Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The podocyte as a target for therapies—new and old

Abstract

Injury to the podocyte results in proteinuria and often leads to progressive kidney disease. As podocytes have limited ability to repair and/or regenerate, the extent of podocyte injury is a major prognostic determinant in diabetic nephropathy and other common causes of end-stage renal disease. Therapies aimed at preventing or limiting podocyte injury and/or at promoting podocyte repair or regeneration therefore have major potential clinical and economic benefits. Many current therapies—including glucocorticosteroids and calcineurin antagonists—have potent effects on podocytes. The nonspecific natures of these agents lead to undesirable systemic adverse effects: an agent with a more specific focus on podocytes would cause less treatment-associated morbidity. Recent years have seen dramatic advances in our understanding of podocyte biology and in particular regulation of its actin cytoskeleton, the major determinant of the complex architecture on which these cells depend for their function. This advance has allowed the identification of potential therapeutic targets and the next few years should see the development and testing of specific therapies aimed at the podocyte. Thus we are about to move from a situation where some of our 'blunderbuss' older therapies fortuitously happened to have beneficial effects on podocytes to a new era where advances in biological knowledge about a key cell type in the kidney will allow targeted drug design. As well as being intellectually more satisfying, every reason exists to believe that patients of the future will benefit and that the scourge of progressive kidney disease will be more effectively tackled.

Key Points

  • Proteinuria results from dysfunction of the glomerular capillary wall, the best studied component of which is the podocyte

  • Podocytes have limited ability to repair and/or regenerate

  • Many drugs currently used in the treatment of proteinuric disease were originally employed because of their immunotherapeutic and/or anti-inflammatory actions but it is not certain whether these actions explain their efficacy in renal disease

  • It is increasingly apparent that many currently used drugs have direct effects on podocytes

  • Rapid advances in our understanding of podocyte biology are leading to the identification of rational novel therapeutic targets

  • Future design of drugs for the treatment of proteinuric diseases should focus on podocyte repair and/or regeneration

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Patrakka, J. & Tryggvason, K. New insights into the role of podocytes in proteinuria. Nat. Rev. Nephrol. 5, 463–468 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Mathieson, P. W. Update on the podocyte. Curr. Opin. Nephrol. Hypertens. 18, 206–211 (2009).

    Article  PubMed  Google Scholar 

  3. Hlatky, M. A. Is renal biopsy necessary in adults with nephrotic syndrome. Lancet 2, 1264–1268 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. Ransom, R. F., Lam, N. G., Hallett, M. A., Atkinson, S. J. & Smoyer, W. E. Glucocorticoids protect and enhance recovery of cultured murine podocytes via actin filament stabilization. Kidney Int. 68, 2473–2483 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Xing, C. Y. et al. Direct effects of dexamethasone on human podocytes. Kidney Int. 70, 1038–1045 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Wada, T., Pippin, J. W., Marshall, C. B., Griffin, S. V. & Shankland, S. J. Dexamethasone prevents podocyte apoptosis induced by puromycin aminonucleoside: role of p53 and Bcl-2-related family proteins. J. Am. Soc. Nephrol. 16, 2615–2625 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Fuji, Y. et al. The effect of dexamethasone on defective nephrin transport caused by ER stress: a potential mechanism for the therapeutic action of glucocorticoids in the acquired glomerular diseases. Kidney Int. 69, 1350–1359 (2006).

    Article  Google Scholar 

  8. Guess, A. et al. Dose- and time-dependent glucocorticoid receptor signaling in podocytes. Am. J. Physiol. Renal Physiol. 299, F845–F853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ohashi, T., Uchida, K., Uchida, S., Sasaki, S. & Nitta, K. Dexamethasone increases the phosphorylation of nephrin in cultured podocytes. Clin. Exp. Nephrol. doi:10.1007/s10157-011-0479-0.

    Article  CAS  PubMed  Google Scholar 

  10. Uchida, K. et al. Decreased tyrosine phosphorylation of nephrin in rat and human nephrosis. Kidney Int. 73, 926–932 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Hussain, S. et al. Nephrin deficiency activates NF-kappaB and promotes glomerular injury. J. Am. Soc. Nephrol. 20, 1733–1743 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mudge, S. J. et al. Corticosteroids worsen proteinuria and increase intraglomerular signaling by NF-kB in a model of membranous glomerulonephritis. Nephron Exp. Nephrol. 116, e23–e31 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Lindskog, A. et al. Melanocortin 1 receptor agonists reduce proteinuria. J. Am. Soc. Nephrol. 21, 1290–1298 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Faul, C. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 14, 931–938 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bensman, A. & Niaudet, P. Non-immunologic mechanisms of calcineurin inhibitors, explain its antiproteinuric effects in genetic glomerulopathies. Pediatric Nephrol. 25, 1197–1199 (2010).

    Article  Google Scholar 

  16. Torras, J. et al. Rapamycin has dual opposing effects on proteinuric experimental nephropathies: is it a matter of podocyte damage? Nephrol. Dial. Transplant. 24, 3632–3640 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Stallone, G. et al. Sirolimus and proteinuria in renal transplant patients: evidence for a dose-dependent effect on slit diaphragm proteins. Transplantation 91, 997–1004 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Inoki, K. et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J. Clin. Invest. 121, 2181–2196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gödel, M. et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J. Clin. Invest. 121, 2197–2209 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mathieson, P. W. Clinical Implications of basic research: proteinuria and immunity—an over-stated relationship? N. Engl. J. Med. 359, 2492–2494 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Fornoni, A. et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci. Transl. Med. 3, 85ra46 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Szeto, C. C., Gillespie, K. M. & Mathieson, P. W. Levamisole induces interleukin-18 and shifts type 1/type 2 cytokine balance. Immunology 100, 217–224 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harris, J. J., Welsh, G. I., Mathieson, P. W. & Saleem, M. A. FSGS plasma initiates specific signalling pathways in podocytes—evidence for an imbalance of circulating proteases [abstract TH-PO908]. Presented at The American Society of Nephrology Renal Week 2009.

  24. Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Puri, A., McGoon, M. D. & Kushwaha, S. S. Pulmonary arterial hypertension: current therapeutic strategies. Nat. Clin. Pract. Cardiovasc. Med. 4, 319–329 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Komers, R. Rho kinase inhibition in diabetic nephropathy. Curr. Opin. Nephrol. Hypertens. 20, 77–83 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Macconi, D. et al. Podocyte repopulation contributes to regression of glomerular injury induced by ACE inhibition. Am. J. Pathol. 174, 797–807 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fukuda, A., Fujimoto, S., Iwatsubo, S., Kawachi, H. & Kitamura, K. Effects of mineralocorticoid and angiotensin II receptor blockers on proteinuria and glomerular podocyte protein expression in a model of minimal change nephrotic syndrome. Nephrology (Carlton) 15, 321–326 (2010).

    Article  CAS  Google Scholar 

  29. Nishiyama, A. et al. Mineralocorticoid receptor blockade enhances the antiproteinuric effect of an angiotensin II blocker through inhibiting podocyte injury in type 2 diabetic rats. J. Pharmacol. Exp. Ther. 332, 1072–1080 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lin, S. et al. Spironolactone ameliorates podocytic adhesive capacity via restoring integrin alpha 3 expression in streptozotocin-induced diabetic rats. J. Renin Angiotensin Aldosterone Syst. 11, 149–157 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Okada, T. et al. Tolvaptan, a selective oral vasopressin V2 receptor antagonist, ameliorates podocyte injury in puromycin aminonucleoside nephrotic rats. Clin. Exp. Nephrol. 13, 438–446 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Sakurai, N. et al. Fluvastatin prevents podocyte injury in a murine model of HIV-associated nephropathy. Nephrol. Dial. Transplant. 24, 2378–2383 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Wei, P. et al. Simvastatin reverses podocyte injury but not mesangial expansion in early stage type 2 diabetes mellitus. Ren. Fail. 31, 503–513 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, Y. et al. Peroxisome proliferator-activated receptor-α is renoprotective in doxorubicin-induced glomerular injury. Kidney Int. 79, 1302–1311 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Eto, N. et al. Podocyte protection by darbepoetin: preservation of the cytoskeleton and nephrin expression. Kidney Int. 72, 455–463 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Schiffer, M. et al. Erythropoietin prevents diabetes-induced podocyte damage. Kidney Blood Press. Res. 31, 411–415 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Ruester, C., Franke, S., Bondeva, T. & Wolf, G. Erythropoietin protects podocytes from damage by advanced glycation end-products. Nephron Exp. Nephrol. 117, e21–e30 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Takeuchi, S. et al. The immunosuppressive drug mizoribine directly prevents podocyte injury in puromycin aminonucleoside nephrosis. Nephron Exp. Nephrol. 116, e3–e10 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, Z. H. et al. Triptolide reduces proteinuria in experimental membranous nephropathy and protects against C5b-9-induced podocyte injury in vitro. Kidney Int. 77, 974–988 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Gao, Q. et al. Treatment of db/db diabetic mice with triptolide: a novel therapy for diabetic nephropathy. Nephrol. Dial. Transplant. 25, 3539–3547 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Dai, C., Saleem, M. A., Holzman, L. B., Mathieson, P. & Liu, Y. Hepatocyte growth factor signaling ameliorates podocyte injury and proteinuria. Kidney Int. 77, 962–973 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kato, T., Mizuno, S. & Nakamura, T. Preservations of nephrin and synaptopodin by recombinant hepatocyte growth factor in podocytes for the attenuations of foot process injury and albuminuria in nephritic mice. Nephrology (Carlton) 16, 310–318 (2011).

    Article  CAS  Google Scholar 

  43. Satchell, S. C. et al. Interferon-beta reduces proteinuria in experimental glomerulonephritis. J. Am. Soc. Nephrol. 18, 2875–2884 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Kang, Y. S. et al. Inhibition of integrin-linked kinase blocks podocyte epithelial-mesenchymal transition and ameliorates proteinuria. Kidney Int. 78, 363–373 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma, H. et al. Inhibition of podocyte FAK protects against proteinuria and foot process effacement. J. Am. Soc. Nephrol. 21, 1145–1156 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Agarwal, R. Are vitamin D receptor agonists like angiotensin-converting enzyme inhibitors without side effects? Kidney Int. 77, 943–945 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Zou, M. S. et al. 1, 25-dihydroxyvitamin D3 decreases adriamycin-induced podocyte apoptosis and loss. Int. J. Med. Sci. 7, 290–299 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kwak, S. J. et al. Local kallikrein-kinin system is involved in podocyte apoptosis under diabetic conditions. Apoptosis 16, 478–490 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Barutta, F. et al. Cannabinoid receptor 1 blockade ameliorates albuminuria in experimental diabetic nephropathy. Diabetes 59, 1046–1054 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ahn, S. H. & Susztak, K. Getting a notch closer to understanding diabetic kidney disease. Diabetes 59, 1865–1867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Welsh, G. I. et al. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab. 12, 329–340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Piwkowska, A. et al. Metformin induces suppression of NAD(P)H oxidase activity in podocytes. Biochem. Biophys. Res. Commun. 393, 268–273 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, H. F. et al. Thiazolidinedione attenuate proteinuria and glomerulosclerosis in Adriamycin-induced nephropathy rats via slit diaphragm protection. Nephrology (Carlton) 15, 75–83 (2010).

    Article  CAS  Google Scholar 

  54. Mironidou-Tzouveleki, M., Tsartsalis, S. & Tomos, C. Vascular endothelial growth factor (VEGF) in the pathogenesis of diabetic nephropathy of type 1 diabetes mellitus. Curr. Drug Targets. 12, 107–114 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Saito, D. et al. Amelioration of renal alterations in obese type 2 diabetic mice by vasohibin-1, a negative feedback regulator of angiogenesis. Am. J. Physiol. Renal Physiol. 300, F873–F886 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Appel, D. et al. Recruitment of podocytes from glomerular parietal epithelial cells. J. Am. Soc. Nephrol. 20, 333–343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roufosse, C. & Cook, H. T. Stem cells and renal regeneration. Nephron Exp. Nephrol. 109, e39–e45 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Becker, J. U., Hoerning, A., Schmid, K. W. & Hoyer, P. F. Immigrating progenitor cells contribute to human podocyte turnover. Kidney Int. 72, 1468–1473 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Lasagni, L. & Romagnani, P. Glomerular epithelial stem cells: the good, the bad, and the ugly. J. Am. Soc. Nephrol. 21, 1612–1619 (2010).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathieson, P. The podocyte as a target for therapies—new and old. Nat Rev Nephrol 8, 52–56 (2012). https://doi.org/10.1038/nrneph.2011.171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.171

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing