Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical usefulness of novel prognostic biomarkers in patients on hemodialysis

Abstract

Prognosis, risk stratification and monitoring the effects of treatment are fundamental elements in the decision-making process when implementing prevention strategies for chronic kidney disease. The use of biomarkers is increasingly proposed as a method to refine risk stratification and guide therapy. In this Review, we present basic concepts regarding the validation of biomarkers and highlight difficulties inherent to the identification of useful new biomarkers in patients on hemodialysis. We focus on prognostic biomarkers that have been consistently linked to survival in this group of patients. To date, no biomarker has had sufficient full-scale testing to qualify as a useful addition to standard prognostic factors or to guide the prescription of specific treatments in this population. Furthermore, little information exists on the relative strength of various biomarkers for their prediction of mortality. A multimarker approach might refine prognosis in patients on hemodialysis, but this concept needs to be properly evaluated in large longitudinal studies and clinical trials. The potential of proteomics for the identification and study of new biomarkers in the pathophysiology of cardiovascular disease in patients with end-stage renal disease is also discussed.

Key Points

  • Novel biomarkers have the potential to refine risk stratification based on standard risk scores and to guide therapy in patients on hemodialysis

  • Biomarkers of chronic kidney disease-related mineral and bone disorders, protein–energy wasting, inflammation and myocardial injury or dysfunction have been linked with decreased survival

  • To date, no biomarker has had sufficient full-scale testing to qualify as a useful addition to standard prognostic factors or to guide therapy in patients on hemodialysis

  • A multimarker approach holds potential for refining prognosis in patients on hemodialysis, but this concept still needs to be properly evaluated in large cohorts and in clinical trials

  • Proteomics enables the simultaneous identification and evaluation of new biomarkers in the pathophysiology of established complications of kidney failure

  • Biomarkers can be applied to improve the design of clinical trials and to target specific subpopulations among patients on hemodialysis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gain in predictive power for mortality derived from the inclusion of individual and combined markers of inflammation.

Similar content being viewed by others

References

  1. Wilson, P. W. et al. Prediction of coronary heart disease using risk factor categories. Circulation 97, 1837–1847 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. D'Agostino, R. B. et al. Primary and subsequent coronary risk appraisal: new results from the Framingham study. Am. Heart J. 139, 272–281 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Cook, N. R. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 115, 928–935 (2007).

    Article  PubMed  Google Scholar 

  4. Khan, I. H. et al. Influence of coexisting disease on survival on renal-replacement therapy. Lancet 341, 415–418 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Granger, C. B. et al. Do we need to adjudicate major clinical events? Clin. Trials 5, 56–60 (2008).

    Article  PubMed  Google Scholar 

  6. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

  7. Tripepi, G., Jager, K. J., Dekker, F. W. & Zoccali, C. Testing for causality and prognosis: etiological and prognostic models. Kidney Int. 74, 1512–1515 (2008).

    Article  PubMed  Google Scholar 

  8. Manolio, T. Novel risk markers and clinical practice. N. Engl. J. Med. 349, 1587–1589 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Tripepi, G., Jager, K. J., Dekker, F. W. & Zoccali, C. Statistical methods for the assessment of prognostic biomarkers (Part I): discrimination. Nephrol. Dial. Transplant. 25, 1399–1401 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Knaus, W. A., Zimmerman, J. E., Wagner, D. P., Draper, E. A. & Lawrence, D. E. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit. Care Med. 9, 591–597 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. Wilson, P. W. et al. C-reactive protein and reclassification of cardiovascular risk in the Framingham Heart Study. Circ. Cardiovasc. Qual. Outcomes 1, 92–97 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shah, T. et al. Critical appraisal of CRP measurement for the prediction of coronary heart disease events: new data and systematic review of 31 prospective cohorts. Int. J. Epidemiol. 38, 217–231 (2009).

    Article  PubMed  Google Scholar 

  13. Ridker, P. M. et al. for the JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Nanchen, D. et al. Public health impact of statin prescribing strategies based on JUPITER. Prev. Med. 52, 159–163 (2011).

    Article  PubMed  Google Scholar 

  15. Wanner, C. et al. for the German Diabetes and Dialysis Study Investigators. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 353, 238–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Fellström, B. C. et al. for the AURORA Study Group. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 360, 1395–1407 (2009).

    Article  PubMed  CAS  Google Scholar 

  17. Lindner, A., Charra, B., Sherrard, D. J. & Scribner, B. H. Accelerated atherosclerosis in prolonged maintenance hemodialysis. N. Engl. J. Med. 290, 697–701 (1974).

    CAS  PubMed  Google Scholar 

  18. Brancaccio, D., Bellasi, A., Cozzolino, M., Galassi, A. & Gallieni, M. Arterial accelerated aging in dialysis patients: the clinical impact of vascular calcification. Curr. Vasc. Pharmacol. 7, 374–380 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. KDIGO. Chapter 1: Introduction and definition of CKD-MBD and the development of the guideline statements. Kidney Int. 76 (Suppl. 113), S3–S8 (2009).

  20. Fouque, D. et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 73, 391–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Morena, M. et al. Plasma osteoprotegerin is associated with mortality in hemodialysis patients. J. Am. Soc. Nephrol. 17, 262–270 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Speer, G. et al. Serum osteoprotegerin level, carotid-femoral pulse wave velocity and cardiovascular survival in haemodialysis patients. Nephrol. Dial. Transplant. 23, 3256–3262 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Mesquita, M. et al. Plasma osteoprotegerin is an independent risk factor for mortality and an early biomarker of coronary vascular calcification in chronic kidney disease. Clin. Chem. Lab. Med. 47, 339–346 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Sigrist, M. K., Levin, A., Er, L. & McIntyre, C. W. Elevated osteoprotegerin is associated with all-cause mortality in CKD stage 4 and 5 patients in addition to vascular calcification. Nephrol. Dial. Transplant. 24, 3157–3162 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Gutiérrez, O. M. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 359, 584–592 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jean, G. et al. High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients. Nephrol. Dial. Transplant. 24, 2792–2796 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Hsu, H. J. & Wu, M. S. Fibroblast growth factor 23: a possible cause of left ventricular hypertrophy in hemodialysis patients. Am. J. Med. Sci. 337, 116–122 (2009).

    Article  PubMed  Google Scholar 

  28. Olauson, H. et al. Relation between serum fibroblast growth factor-23 level and mortality in incident dialysis patients: are gender and cardiovascular disease confounding the relationship? Nephrol. Dial. Transplant. 25, 3033–3038 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Regidor, D. L. et al. Serum alkaline phosphatase predicts mortality among maintenance hemodialysis patients. J. Am. Soc. Nephrol. 19, 2193–2203 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beddhu, S., Baird, B., Ma, X., Cheung, A. K. & Greene, T. Serum alkaline phosphatase and mortality in hemodialysis patients. Clin. Nephrol. 74, 91–96 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Zimmermann, J., Herrlinger, S., Pruy, A., Metzger, T. & Wanner, C. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int. 55, 648–658 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Yeun, J. Y., Levine, R. A., Mantadilok, V. & Kaysen, G. A. C-reactive protein predicts all-cause and cardiovascular mortality in hemodialysis patients. Am. J. Kidney Dis. 35, 469–476 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Stenvinkel, P. et al. Inflammation and outcome in end-stage renal failure: does female gender constitute a survival advantage? Kidney Int. 62, 1791–1798 (2002).

    Article  PubMed  Google Scholar 

  34. de Mutsert, R. et al. and the NECOSAD Study Group. Excess mortality due to interaction between protein-energy wasting, inflammation and cardiovascular disease in chronic dialysis patients. Nephrol. Dial. Transplant. 23, 2957–2964 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Herselman, M., Esau, N., Kruger, J. M., Labadarios, D. & Moosa, M. R. Relationship between serum protein and mortality in adults on long-term hemodialysis: exhaustive review and meta-analysis. Nutrition 26, 10–32 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Grootendorst, D. C. et al. and The NECOSAD Study Group. Excellent agreement between C-reactive protein measurement methods in end-stage renal disease patients—no additional power for mortality prediction with high-sensitivity CRP. Nephrol. Dial. Transplant. 22, 3277–3284 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Hickman, P. E. et al. Prognostic efficacy of cardiac biomarkers for mortality in dialysis patients. Intern. Med. J. 39, 812–818 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Snaedal, S. et al. Comorbidity and acute clinical events as determinants of C-reactive protein variation in hemodialysis patients: implications for patient survival. Am. J. Kidney Dis. 53, 1024–1033 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. McGill, D., Talaulikar, G., Potter, J. M., Koerbin, G. & Hickman, P. E. Over time, high-sensitivity TnT replaces NT-proBNP as the most powerful predictor of death in patients with dialysis-dependent chronic renal failure. Clin. Chim. Acta 411, 936–939 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Meuwese, C. L. et al. Trimestral variations of C-reactive protein, interleukin-6 and tumour necrosis factor-α are similarly associated with survival in haemodialysis patients. Nephrol. Dial. Transplant. 26, 1313–1318 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Zoccali, C., Tripepi, G. & Mallamaci, F. Dissecting inflammation in ESRD: do cytokines and C-reactive protein have a complementary prognostic value for mortality in dialysis patients? J. Am. Soc. Nephrol. 17, S169–S173 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Honda, H. et al. Serum albumin, C-reactive protein, interleukin 6, and fetuin A as predictors of malnutrition, cardiovascular disease, and mortality in patients with ESRD. Am. J. Kidney Dis. 47, 139–148 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Pecoits-Filho, R., Bárány, P., Lindholm, B., Heimbürger, O. & Stenvinkel, P. Interleukin-6 is an independent predictor of mortality in patients starting dialysis treatment. Nephrol. Dial. Transplant. 17, 1684–1688 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Rao, M. et al. Plasma interleukin-6 predicts cardiovascular mortality in hemodialysis patients. Am. J. Kidney Dis. 45, 324–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Panichi, V. et al. Interleukin-6 is a stronger predictor of total and cardiovascular mortality than C-reactive protein in haemodialysis patients. Nephrol. Dial. Transplant. 19, 1154–1160 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Hermans, M. M. et al. for The Netherlands cooperative study on the adequacy of Dialysis (NECOSAD). Association of serum fetuin-A levels with mortality in dialysis patients. Kidney Int. 72, 202–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Bláha, V. et al. Circulating fetuin-A predicts early mortality in chronic hemodialysis patients. Clin. Biochem. 42, 996–1000 (2009).

    Article  PubMed  CAS  Google Scholar 

  48. Metry, G. et al. Low serum fetuin-A concentration predicts poor outcome only in the presence of inflammation in prevalent haemodialysis patients. Eur. J. Clin. Invest. 38, 804–811 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Pertosa, G. et al. Serum fetuin A in hemodialysis: a link between derangement of calcium-phosphorus homeostasis and progression of atherosclerosis? Am. J. Kidney Dis. 53, 467–474 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Hamano, T. et al. Fetuin-mineral complex reflects extraosseous calcification stress in CKD. J. Am. Soc. Nephrol. 21, 1998–2007 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, A. Y. & Lai, K. N. Use of cardiac biomarkers in end-stage renal disease. J. Am. Soc. Nephrol. 19, 1643–1652 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Apple, F. S., Murakami, M. M., Pearce, L. A. & Herzog, C. A. Predictive value of cardiac troponin I and T for subsequent death in end-stage renal disease. Circulation 106, 2941–2945 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. deFilippi, C. et al. Cardiac troponin T and C-reactive protein for predicting prognosis, coronary atherosclerosis, and cardiomyopathy in patients undergoing long-term hemodialysis. JAMA 290, 353–359 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Khan, N. A., Hemmelgarn, B. R., Tonelli, M., Thompson, C. R. & Levin, A. Prognostic value of troponin T and I among asymptomatic patients with end-stage renal disease: a meta-analysis. Circulation 112, 3088–3096 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Satyan, S., Light, R. P. & Agarwal, R. Relationships of N-terminal pro-B-natriuretic peptide and cardiac troponin T to left ventricular mass and function and mortality in asymptomatic hemodialysis patients. Am. J. Kidney Dis. 50, 1009–1019 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mallamaci, F. et al. Troponin is related to left ventricular mass and predicts all-cause and cardiovascular mortality in hemodialysis patients. Am. J. Kidney Dis. 40, 68–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Zoccali, C. et al. and the Creed Investigators. Cardiac natriuretic peptides are related to left ventricular mass and function and predict mortality in dialysis patients. J. Am. Soc. Nephrol. 12, 1508–1515 (2001).

    CAS  PubMed  Google Scholar 

  58. Needham, D. M., Shufelt, K. A., Tomlinson, G., Scholey, J. W. & Newton, G. E. Troponin I and T levels in renal failure patients without acute coronary syndrome: a systematic review of the literature. Can. J. Cardiol. 20, 1212–1218 (2004).

    PubMed  Google Scholar 

  59. Winkler, K. et al. for the German Diabetes and Dialysis Study Investigators. Change in N-terminal-pro-B-type-natriuretic-peptide and the risk of sudden death, stroke, myocardial infarction, and all-cause mortality in diabetic dialysis patients. Eur. Heart J. 29, 2092–2099 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kanwar, M. et al. Usefulness of clinical evaluation, troponins, and C-reactive protein in predicting mortality among stable hemodialysis patients. Am. J. Cardiol. 98, 1283–1287 (2006).

    Article  PubMed  Google Scholar 

  61. Petrovic, D. & Stojimirovic, B. B. Cardiac troponins: outcome predictors in hemodialysis patients. J. Artif. Organs 12, 258–263 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Jacobs, L. H. et al. Haemodialysis patients longitudinally assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and cardiac troponin I assays. Ann. Clin. Biochem. 46, 283–290 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Tate, J. R. et al. for the IFCC Working Group on Standardization of Troponin I. Standardisation of cardiac troponin I measurement: past and present. Pathology 42, 402–408 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Lee, D. S. & Tu, J. V. Are multiple biomarker testing strategies ready for prime time in heart failure? Circ. Heart Fail. 2, 387–388 (2009).

    Article  PubMed  Google Scholar 

  65. Troughton, R. W. et al. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet 355, 1126–1130 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Troughton, R. W., Lewis, L. K., Yandle, T. G., Pemberton, C. J. & Nicholls, M. G. B-type natriuretic peptides: looking to the future. Ann. Med. 43, 188–197 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Zoccali, C., Tripepi, G., Cutrupi, S., Pizzini, P. & Mallamaci, F. Low triiodothyronine: a new facet of inflammation in end-stage renal disease. J. Am. Soc. Nephrol. 16, 2789–2795 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Zoccali, C., Mallamaci, F., Tripepi, G., Cutrupi, S. & Pizzini, P. Low triiodothyronine and survival in end-stage renal disease. Kidney Int. 70, 523–528 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Carrero, J. J. et al. Clinical and biochemical implications of low thyroid hormone levels (total and free forms) in euthyroid patients with chronic kidney disease. J. Intern. Med. 262, 690–701 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Wiederkehr, M. R., Kalogiros, J. & Krapf, R. Correction of metabolic acidosis improves thyroid and growth hormone axes in haemodialysis patients. Nephrol. Dial. Transplant. 19, 1190–1197 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Böger, R. H. et al. Plasma asymmetric dimethylarginine and incidence of cardiovascular disease and death in the community. Circulation 119, 1592–1600 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Zoccali, C. Asymmetric dimethylarginine (ADMA): a cardiovascular and renal risk factor on the move. J. Hypertens. 24, 611–619 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Zoccali, C. et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet 358, 2113–2117 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Kumagai, H. et al. Association of homocysteine and asymmetric dimethylarginine with atherosclerosis and cardiovascular events in maintenance hemodialysis patients. Am. J. Kidney Dis. 48, 797–805 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Aucella, F. et al. Methylarginines and mortality in patients with end stage renal disease: a prospective cohort study. Atherosclerosis 207, 541–545 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Schulze, F., Schwedhelm, E., Maas, R. & Böger, R. H. Comparison of HPLC method and commercial ELISA assay for asymmetric dimethylarginine (ADMA) determination in human serum. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 831, 333 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Ridker, P. M., Hennekens, C. H., Buring, J. E. & Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342, 836–843 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Tripepi, G., Mallamaci, F. & Zoccali, C. Inflammation markers, adhesion molecules, and all-cause and cardiovascular mortality in patients with ESRD: searching for the best risk marker by multivariate modeling. J. Am. Soc. Nephrol. 16 (Suppl. 1), S83–S88 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, T. J. et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N. Engl. J. Med. 355, 2631–2639 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Dunlay, S. M. et al. Prognostic value of biomarkers in heart failure: application of novel methods in the community. Circ. Heart Fail. 2, 393–400 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Melander, O. et al. Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. J. Am. Med. Assoc. 302, 49–57 (2009).

    Article  CAS  Google Scholar 

  82. Mallamaci, F., Tripepi, G., Cutrupi, S., Malatino, L. S. & Zoccali, C. Prognostic value of combined use of biomarkers of inflammation, endothelial dysfunction, and myocardiopathy in patients with ESRD. Kidney Int. 67, 2330–2337 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Carrero, J. J. et al. Additive effects of soluble TWEAK and inflammation on mortality in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 4, 110–118 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tripepi, G. et al. Inflammation and asymmetric dimethylarginine for predicting death and cardiovascular events in ESRD patients. Clin. J. Am. Soc. Nephrol. 6, 1714–1721 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Goligorsky, M. S., Addabbo, F. & O'Riordan, E. Diagnostic potential of urine proteome: a broken mirror of renal diseases. J. Am. Soc. Nephrol. 18, 2233–2239 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Fliser, D. et al. Advances in urinary proteome analysis and biomarker discovery. J. Am. Soc. Nephrol. 18, 1057–1071 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Weissinger, E. M. et al. Proteomics: a novel tool to unravel the patho-physiology of uraemia. Nephrol. Dial. Transplant. 19, 3068–3077 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Weissinger, E. M. et al. Effects of oral vitamin C supplementation in hemodialysis patients: a proteomic assessment. Proteomics 6, 993–1000 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Folli, F. et al. Proteomics reveals novel oxidative and glycolytic mechanisms in type 1 diabetic patients' skin which are normalized by kidney-pancreas transplantation. PLoS ONE 5, e9923 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Lin, Y. P. et al. Comparative proteomic analysis of rat aorta in a subtotal nephrectomy model. Proteomics 10, 2429–2443 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Gallego-Delgado, J. et al. Proteomic analysis of early left ventricular hypertrophy secondary to hypertension: modulation by antihypertensive therapies. J. Am. Soc. Nephrol. 17, S159–S164 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Delles, C. et al. Urinary proteomic diagnosis of coronary artery disease: identification and clinical validation in 623 individuals. J. Hypertens. 28, 2316–2322 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Schiffer, E. et al. on behalf of the European Uremic Toxin Work Group (EUTox). Markers of vascular disease in plasma from patients with chronic kidney disease identified by proteomic analysis. J. Hypertens. 29, 783–790 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Marshall, J. et al. Processing of serum proteins underlies the mass spectral fingerprinting of myocardial infarction. J. Proteome Res. 2, 361–372 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Thongboonkerd, V. Practical points in urinary proteomics. J. Proteome Res. 6, 3881–3890 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Mallamaci, F. et al. on behalf of the CREED Investigators. Diagnostic potential of cardiac natriuretic peptides in dialysis patients. Kidney Int. 59, 1599–1606 (2001).

    Article  Google Scholar 

  97. Isakowa, T., Gutiérrez, O. M. & Wolf, M. A blueprint for randomized trials targeting phosphorus metabolism in chronic kidney disease. Kidney Int. 76, 705–716 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Ortiz and C. Zoccali researched data to include in the article. A. Ortiz, Z. A. Massy and C. Zoccali wrote the article. All authors contributed equally to discussion of content for the article and reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Carmine Zoccali.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz, A., Massy, Z., Fliser, D. et al. Clinical usefulness of novel prognostic biomarkers in patients on hemodialysis. Nat Rev Nephrol 8, 141–150 (2012). https://doi.org/10.1038/nrneph.2011.170

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.170

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing