Danielski, M. et al. Linkage of hypoalbuminemia, inflammation, and oxidative stress in patients receiving maintenance hemodialysis therapy. Am. J. Kidney Dis. 42, 286–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Kaysen, G. A. et al. Inflammation and dietary protein intake exert competing effects on serum albumin and creatinine in hemodialysis patients. Kidney Int. 60, 333–340 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Pupim, L. B., Flakoll, P. J. & Ikizler, T. A. Nutritional supplementation acutely increases albumin fractional synthetic rate in chronic hemodialysis patients. J. Am. Soc. Nephrol. 15, 1920–1926 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Dezfuli, A., Scholl, D., Lindenfeld, S. M., Kovesdy, C. P. & Kalantar-Zadeh, K. Severity of hypoalbuminemia predicts response to intradialytic parenteral nutrition in hemodialysis patients. J. Ren. Nutr. 19, 291–297 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kalantar-Zadeh, K. et al. An anti-inflammatory and antioxidant nutritional supplement for hypoalbuminemic hemodialysis patients: a pilot/feasibility study. J. Ren. Nutr. 15, 318–331 (2005).

    Article  PubMed  Google Scholar 

  41. Akpele, L. & Bailey, J. L. Nutrition counseling impacts serum albumin levels. J. Ren. Nutr. 14, 143–148 (2004).

    Article  PubMed  Google Scholar 

  42. Leon, J. B. et al. Can a nutrition intervention improve albumin levels among hemodialysis patients? A pilot study. J. Ren. Nutr. 11, 9–15 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Bronich, L., Te, T., Shetye, K., Stewart, T. & Eustace, J. A. Successful treatment of hypoalbuminemic hemodialysis patients with a modified regimen of oral essential amino acids. J. Ren. Nutr. 11, 194–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Eustace, J. A. et al. Randomized double-blind trial of oral essential amino acids for dialysis-associated hypoalbuminemia. Kidney Int. 57, 2527–2538 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Kaysen, G. A. Serum albumin concentration in dialysis patients: why does it remain resistant to therapy? Kidney Int. Suppl. 87, S92–S98 (2003).

    Article  Google Scholar 

  46. Toigo, G. et al. Expert Working Group report on nutrition in adult patients with renal insufficiency (part 1 of 2). Clin. Nutr. 19, 197–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Toigo, G. et al. Expert Working Group report on nutrition in adult patients with renal insufficiency (part 2 of 2). Clin. Nutr. 19, 281–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Fouque, D. et al. EBPG guideline on nutrition. Nephrol. Dial. Transplant. 22 (Suppl. 2), ii45–ii87 (2007).

    PubMed  Google Scholar 

  49. Dombros, N. et al. European best practice guidelines for peritoneal dialysis. 8 Nutrition in peritoneal dialysis. Nephrol. Dial. Transplant. 20 (Suppl. 9), ix28–ix33 (2005).

    PubMed  Google Scholar 

  50. Burrowes, J. D. et al. Effects of dietary intake, appetite, and eating habits on dialysis and non-dialysis treatment days in hemodialysis patients: cross-sectional results from the HEMO study. J. Ren. Nutr. 13, 191–198 (2003).

    Article  PubMed  Google Scholar 

  51. Laorpatanaskul, S., Pochanugool, C. & Sitprija, V. The use of oral essential amino acids in hemodialysis patients. J. Med. Assoc. Thai. 74, 66–70 (1991).

    CAS  PubMed  Google Scholar 

  52. Sharma, M., Rao, M., Jacob, S. & Jacob, C. K. A controlled trial of intermittent enteral nutrient supplementation in maintenance hemodialysis patients. J. Ren. Nutr. 12, 229–237 (2002).

    Article  PubMed  Google Scholar 

  53. Aguirre Galindo, B. A. et al. Effect of polymeric diets in patients on continuous ambulatory peritoneal dialysis. Perit. Dial. Int. 23, 434–439 (2003).

    PubMed  Google Scholar 

  54. González-Espinoza, L. et al. Randomized, open label, controlled clinical trial of oral administration of an egg albumin-based protein supplement to patients on continuous ambulatory peritoneal dialysis. Perit. Dial. Int. 25, 173–180 (2005).

    PubMed  Google Scholar 

  55. Leon, J. B. et al. Improving albumin levels among hemodialysis patients: a community-based randomized controlled trial. Am. J. Kidney Dis. 48, 28–36 (2006).

    Article  PubMed  Google Scholar 

  56. Fouque, D. et al. Use of a renal-specific oral supplement by haemodialysis patients with low protein intake does not increase the need for phosphate binders and may prevent a decline in nutritional status and quality of life. Nephrol. Dial. Transplant. 23, 2902–2910 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Moretti, H. D., Johnson, A. M. & Keeling-Hathaway, T. J. Effects of protein supplementation in chronic hemodialysis and peritoneal dialysis patients. J. Ren. Nutr. 19, 298–303 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Hecking, E. et al. Treatment with essential amino acids in patients on chronic hemodialysis: a double blind cross-over study. Am. J. Clin. Nutr. 31, 1821–1826 (1978).

    Article  CAS  PubMed  Google Scholar 

  59. Phillips, M. E., Havard, J. & Howard, J. P. Oral essential amino acid supplementation in patients on maintenance hemodialysis. Clin. Nephrol. 9, 241–248 (1978).

    CAS  PubMed  Google Scholar 

  60. Acchiardo, S., Moore, L. & Cockrell, S. Effect of essential amino acids (EAA) on chronic hemodialysis (CHD) patients (PTS). Trans. Am. Soc. Artif. Intern. Organs 28, 608–614 (1982).

    CAS  PubMed  Google Scholar 

  61. Allman, M. A. et al. Energy supplementation and the nutritional status of hemodialysis patients. Am. J. Clin. Nutr. 51, 558–562 (1990).

    Article  CAS  PubMed  Google Scholar 

  62. Tietze, I. N. & Pedersen, E. B. Effect of fish protein supplementation on aminoacid profile and nutritional status in haemodialysis patients. Nephrol. Dial. Transplant. 6, 948–954 (1991).

    Article  CAS  PubMed  Google Scholar 

  63. Cuppari, L., Medeiros, F. A. M. & Papini, H. F. Effectiveness of oral energy-protein supplementation in severely malnourished hemodialysis patients. J. Ren. Nutr. 4, 127–135 (1994).

    Article  Google Scholar 

  64. Beutler, K. T., Park, G. K. & Wilkowski, M. J. Effect of oral supplementation on nutrition indicators in hemodialysis patients. J. Ren. Nutr. 7, 77–82 (1997).

    Article  Google Scholar 

  65. Cockram, D. B. et al. Safety and tolerance of medical nutritional products as sole sources of nutrition in people on hemodialysis. J. Ren. Nutr. 8, 25–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Milano, M. C., Cusumano, A. M., Navarro, E. T. & Turín, M. Energy supplementation in chronic hemodialysis patients with moderate and severe malnutrition. J. Ren. Nutr. 8, 212–217 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Kuhlmann, M. K., Schmidt, F. & Köhler, H. High protein/energy vs. standard protein/energy nutritional regimen in the treatment of malnourished hemodialysis patients. Miner. Electrolyte Metab. 25, 306–310 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Patel, M. G., Kitchen, S. & Miligan, P. J. The effect of dietary supplements on the nPCR in stable hemodialysis patients. J. Ren. Nutr. 10, 69–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Hiroshige, K., Sonta, T., Suda, T., Kanegae, K. & Ohtani, A. Oral supplementation of branched-chain amino acid improves nutritional status in elderly patients on chronic haemodialysis. Nephrol. Dial. Transplant. 16, 1856–1862 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Oguz, Y., Bulucu, F. & Vural, A. Oral and parenteral essential amino acid therapy in malnourished hemodialysis patients. Nephron 89, 224–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Caglar, K. et al. Therapeutic effects of oral nutritional supplementation during hemodialysis. Kidney Int. 62, 1054–1059 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Holley, J. L. & Kirk, J. Enteral tube feeding in a cohort of chronic hemodialysis patients. J. Ren. Nutr. 12, 177–182 (2002).

    Article  PubMed  Google Scholar 

  73. Fanti, P., Asmis, R., Stephenson, T. J., Sawaya, B. P. & Franke, A. A. Positive effect of dietary soy in ESRD patients with systemic inflammation—correlation between blood levels of the soy isoflavones and the acute-phase reactants. Nephrol. Dial. Transplant. 21, 2239–2246 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Poole, R. & Hamad, A. Nutrition supplements in dialysis patients: use in peritoneal dialysis patients and diabetic patients. Adv. Perit. Dial. 24, 118–124 (2008).

    CAS  PubMed  Google Scholar 

  75. Scott, M. K. et al. Effects of peridialytic oral supplements on nutritional status and quality of life in chronic hemodialysis patients. J. Ren. Nutr. 19, 145–152 (2009).

    Article  PubMed  Google Scholar 

  76. Shimomura, A., Tahara, D. & Azekura, H. Nutritional improvement in elderly CAPD patients with additional high protein foods. Adv. Perit. Dial. 9, 80–86 (1993).

    CAS  PubMed  Google Scholar 

  77. Patel, M. G. & Raftery, M. J. The use of dietary supplements in continuous ambulatory peritoneal dialysis patients. J. Ren. Nutr. 7, 129–133 (1997).

    Article  Google Scholar 

  78. Heaf, J. G., Honoré, K., Valeur, D. & Randlov, A. The effect of oral protein supplements on the nutritional status of malnourished CAPD patients. Perit. Dial. Int. 19, 78–81 (1999).

    CAS  PubMed  Google Scholar 

  79. Boudville, N., Rangan, A. & Moody, H. Oral nutritional supplementation increases caloric and protein intake in peritoneal dialysis patients. Am. J. Kidney Dis. 41, 658–663 (2003).

    Article  PubMed  Google Scholar 

  80. Teixidó-Planas, J. et al. Oral protein-energy supplements in peritoneal dialysis: a multicenter study. Perit. Dial. Int. 25, 163–172 (2005).

    PubMed  Google Scholar 

  81. Kalantar-Zadeh, K. Why not meals during dialysis? Renal & Urology News (New York) (15 Oct 2009).

  82. Wizemann, V. Regular dialysis treatment in Germany: the role of non-profit organisations. J. Nephrol. 13 (Suppl. 3), S16–S19 (2000).

    PubMed  Google Scholar 

  83. Pupim, L. B., Majchrzak, K. M., Flakoll, P. J. & Ikizler, T. A. Intradialytic oral nutrition improves protein homeostasis in chronic hemodialysis patients with deranged nutritional status. J. Am. Soc. Nephrol. 17, 3149–3157 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Sundell, M. B. et al. Oral protein supplementation alone improves anabolism in a dose-dependent manner in chronic hemodialysis patients. J. Ren. Nutr. 19, 412–421 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kovesdy, C. P. & Kalantar-Zadeh, K. Oral bicarbonate: renoprotective in CKD? Nat. Rev. Nephrol. 6, 15–17 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Noori, N. et al. Association of dietary phosphorus intake and phosphorus to protein ratio with mortality in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 5, 683–692 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Noori, N. et al. Dietary potassium intake and mortality in long-term hemodialysis patients. Am. J. Kidney Dis. 56, 338–347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ikizler, T. A. Effects of hemodialysis on protein metabolism. J. Ren. Nutr. 15, 39–43 (2005).

    Article  PubMed  Google Scholar 

  89. Ikizler, T. A. et al. Hemodialysis stimulates muscle and whole body protein loss and alters substrate oxidation. Am. J. Physiol. Endocrinol. Metab. 282, E107–E116 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Ikizler, T. A. Resolved: being fat is good for dialysis patients: the Godzilla effect: pro. J. Am. Soc. Nephrol. 19, 1059–1062 (2008).

    Article  PubMed  Google Scholar 

  91. Ikizler, T. A., Flakoll, P. J., Parker, R. A. & Hakim, R. M. Amino acid and albumin losses during hemodialysis. Kidney Int. 46, 830–837 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Wolfson, M., Jones, M. R. & Kopple, J. D. Amino acid losses during hemodialysis with infusion of amino acids and glucose. Kidney Int. 21, 500–506 (1982).

    Article  CAS  PubMed  Google Scholar 

  93. Raj, D. S. et al. Glutamine kinetics and protein turnover in end-stage renal disease. Am. J. Physiol. Endocrinol. Metab. 288, E37–E46 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Raj, D. S. et al. Coordinated increase in albumin, fibrinogen, and muscle protein synthesis during hemodialysis: role of cytokines. Am. J. Physiol. Endocrinol. Metab. 286, E658–E664 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Caglar, K. et al. Inflammatory signals associated with hemodialysis. Kidney Int. 62, 1408–1416 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Volpi, E. et al. Contribution of amino acids and insulin to protein anabolism during meal absorption. Diabetes 45, 1245–1252 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Ikizler, T. A. Nutrition support for the chronically wasted or acutely catabolic chronic kidney disease patient. Semin. Nephrol. 29, 75–84 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Veeneman, J. M. et al. Protein intake during hemodialysis maintains a positive whole body protein balance in chronic hemodialysis patients. Am. J. Physiol. Endocrinol. Metab. 284, E954–E965 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Mehrotra, R. & Kopple, J. D. Protein and energy nutrition among adult patients treated with chronic peritoneal dialysis. Adv. Ren. Replace. Ther. 10, 194–212 (2003).

    Article  PubMed  Google Scholar 

  100. Blumenkrantz, M. J. et al. Protein losses during peritoneal dialysis. Kidney Int. 19, 593–602 (1981).

    Article  CAS  PubMed  Google Scholar 

  101. Westra, W. M., Kopple, J. D., Krediet, R. T., Appell, M. & Mehrotra, R. Dietary protein requirements and dialysate protein losses in chronic peritoneal dialysis patients. Perit. Dial. Int. 27, 192–195 (2007).

    PubMed  Google Scholar 

  102. Kopple, J. D. & Blumenkrantz, M. J. Nutritional requirements for patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int. Suppl. 16, S295–S302 (1983).

    CAS  PubMed  Google Scholar 

  103. Van, V. et al. Influence of dialysate on gastric emptying time in peritoneal dialysis patients. Perit. Dial. Int. 22, 32–38 (2002).

    PubMed  Google Scholar 

  104. Collins, A. J. et al. Chronic kidney disease and cardiovascular disease in the Medicare population. Kidney Int. Suppl. 87, S24–S31 (2003).

    Article  Google Scholar 

  105. Kalantar-Zadeh, K. et al. Burnt-out diabetes: impact of chronic kidney disease progression on the natural course of diabetes mellitus. J. Ren. Nutr. 19, 33–37 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kovesdy, C. P., Park, J. C. & Kalantar-Zadeh, K. Glycemic control and burnt-out diabetes in ESRD. Semin. Dial. 23, 148–156 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kovesdy, C. P., Sharma, K. & Kalantar-Zadeh, K. Glycemic control in diabetic CKD patients: where do we stand? Am. J. Kidney Dis. 52, 766–777 (2008).

    Article  PubMed  Google Scholar 

  108. Kalantar-Zadeh, K. et al. A1C and survival in maintenance hemodialysis patients. Diabetes Care 30, 1049–1055 (2007).

    Article  PubMed  Google Scholar 

  109. Williams, M. E., Lacson, E. Jr, Teng, M., Ofsthun, N. & Lazarus, J. M. Hemodialyzed type I and type II diabetic patients in the US: characteristics, glycemic control, and survival. Kidney Int. 70, 1503–1509 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Williams, M. E., Lacson, E. Jr, Wang, W., Lazarus, J. M. & Hakim, R. Glycemic control and extended hemodialysis survival in patients with diabetes mellitus: comparative results of traditional and time-dependent Cox model analyses. Clin. J. Am. Soc. Nephrol. 5, 1595–1601 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sun, C. Y., Lee, C. C. & Wu, M. S. Hypoglycemia in diabetic patients undergoing chronic hemodialysis. Ther. Apher. Dial. 13, 95–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Simic-Ogrizovic, S. et al. The influence of different glucose concentrations in haemodialysis solutions on metabolism and blood pressure stability in diabetic patients. Int. J. Artif. Organs 24, 863–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Kopple, J. D., Berg, R., Houser, H., Steinman, T. I. & Teschan, P. Nutritional status of patients with different levels of chronic renal insufficiency. Modification of Diet in Renal Disease (MDRD) Study Group. Kidney Int. Suppl. 27, S184–S194 (1989).

    CAS  PubMed  Google Scholar 

  114. Kopple, J. D. et al. Relationship between nutritional status and the glomerular filtration rate: results from the MDRD study. Kidney Int. 57, 1688–1703 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Menon, V. et al. C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease. Kidney Int. 68, 766–772 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Muntner, P., He, J., Astor, B. C., Folsom, A. R. & Coresh, J. Traditional and nontraditional risk factors predict coronary heart disease in chronic kidney disease: results from the Atherosclerosis Risk in Communities study. J. Am. Soc. Nephrol. 16, 529–538 (2005).

    Article  PubMed  Google Scholar 

  117. Weiner, D. E. et al. The relationship between nontraditional risk factors and outcomes in individuals with stage 3 to 4 CKD. Am. J. Kidney Dis. 51, 212–223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fouque, D., Laville, M. & Boissel, J. P. Low protein diets for chronic kidney disease in non diabetic adults. Cochrane Database Systematic Reviews, Issue 2. Art. No.: CD001892. doi:10.1002/14651858.CD001892.pub2 (2006).

  119. Fouque, D. & Aparicio, M. Eleven reasons to control the protein intake of patients with chronic kidney disease. Nat. Clin. Pract. Nephrol. 3, 383–392 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. King, A. J. & Levey, A. S. Dietary protein and renal function. J. Am. Soc. Nephrol. 3, 1723–1737 (1993).

    CAS  PubMed  Google Scholar 

  121. Maschio, G. et al. Effects of dietary protein and phosphorus restriction on the progression of early renal failure. Kidney Int. 22, 371–376 (1982).

    Article  CAS  PubMed  Google Scholar 

  122. Barsotti, G. et al. Restricted phosphorus and nitrogen intake to slow the progression of chronic renal failure: a controlled trial. Kidney Int. Suppl. 16, S278–S284 (1983).

    CAS  PubMed  Google Scholar 

  123. Ihle, B. U., Becker, G. J., Whitworth, J. A., Charlwood, R. A. & Kincaid-Smith, P. S. The effect of protein restriction on the progression of renal insufficiency. N. Engl. J. Med. 321, 1773–1777 (1989).

    Article  CAS  PubMed  Google Scholar 

  124. Rosman, J. B. et al. Prospective randomised trial of early dietary protein restriction in chronic renal failure. Lancet 2, 1291–1296 (1984).

    Article  CAS  PubMed  Google Scholar 

  125. Mitch, W. E. et al. The effect of a keto acid-amino acid supplement to a restricted diet on the progression of chronic renal failure. N. Engl. J. Med. 311, 623–629 (1984).

    Article  CAS  PubMed  Google Scholar 

  126. Walser, M., Hill, S. & Ward, L. Progression of chronic renal failure on substituting a ketoacid supplement for an amino acid supplement. J. Am. Soc. Nephrol. 2, 1178–1185 (1992).

    CAS  PubMed  Google Scholar 

  127. Locatelli, F. et al. Prospective, randomised, multicentre trial of effect of protein restriction on progression of chronic renal insufficiency. Northern Italian Cooperative Study Group. Lancet 337, 1299–1304 (1991).

    Article  CAS  PubMed  Google Scholar 

  128. Williams, P. S., Stevens, M. E., Fass, G., Irons, L. & Bone, J. M. Failure of dietary protein and phosphate restriction to retard the rate of progression of chronic renal failure: a prospective, randomized, controlled trial. Q. J. Med. 81, 837–855 (1991).

    CAS  PubMed  Google Scholar 

  129. Schwarz, S., Trivedi, B. K., Kalantar-Zadeh, K. & Kovesdy, C. P. Association of disorders in mineral metabolism with progression of chronic kidney disease Clin. J. Am. Soc. Nephrol. 1, 825–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Kovesdy, C. P., Anderson, J. E. & Kalantar-Zadeh, K. Outcomes associated with serum phosphorus level in males with non-dialysis dependent chronic kidney disease. Clin. Nephrol. 73, 268–275 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Kovesdy, C. P., Kuchmak, O., Lu, J. L. & Kalantar-Zadeh, K. Outcomes associated with phosphorus binders in men with non-dialysis-dependent CKD. Am. J. Kidney Dis. 56, 842–851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Montes-Delgado, R. et al. Treatment with low-protein diet and caloric supplements in patients with chronic kidney failure in predialysis. Comparative study [Spanish]. Rev. Clin. Esp. 198, 580–586 (1998).

    CAS  PubMed  Google Scholar 

  133. Klahr, S. et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N. Engl. J. Med. 330, 877–884 (1994).

    Article  CAS  PubMed  Google Scholar 

  134. Levey, A. S. et al. Effects of dietary protein restriction on the progression of advanced renal disease in the Modification of Diet in Renal Disease Study. Am. J. Kidney Dis. 27, 652–663 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Menon, V. et al. Effect of a very low-protein diet on outcomes: long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am. J. Kidney Dis. 53, 208–217 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Jiang, N. et al. Better preservation of residual renal function in peritoneal dialysis patients treated with a low-protein diet supplemented with keto acids: a prospective, randomized trial. Nephrol. Dial. Transplant. 24, 2551–2558 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Chang, J. H. et al. Influence of ketoanalogs supplementation on the progression in chronic kidney disease patients who had training on low-protein diet. Nephrology (Carlton) 14, 750–757 (2009).

    Article  CAS  Google Scholar 

  138. Prakash, S. et al. Randomized, double-blind, placebo-controlled trial to evaluate efficacy of ketodiet in predialytic chronic renal failure. J. Ren. Nutr. 14, 89–96 (2004).

    Article  PubMed  Google Scholar 

  139. Zakar, G. for the Hungarian Ketosteril Cohort Study. The effect of a keto acid supplement on the course of chronic renal failure and nutritional parameters in predialysis patients and patients on regular hemodialysis therapy: the Hungarian Ketosteril Cohort Study. Wien. Klin. Wochenschr. 113, 688–694 (2001).

    CAS  PubMed  Google Scholar 

  140. Teplan, V. et al. Effects of low-protein diet supplemented with ketoacids and erythropoietin in chronic renal failure: a long-term metabolic study. Ann. Transplant. 6, 47–53 (2001).

    CAS  PubMed  Google Scholar 

  141. Aparicio, M. et al. Keto-acid therapy in predialysis chronic kidney disease patients: consensus statements. J. Ren. Nutr. 19, S33–S35 (2009).

    Article  PubMed  Google Scholar 

  142. Teplan, V., Schück, O., Stollová, M. & Vítko, S. Obesity and hyperhomocysteinaemia after kidney transplantation. Nephrol. Dial. Transplant. 18 (Suppl. 5), v71–v73 (2003).

    Article  PubMed  Google Scholar 

  143. Locsey, L., Asztalos, L., Kincses, Z., Berczi, C. & Paragh, G. The importance of obesity and hyperlipidaemia in patients with renal transplants. Int. Urol. Nephrol. 30, 767–775 (1998).

    Article  CAS  PubMed  Google Scholar 

  144. Molnar, M. Z. et al. Evaluation of the malnutrition-inflammation score in kidney transplant recipients. Am. J. Kidney Dis. 56, 102–111 (2010).

    Article  PubMed  Google Scholar 

  145. Molnar, M. Z. et al. Anemia in kidney transplanted patients. Clin. Transplant. 19, 825–833 (2005).

    Article  PubMed  Google Scholar 

  146. López-Gómez, J. M. et al. Presence of a failed kidney transplant in patients who are on hemodialysis is associated with chronic inflammatory state and erythropoietin resistance. J. Am. Soc. Nephrol. 15, 2494–2501 (2004).

    Article  PubMed  Google Scholar 

  147. Bayés, B. et al. Obesity, adiponectin and inflammation as predictors of new-onset diabetes mellitus after kidney transplantation. Am. J. Transplant. 7, 416–422 (2007).

    Article  PubMed  CAS  Google Scholar 

  148. Streja, E. et al. Associations of pretransplant weight and muscle mass with mortality in renal transplant recipients. Clin. J. Am. Soc. Nephrol. doi:10.2215/CJN.09131010.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Molnar, M. Z. et al. Associations of body mass index and weight loss with mortality in transplant-waitlisted maintenance hemodialysis patients. Am. J. Transplant. 11, 725–736 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Molnar, M. Z. et al. Associations of pretransplant serum albumin with post-transplant outcomes in kidney transplant recipients. Am. J. Transplant. 11, 1006–1015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kovesdy, C. P. et al. Body mass index, waist circumference and mortality in kidney transplant recipients. Am. J. Transplant. 10, 2644–2651 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Mak, R. H. Chronic kidney disease in children: state of the art. Pediatr. Nephrol. 22, 1687–1688 (2006).

    Article  PubMed  Google Scholar 

  153. Abitbol, C. L., Zilleruelo, G., Montane, B. & Strauss, J. Growth of uremic infants on forced feeding regimens. Pediatr. Nephrol. 7, 173–177 (1993).

    Article  CAS  PubMed  Google Scholar 

  154. Secker, D. & Mak, R. H. in Comphrehensive Pediatric Nephrology (ed. Schaefer, G.) 743–759 (Mosby, Philadelphia, 2008).

    Google Scholar 

  155. Rees, L. & Brandt, M. L. Tube feeding in children with chronic kidney disease: technical and practical issues. Pediatr. Nephrol. 25, 699–704 (2010).

    Article  PubMed  Google Scholar 

  156. Gast, T., Bunchman, T. & Barletta, G. M. Nutritional management of infants with CKD/ESRD with use of “adult” renal-based formulas [abstract]. Perit. Dial. Int. 27 (Suppl. 1), S34 (2007).

    Google Scholar 

  157. Hobbs, D. J., Gast, T. R., Ferguson, K. B., Bunchman, T. E. & Barletta, G. M. Nutritional management of hyperkalemic infants with chronic kidney disease, using adult renal formulas. J. Ren. Nutr. 20, 121–126 (2010).

    Article  PubMed  Google Scholar 

  158. Betts, P. R. & Magrath, G. Growth pattern and dietary intake of children with chronic renal insufficiency. Br. Med. J. 2, 189–193 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ledermann, S. E., Shaw, V. & Trompeter, R. S. Long-term enteral nutrition in infants and young children with chronic renal failure. Pediatr. Nephrol. 13, 870–875 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Pollock, C., Voss, D., Hodson, E. & Crompton, C. for the Caring for Australasians with Renal Impairement (CARI). The CARI guidelines. Nutrition and growth in kidney disease. Nephrology (Carlton) 10 (Suppl. 5), S177–S230 (2005).

    Google Scholar 

  161. Fouque, D. Growth factors: future prospects in renal failure. Miner. Electrolyte Metab. 24, 27–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  162. Mak, R. H., Haycock, G. B. & Chantler, C. Insulin and growth in chronic renal failure. Pediatr. Nephrol. 8, 309–312 (1994).

    Article  CAS  PubMed  Google Scholar 

  163. Pacht, E. R. et al. Enteral nutrition with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants reduces alveolar inflammatory mediators and protein influx in patients with acute respiratory distress syndrome. Crit. Care Med. 31, 491–500 (2003).

    Article  CAS  PubMed  Google Scholar 

  164. Ewers, B., Riserus, U. & Marckmann, P. Effects of unsaturated fat dietary supplements on blood lipids, and on markers of malnutrition and inflammation in hemodialysis patients. J. Ren. Nutr. 19, 401–411 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Rammohan, M., Kalantar-Zadeh, K., Liang, A. & Ghossein, C. Megestrol acetate in a moderate dose for the treatment of malnutrition-inflammation complex in maintenance dialysis patients. J. Ren. Nutr. 15, 345–355 (2005).

    Article  PubMed  Google Scholar 

  166. Rodriguez Ayala, E. et al. Associations between plasma ghrelin levels and body composition in end-stage renal disease: a longitudinal study. Nephrol. Dial. Transplant. 19, 421–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Riechelmann, R. P., Burman, D., Tannock, I. F., Rodin, G. & Zimmermann, C. Phase II trial of mirtazapine for cancer-related cachexia and anorexia. Am. J. Hosp. Palliat. Care 27, 106–110 (2010).

    Article  PubMed  Google Scholar 

  168. Pupim, L. B., Flakoll, P. J., Yu, C. & Ikizler, T. A. Recombinant human growth hormone improves muscle amino acid uptake and whole-body protein metabolism in chronic hemodialysis patients. Am. J. Clin. Nutr. 82, 1235–1243 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Goldberg, R. M. et al. Pentoxifylline for treatment of cancer anorexia and cachexia? A randomized, double-blind, placebo-controlled trial. J. Clin. Oncol. 13, 2856–2859 (1995).

    Article  CAS  PubMed  Google Scholar 

  170. Kovesdy, C. P. & Kalantar-Zadeh, K. Novel targets and new potential: developments in the treatment of inflammation in chronic kidney disease. Expert Opin. Investig. Drugs 17, 451–467 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Dukkipati, R., Kalantar-Zadeh, K. & Kopple, J. D. Is there a role for intradialytic parenteral nutrition? A review of the evidence. Am. J. Kidney Dis. 55, 352–364 (2010).

    Article  PubMed  Google Scholar 

  172. Ikizler, T. A., Flakoll, P. J., Parker, R. A. & Hakim, R. M. Amino acid and albumin losses during hemodialysis. Kidney Int. 46, 830–837 (1994).

    Article  CAS  PubMed  Google Scholar 

  173. Tayeb, J. S. et al. Effect of biocompatibility of hemodialysis membranes on serum albumin levels. Am. J. Kidney Dis. 35, 606–610 (2000).

    Article  CAS  PubMed  Google Scholar 

  174. Ikizler, T. A. Dietary protein restriction in CKD: the debate continues. Am. J. Kidney Dis. 53, 189–191 (2009).

    Article  PubMed  Google Scholar 

  175. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  176. US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  177. Potter, J. M. Oral supplements in the elderly. Curr. Opin. Clin. Nutr. Metab. Care 4, 21–28 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Miller, J. E. et al. Association of hemodialysis treatment time and dose with mortality and the role of race and sex. Am. J. Kidney Dis. 55, 100–112 (2010).

    Article  PubMed  Google Scholar 

  179. Pfeffer, M. A. et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 361, 2019–2032 (2009).

    Article  PubMed  Google Scholar 

  180. Kalantar-Zadeh, K., Kopple, J. D., Block, G. & Humphreys, M. H. A malnutrition-inflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients. Am. J. Kidney Dis. 38, 1251–1263 (2001).

    Article  CAS  PubMed  Google Scholar 

  181. Kalantar-Zadeh, K., Kleiner, M., Dunne, E., Lee, G. H. & Luft, F. C. A modified quantitative subjective global assessment of nutrition for dialysis patients. Nephrol. Dial. Transplant. 14, 1732–1738 (1999).

    Article  CAS  PubMed  Google Scholar 

  182. [No authors listed] Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J. Am. Soc. Nephrol. 7, 198–207 (1996).

  183. Wolfson, M., Strong, C. J., Minturn, D., Gray, D. K. & Kopple, J. D. Nutritional status and lymphocyte function in maintenance hemodialysis patients. Am. J. Clin. Nutr. 39, 547–555 (1984).

    Article  CAS  PubMed  Google Scholar 

  184. Merkus, M. P. et al. Predictors of poor outcome in chronic dialysis patients: The Netherlands Cooperative Study on the Adequacy of Dialysis. The NECOSAD Study Group. Am. J. Kidney Dis. 35, 69–79 (2000).

    Article  CAS  PubMed  Google Scholar 

  185. Marckmann, P. Nutritional status and mortality of patients in regular dialysis therapy. J. Intern. Med. 226, 429–432 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work was supported by research grants R01 DK078106, R21 DK078012, and R21 DK077341 from the National Institute of Diabetes and Digestive and Kidney Diseases of the NIH, and a philanthropic grant from H. Simmons.'

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data to include in the manuscript, contributed to discussion of content for the article, reviewed and edited the manuscript before submission, and revised the manuscript in response to the peer-reviewers' comments.

Corresponding author

Correspondence to Kamyar Kalantar-Zadeh.

Ethics declarations

Competing interests

K. Kalantar-Zadeh has received grant/research support from Abbott Nutrition, B. Braun, National Kidney Foundation, Novo Nordisk, NutrePletion and Pentec Health. He has received speakers bureau honoraria from Abbott Nutrition. N. J. Cano has received grant/research support from Baxter, Danone, Fresenius Kabi and Nestlé. He has received speakers bureau honoraria from B. Braun and Danone. C. Chazot has worked as a consultant for Fresenius Medical Care and received grant/research support and speakers bureau honoraria from Fresenius Medical Care. C. Kovesdy has received grant/research support from Abbott Nutrition. R. Mak has received grant/research support from Abbott. R. Mehrotra has received grant/research support and speakers bureau honoraria from Baxter Healthcare. P. Stenvinkel has worked as a consultant for Abbott. T. A. Ikizler has worked as a consultant for Abbott Nutrition, Abbott Renal Care, Fresenius Medical Care and Renal Advantage, and received grant/research support from Fresenius Medical Care.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalantar-Zadeh, K., Cano, N., Budde, K. et al. Diets and enteral supplements for improving outcomes in chronic kidney disease. Nat Rev Nephrol 7, 369–384 (2011). https://doi.org/10.1038/nrneph.2011.60

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.60

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing