Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The population genetics of chronic kidney disease: insights from the MYH9–APOL1 locus

Abstract

Many rare kidney disorders exhibit a monogenic, Mendelian pattern of inheritance. Population-based genetic studies have identified many genetic variants associated with an increased risk of developing common kidney diseases. Strongly associated variants have potential clinical uses as predictive markers and may advance our understanding of disease pathogenesis. These principles are elegantly illustrated by a region within chromosome 22q12 that has a strong association with common forms of kidney disease. Researchers had identified DNA sequence variants in this locus that were highly associated with an increased prevalence of common chronic kidney diseases in people of African ancestry. Initial research concentrated on MYH9 as the most likely candidate gene; however, population-based whole-genome analysis enabled two independent research teams to discover more strongly associated mutations in the neighboring APOL1 gene. The powerful evolutionary selection pressure of an infectious pathogen in West Africa favored the spread of APOL1 variants that protect against a lethal form of African sleeping sickness but are highly associated with an increased risk of kidney disease. We describe the data sources, process of discovery, and reasons for initial misidentification of the candidate gene, as well as the lessons that can be learned for future population genetics research.

Key Points

  • Population genetic studies have identified loci that confer susceptibility to many common forms of kidney disease; however, ascertaining the underlying biologic mechanisms is often a challenge

  • Linkage disequilibrium, admixture and genetic variation are some of the key factors underlying the success of population-based approaches to the discovery of genes that are associated with disease

  • Population genetics research identified a region on chromosome 22q12 containing DNA sequence variants associated with a predisposition to many diabetes-unrelated forms of kidney disease in African and Hispanic Americans

  • The MYH9 gene was initially thought to harbor these mutations, but the neighboring gene APOL1 was subsequently identified as being more strongly associated with kidney disease

  • APOL1 mutations confer protection against sleeping sickness, which might explain the high prevalence of kidney disease in persons whose ancestry links them to geographic regions with past trypanosomal exposure

  • APOL1 genotyping has potential clinical applications for management of hypertension in individuals with kidney disease, management of patients with HIV-associated nephropathy, and for donors and recipients in kidney transplantation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of recombination on linkage disequilibrium and haplotype blocks.
Figure 2: Discovering associations with a disease through admixture mapping.
Figure 3: Chromosomal region associated with diabetes-unrelated ESRD phenotypes in African Americans.
Figure 4: Contour maps of allele frequency distributions of identified APOL1 risk variants in a number of African countries.
Figure 5: Presumed order of occurrence of MYH9 and APOL1 variants in human evolutionary history.
Figure 6: Positive selection pressure and selective sweeps.

Similar content being viewed by others

References

  1. Tryggvason, K., Patrakka, J. & Wartiovaara, J. Hereditary proteinuria syndromes and mechanisms of proteinuria. N. Engl. J. Med. 354, 1387–1401 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Löwik, M. M., Groenen, P. J., Levtchenko, E. N., Monnens, L. A. & van den Heuvel, L. P. Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis—a review. Eur. J. Pediatr. 168, 1291–1304 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hildebrandt, F. Genetic kidney diseases. Lancet 375, 1287–1295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harris, P. C. 2008 Homer W. Smith Award: insights into the pathogenesis of polycystic kidney disease from gene discovery. J. Am. Soc. Nephrol. 20, 1188–1198 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Chadha, V. & Alon, U. S. Hereditary renal tubular disorders. Semin. Nephrol. 29, 399–411 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Welling, P. A., Chang, Y. P., Delpire, E. & Wade, J. B. Multigene kinase network, kidney transport, and salt in essential hypertension. Kidney Int. 77, 1063–1069 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Magen, D. et al. A loss-of-function mutation in NaPi-IIa and renal Fanconi's syndrome. N. Engl. J. Med. 362, 1102–1109 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Virkki, L. V., Forster, I. C., Hernando, N., Biber, J. & Murer, H. Functional characterization of two naturally occurring mutations in the human sodium-phosphate cotransporter type IIa. J. Bone Miner. Res. 18, 2135–2141 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Lapointe, J. Y. et al. NPT2a gene variation in calcium nephrolithiasis with renal phosphate leak. Kidney Int. 69, 2261–2267 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Prié, D. et al. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N. Engl. J. Med. 347, 983–991 (2002).

    Article  PubMed  Google Scholar 

  11. Kestenbaum, B. et al. Common genetic variants associate with serum phosphorus concentration. J. Am. Soc. Nephrol. 21, 1223–1232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Köttgen, A. et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 42, 376–384 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jeck, N. et al. Salt handling in the distal nephron: lessons learned from inherited human disorders. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R782–R795 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Adeyemo, A. et al. A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genet. 5, e1000564 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  16. Jin, H. S. et al. Genetic variations in the sodium balance-regulating genes ENaC, NEDD4L, NDFIP2 and USP2 influence blood pressure and hypertension. Kidney Blood Press. Res. 33, 15–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Levy, D. et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 41, 677–687 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lifton, R. P. Individual genomes on the horizon. N. Engl. J. Med. 362, 1235–1236 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Cirulli, E. T. & Goldstein, D. B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet. 11, 415–425 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Bostrom, M. A. et al. Candidate genes for non-diabetic ESRD in African Americans: a genome-wide association study using pooled DNA. Hum. Genet. 128, 195–204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Craig, D. W., Millis, M. P. & DiStefano, J. K. Genome-wide SNP genotyping study using pooled DNA to identify candidate markers mediating susceptibility to end-stage renal disease attributed to Type 1 diabetes. Diabet. Med. 26, 1090–1098 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Kao, W. H. et al. MYH9 is associated with nondiabetic end-stage renal disease in African Americans. Nat. Genet. 40, 1185–1192 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Kopp, J. B. et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat. Genet. 40, 1175–1184 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Köttgen, A. et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 41, 712–717 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Divers, J. & Freedman, B. I. Susceptibility genes in common complex kidney disease. Curr. Opin. Nephrol. Hypertens. 19, 79–84 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McKnight, A. J., Currie, D. & Maxwell, A. P. Unravelling the genetic basis of renal diseases; from single gene to multifactorial disorders. J. Pathol. 220, 198–216 (2010).

    CAS  PubMed  Google Scholar 

  27. Köttgen, A. Genome-wide association studies in nephrology research. Am. J. Kidney Dis. 56, 743–758 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Estrella, M. M., Sperati, C. J., Kao, W. H. & Parekh, R. S. Genetic epidemiology of chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 19, 283–291 (2010).

    Article  PubMed  Google Scholar 

  29. Gudbjartsson, D. F. et al. Association of variants at UMOD with chronic kidney disease and kidney stones—role of age and comorbid diseases. PLoS Genet. 6, e1001039 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vylet'al, P. et al. Alterations of uromodulin biology: a common denominator of the genetically heterogeneous FJHN/MCKD syndrome. Kidney Int. 70, 1155–1169 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Hart, T. C. et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J. Med. Genet. 39, 882–892 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rampoldi, L. et al. Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics. Hum. Mol. Genet. 12, 3369–3384 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Singh, N., Nainani, N., Arora, P. & Venuto, R. C. CKD in MYH9-related disorders. Am. J. Kidney Dis. 54, 732–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Bostrom, M. A. & Freedman, B. I. The spectrum of MYH9-associated nephropathy. Clin. J. Am. Soc. Nephrol. 5, 1107–1113 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Tzur, S. et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum. Genet. 128, 345–350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African-Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Behar, D. M. et al. The genome-wide structure of the Jewish people. Nature 466, 238–242 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Reich, D., Thangaraj, K., Patterson, N., Price, A. L. & Singh, L. Reconstructing Indian population history. Nature 461, 489–494 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oleksyk, T. K., Smith, M. W. & O'Brien, S. J. Genome-wide scans for footprints of natural selection. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 185–205 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grossman, S. R. et al. A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 327, 883–886 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Durbin, R. M. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Weiner, M. P., Gabriel, S. B. & Stephens, J. C. (eds) Genetic Variation: A Laboratory Manual (Cold Spring Harbour Laboratory Press, New York, 2007).

    Google Scholar 

  44. Feero, W. G., Guttmacher, A. E. & Collins, F. S. Genomic medicine–an updated primer. N. Engl. J. Med. 362, 2001–2011 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Jorde, L. B. & Wooding, S. P. Genetic variation, classification and 'race'. Nat. Genet. 36 (Suppl.), S28–S33 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Goldstein, D. B. Common genetic variation and human traits. N. Engl. J. Med. 360, 1696–1698 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Templeton, A. R. Haplotype trees and modern human origins. Am. J. Phys. Anthropol. 128 (Suppl.), 33–59 (2005).

    Article  Google Scholar 

  48. Wall, J. D. & Pritchard, J. K. Haplotype blocks and linkage disequilibrium in the human genome. Nat. Rev. Genet. 4, 587–597 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Crawford, D. C. & Nickerson, D. A. Definition and clinical importance of haplotypes. Annu. Rev. Med. 56, 303–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Musunuru, K. et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med. 363, 2220–2227 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jorde, L. B. Linkage disequilibrium as a gene-mapping tool. Am. J. Hum. Genet. 56, 11–14 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Collins, A. Allelic association: linkage disequilibrium structure and gene mapping. Mol. Biotechnol. 41, 83–89 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Orr, N. & Chanock, S. Common genetic variation and human disease. Adv. Genet. 62, 1–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Reich, D. E. & Lander, E. S. On the allelic spectrum of human disease. Trends Genet. 17, 502–510 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, W. Y., Barratt, B. J., Clayton, D. G. & Todd, J. A. Genome-wide association studies: theoretical and practical concerns. Nat. Rev. Genet. 6, 109–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Bodmer, W. & Bonilla, C. Common and rare variants in multifactorial susceptibility to common diseases. Nat. Genet. 40, 695–701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dickson, S. P., Wang, K., Krantz, I., Hakonarson, H. & Goldstein, D. B. Rare variants create synthetic genome-wide associations. PLoS Biol. 8, e1000294 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat. Rev. Genet. 9, 356–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, K. et al. Interpretation of association signals and identification of causal variants from genome-wide association studies. Am. J. Hum. Genet. 86, 730–742 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA 106, 9362–9367 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Manolio, T. A. Genomewide association studies and assessment of the risk of disease. N. Engl. J. Med. 363, 166–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Galvan, A., Ioannidis, J. P. & Dragani, T. A. Beyond genome-wide association studies: genetic heterogeneity and individual predisposition to cancer. Trends Genet. 26, 132–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Price, A. L., Zaitlen, N. A., Reich, D. & Patterson, N. New approaches to population stratification in genome-wide association studies. Nat. Rev. Genet. 11, 459–463 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Weale, M. E. Quality control for genome-wide association studies. Methods Mol. Biol. 628, 341–372 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Patterson, N. et al. Methods for high-density admixture mapping of disease genes. Am. J. Hum. Genet. 74, 979–1000 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hoggart, C. J., Shriver, M. D., Kittles, R. A., Clayton, D. G. & McKeigue, P. M. Design and analysis of admixture mapping studies. Am. J. Hum. Genet. 74, 965–978 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shlush, L. I. et al. Admixture mapping of end stage kidney disease genetic susceptibility using estimated mutual information ancestry informative markers. BMC Med. Genomics 3, 47 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ferguson, R., Grim, C. E. & Opgenorth, T. J. A familial risk of chronic renal failure among blacks on dialysis? J. Clin. Epidemiol. 41, 1189–1196 (1988).

    Article  CAS  PubMed  Google Scholar 

  71. Freedman, B. I., Spray, B. J., Tuttle, A. B. & Buckalew, V. M. Jr. The familial risk of end-stage renal disease in African Americans. Am. J. Kidney Dis. 21, 387–393 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Satko, S. G., Sedor, J. R., Iyengar, S. K. & Freedman, B. I. Familial clustering of chronic kidney disease. Semin. Dial. 20, 229–236 (2007).

    Article  PubMed  Google Scholar 

  73. Freedman, B. I., Soucie, J. M., Stone, S. M. & Pegram, S. Familial clustering of end-stage renal disease in blacks with HIV-associated nephropathy. Am. J. Kidney Dis. 34, 254–258 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. United States Renal Data System. Annual Data Report: Atlas of chronic kidney disease and end-stage renal disease in the United States. (National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2008).

  75. Ward, M. M. Socioeconomic status and the incidence of ESRD. Am. J. Kidney Dis. 51, 563–572 (2008).

    Article  PubMed  Google Scholar 

  76. Powe, N. R. To have and have not: health and health care disparities in chronic kidney disease. Kidney Int. 64, 763–772 (2003).

    Article  PubMed  Google Scholar 

  77. Lucas, G. M. et al. Chronic kidney disease incidence, and progression to end-stage renal disease, in HIV-infected individuals: a tale of two races. J. Infect. Dis. 197, 1548–1557 (2008).

    Article  PubMed  Google Scholar 

  78. Winkler, C. Is there a genetic basis for health disparities in human immunodeficiency virus disease? Mt Sinai J. Med. 77, 149–159 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bryc, K. et al. Genome-wide patterns of population structure and admixture in West Africans and African Americans. Proc. Natl Acad. Sci. USA 107, 786–791 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Salas, A., Carracedo, A., Richards, M. & Macaulay, V. Charting the ancestry of African Americans. Am. J. Hum. Genet. 77, 676–680 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tishkoff, S. A. et al. The genetic structure and history of Africans and African Americans. Science 324, 1035–1044 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bercovici, S., Geiger, D., Shlush, L., Skorecki, K. & Templeton, A. Panel construction for mapping in admixed populations via expected mutual information. Genome Res. 18, 661–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Macaulay, V. et al. Single, rapid coastal settlement of Asia revealed by analysis of complete mitochondrial genomes. Science 308, 1034–1036 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Tian, C., Gregersen, P. K. & Seldin, M. F. Accounting for ancestry: population substructure and genome-wide association studies. Hum. Mol. Genet. 17, R143–R150 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tang, H., Peng, J., Wang, P. & Risch, N. J. Estimation of individual admixture: analytical and study design considerations. Genet. Epidemiol. 28, 289–301 (2005).

    Article  PubMed  Google Scholar 

  86. Price, A. L. et al. A genomewide admixture map for Latino populations. Am. J. Hum. Genet. 80, 1024–1036 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bryc, K. et al. Colloquium paper: genome-wide patterns of population structure and admixture among Hispanic/Latino populations. Proc. Natl Acad. Sci. USA 107 (Suppl. 2), 8954–8961 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Salas, A. et al. The African diaspora: mitochondrial DNA and the Atlantic slave trade. Am. J. Hum. Genet. 74, 454–465 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kopp, J. B. Glomerular pathology in autosomal dominant MYH9 spectrum disorders: what are the clues telling us about disease mechanism? Kidney Int. 78, 130–133 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Freedman, B. I. et al. Polymorphisms in the nonmuscle myosin heavy chain 9 gene (MYH9) are associated with albuminuria in hypertensive African Americans: the HyperGEN study. Am. J. Nephrol. 29, 626–632 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Freedman, B. I. et al. Polymorphisms in the non-muscle myosin heavy chain 9 gene (MYH9) are strongly associated with end-stage renal disease historically attributed to hypertension in African Americans. Kidney Int. 75, 736–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pattaro, C. et al. Genome-wide linkage analysis of serum creatinine in three isolated European populations. Kidney Int. 76, 297–306 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Franceschini, N. et al. The association of the MYH9 gene and kidney outcomes in American Indians: the Strong Heart Family Study. Hum. Genet. 127, 295–301 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Freedman, B. I. et al. Non-muscle myosin heavy chain 9 gene MYH9 associations in African Americans with clinically diagnosed type 2 diabetes mellitus-associated ESRD. Nephrol. Dial. Transplant. 24, 3366–3371 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nelson, G. W. et al. Dense mapping of MYH9 localizes the strongest kidney disease associations to the region of introns 13 to 15. Hum. Mol. Genet. 19, 1805–1815 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Behar, D. M. et al. African ancestry allelic variation at the MYH9 gene contributes to increased susceptibility to non-diabetic end-stage kidney disease in Hispanic Americans. Hum. Mol. Genet. 19, 1816–1827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Voelker, R. B. & Berglund, J. A. A comprehensive computational characterization of conserved mammalian intronic sequences reveals conserved motifs associated with constitutive and alternative splicing. Genome Res. 17, 1023–1033 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yeo, G. W., Van Nostrand, E. L. & Liang, T. Y. Discovery and analysis of evolutionarily conserved intronic splicing regulatory elements. PLoS Genet. 3, e85 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ehret, G. B. Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. Curr. Hypertens. Rep. 12, 17–25 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wyatt, C. M. et al. Chronic kidney disease in HIV infection: an urban epidemic. AIDS 21, 2101–2103 (2007).

    Article  PubMed  Google Scholar 

  101. Ahuja, T. S. et al. Is the prevalence of HIV-associated nephropathy decreasing? Am. J. Nephrol. 19, 655–659 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Choi, A. I. et al. Racial differences in end-stage renal disease rates in HIV infection versus diabetes. J. Am. Soc. Nephrol. 18, 2968–2974 (2007).

    Article  PubMed  Google Scholar 

  103. Naicker, S. & Fabian, J. Risk factors for the development of chronic kidney disease with HIV/AIDS. Clin. Nephrol. 74 (Suppl. 1), S51–S56 (2010).

    PubMed  Google Scholar 

  104. Kopp, J. B., Winkler, C. A. & Nelson, G. W. MYH9 genetic variants associated with glomerular disease: what is the role for genetic testing? Semin. Nephrol. 30, 409–417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Behar, D. M., Shlush, L. I., Maor, C., Lorber, M. & Skorecki, K. Absence of HIV-associated nephropathy in Ethiopians. Am. J. Kidney Dis. 47, 88–94 (2006).

    Article  PubMed  Google Scholar 

  106. Freedman, B. I. et al. The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans. J. Am. Soc. Nephrol. 21, 1422–1426 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vanhollebeke, B. & Pays, E. The function of apolipoproteins L. Cell. Mol. Life Sci. 63, 1937–1944 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Vanhamme, L. et al. Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature 422, 83–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Thomson, R., Samanovic, M. & Raper, J. Activity of trypanosome lytic factor: a novel component of innate immunity. Future Microbiol. 4, 789–796 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Pays, E. & Vanhollebeke, B. Human innate immunity against African trypanosomes. Curr. Opin. Immunol. 21, 493–498 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Lukeš, J. & Raper, J. Prophylactic antiparasitic transgenesis for human parasitic disease? Mol. Ther. 18, 1745–1747 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Brun, R., Blum, J., Chappuis, F. & Burri, C. Human African trypanosomiasis. Lancet 375, 148–159 (2010).

    Article  PubMed  Google Scholar 

  113. Lecordier, L. et al. C-terminal mutants of apolipoprotein L-I efficiently kill both Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense. PLoS Pathog. 5, e1000685 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. De Greef, C., Chimfwembe, E., Kihang' a Wabacha, J., Bajyana Songa, E. & Hamers, R. Only the serum-resistant bloodstream forms of Trypanosoma brucei rhodesiense express the serum resistance associated (SRA) protein. Ann. Soc. Belg. Med. Trop. 72 (Suppl. 1), 13–21 (1992).

    PubMed  Google Scholar 

  115. Kieft, R. et al. Mechanism of Trypanosoma brucei gambiense (group 1) resistance to human trypanosome lytic factor. Proc. Natl Acad. Sci. USA 107, 16137–16141 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Oleksyk, T. K., Nelson, G. W., An, P., Kopp, J. B. & Winkler, C. A. Worldwide distribution of the MYH9 kidney disease susceptibility alleles and haplotypes: evidence of historical selection in Africa. PLoS ONE 5, e11474 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wan, G. et al. Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death. J. Biol. Chem. 283, 21540–21549 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Monajemi, H., Fontijn, R. D., Pannekoek, H. & Horrevoets, A. J. The apolipoprotein L gene cluster has emerged recently in evolution and is expressed in human vascular tissue. Genomics 79, 539–546 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest. 120, 1084–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Takemura, T. et al. Apolipoproteins and lipoprotein receptors in glomeruli in human kidney diseases. Kidney Int. 43, 918–927 (1993).

    Article  CAS  PubMed  Google Scholar 

  121. Candiano, G. et al. Apolipoproteins prevent glomerular albumin permeability induced in vitro by serum from patients with focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 12, 143–150 (2001).

    CAS  PubMed  Google Scholar 

  122. Nogueira, J. M. et al. A study of renal outcomes in African American living kidney donors. Transplantation 88, 1371–1376 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lentine, K. L. et al. Racial variation in medical outcomes among living kidney donors. N. Engl. J. Med. 363, 724–732 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gibney, E. M., King, A. L., Maluf, D. G., Garg, A. X. & Parikh, C. R. Living kidney donors requiring transplantation: focus on African Americans. Transplantation 84, 647–649 (2007).

    Article  PubMed  Google Scholar 

  125. Ponticelli, C. & Glassock, R. J. Posttransplant recurrence of primary glomerulonephritis. Clin. J. Am. Soc. Nephrol. 5, 2363–2372 (2010).

    Article  PubMed  Google Scholar 

  126. Schachter, M. E. et al. Recurrent focal segmental glomerulosclerosis in the renal allograft: single center experience in the era of modern immunosuppression. Clin. Nephrol. 74, 173–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Chobanian, A. V. The hypertension paradox–more uncontrolled disease despite improved therapy. N. Engl. J. Med. 361, 878–887 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Appel, L. J. et al. Intensive blood-pressure control in hypertensive chronic kidney disease. N. Engl. J. Med. 363, 918–929 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dobzhansky, T. Biology, molecular and organismic. Am. Zool. 4, 443–452 (1964).

    Article  CAS  PubMed  Google Scholar 

  130. Darvasi, A. & Shifman, S. The beauty of admixture. Nat. Genet. 37, 118–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Pritchard, J. K. How we are evolving. Sci. Am. 303, 40–47 (2010).

    Article  PubMed  Google Scholar 

  132. Schlessinger, S. D., Tankersley, M. R. & Curtis, J. J. Clinical documentation of end-stage renal disease due to hypertension. Am. J. Kidney Dis. 23, 655–660 (1994).

    Article  CAS  PubMed  Google Scholar 

  133. Bianchi, S., Bigazzi, R., Caiazza, A. & Campese, V. M. A controlled, prospective study of the effects of atorvastatin on proteinuria and progression of kidney disease. Am. J. Kidney Dis. 41, 565–570 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Gbadegesin, R., Lavin, P., Foreman, J. & Winn, M. Pathogenesis and therapy of focal segmental glomerulosclerosis: an update. Pediatr. Nephrol. doi: 10.1007/s00467-010-1692-x.

  135. Löwik, M. et al. Bigenic heterozygosity and the development of steroid-resistant focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 23, 3146–3151 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Barisoni, L., Schnaper, H. W. & Kopp, J. B. A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases. Clin. J. Am. Soc. Nephrol. 2, 529–542 (2007).

    Article  PubMed  Google Scholar 

  137. Copelovitch, L., Nash, M. A. & Kaplan, B. S. Hypothesis: Dent disease is an underrecognized cause of focal glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2, 914–918 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Wyatt, C. M., Klotman, P. E. & D'Agati, V. D. HIV-associated nephropathy: clinical presentation, pathology, and epidemiology in the era of antiretroviral therapy. Semin. Nephrol. 28, 513–522 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  139. D'Agati, V., Suh, J. I., Carbone, L., Cheng, J. T. & Appel, G. Pathology of HIV-associated nephropathy: a detailed morphologic and comparative study. Kidney Int. 35, 1358–1370 (1989).

    Article  CAS  PubMed  Google Scholar 

  140. Derebail, V. K. et al. High prevalence of sickle cell trait in African Americans with ESRD. J. Am. Soc. Nephrol. 21, 413–417 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Freedman, B. I. et al. The non-muscle Myosin heavy chain 9 gene (MYH9) is not associated with lupus nephritis in African Americans. Am. J. Nephrol. 32, 66–72 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  144. International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  145. Clark, A. G., Hubisz, M. J., Bustamante, C. D., Williamson, S. H. & Nielsen, R. Ascertainment bias in studies of human genome-wide polymorphism. Genome Res. 15, 1496–1502 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Nordborg, M. & Tavaré, S. Linkage disequilibrium: what history has to tell us. Trends Genet. 18, 83–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Ardlie, K. G., Kruglyak, L. & Seielstad, M. Patterns of linkage disequilibrium in the human genome. Nat. Rev. Genet. 3, 299–309 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K. Skorecki acknowledges the support of the Canadian and American Technion Societies (Eshagian Estate Fund, Dr Sidney Kremer Kidney Disease Research Fund), the Israel Science Foundation (grant number 890015), and the Legacy Heritage Fund. S. Rosset acknowledges the support of European Research Commission grant MIRG-CT-2007-208019, Israel Science Foundation (grant number 1227/09) and an IBM Open Collaborative Research grant. D. M. Behar thanks the European Commission, Directorate-General for Research for FP7 Ecogene grant 205419.

Author information

Authors and Affiliations

Authors

Contributions

S. Rosset, S. Tzur, W. G. Wasser and K. Skorecki contributed equally to all aspects of the manuscript. D. Behar made a substantial contribution to discussion of content and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Karl Skorecki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Modeled structure of the SRA interacting domain of the C-terminus of the APOL1 gene product. (TIFF 225 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosset, S., Tzur, S., Behar, D. et al. The population genetics of chronic kidney disease: insights from the MYH9–APOL1 locus. Nat Rev Nephrol 7, 313–326 (2011). https://doi.org/10.1038/nrneph.2011.52

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.52

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing