Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular and molecular mechanisms of renal fibrosis

Abstract

Renal fibrosis, particularly tubulointerstitial fibrosis, is the common final outcome of almost all progressive chronic kidney diseases. Renal fibrosis is also a reliable predictor of prognosis and a major determinant of renal insufficiency. Irrespective of the initial causes, renal fibrogenesis is a dynamic and converging process that consists of four overlapping phases: priming, activation, execution and progression. Nonresolving inflammation after a sustained injury sets up the fibrogenic stage (priming) and triggers the activation and expansion of matrix-producing cells from multiple sources through diverse mechanisms, including activation of interstitial fibroblasts and pericytes, phenotypic conversion of tubular epithelial and endothelial cells and recruitment of circulating fibrocytes. Upon activation, matrix-producing cells assemble a multicomponent, integrin-associated protein complex that integrates input from various fibrogenic signals and orchestrates the production of matrix components and their extracellular assembly. Multiple cellular and molecular events, such as tubular atrophy, microvascular rarefaction and tissue hypoxia, promote scar formation and ensure a vicious progression to end-stage kidney failure. This Review outlines our current understanding of the cellular and molecular mechanisms of renal fibrosis, which could offer novel insights into the development of new therapeutic strategies.

Key Points

  • Despite having various initial causes, renal fibrogenesis is a converging and highly dynamic process, which consists of four overlapping phases: priming, activation, execution and progression

  • After a sustained injury, nonresolving inflammation sets up a fibrogenic stage (priming) and triggers the activation and expansion of matrix-producing fibroblasts from multiple sources through a range of mechanisms

  • Upon activation, the matrix-producing cells build a multicomponent, integrin-associated, ternary protein complex, which integrates various fibrogenic signals and orchestrates the production of extracellular matrix and its assembly

  • Many cellular and molecular events, such as tubular atrophy, vascular rarefaction and hypoxia, promote the progressive loss of kidney function and determine the outcome of renal fibrosis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major events in renal interstitial fibrogenesis.
Figure 2: Multiple origins of myofibroblasts have been proposed in renal fibrosis.
Figure 3: A multicomponent, integrin-associated protein complex constitutes the molecular machinery that integrates various fibrogenic signals and orchestrates matrix production and assembly.

Similar content being viewed by others

References

  1. Coresh, J. et al. Prevalence of chronic kidney disease in the United States. JAMA 298, 2038–2047 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. United States Renal Data System. Annual Data Report 2009 [online], (2010).

  3. Sharma, S. K. et al. Burden of CKD, proteinuria, and cardiovascular risk among Chinese, Mongolian, and Nepalese participants in the International Society of Nephrology screening programs. Am. J. Kidney Dis. 56, 915–927 (2010).

    Article  PubMed  Google Scholar 

  4. Zhang, L. et al. Prevalence and factors associated with CKD: a population study from Beijing. Am. J. Kidney Dis. 51, 373–384 (2008).

    Article  PubMed  Google Scholar 

  5. Liu, Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 69, 213–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zeisberg, M. & Neilson, E. G. Mechanisms of tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 21, 1819–1834 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Boor, P., Ostendorf, T. & Floege, J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat. Rev. Nephrol. 6, 643–656 (2010).

    Article  PubMed  Google Scholar 

  9. Li, Y. et al. Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am. J. Pathol. 172, 299–308 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamaguchi, Y. et al. Epithelial-mesenchymal transition as an explanation for podocyte depletion in diabetic nephropathy. Am. J. Kidney Dis. 54, 653–664 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Kang, Y. S. et al. Inhibition of integrin-linked kinase blocks podocyte epithelial-mesenchymal transition and ameliorates proteinuria. Kidney Int. 78, 363–373 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eddy, A. A. Molecular basis of renal fibrosis. Pediatr. Nephrol. 15, 290–301 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Chung, A. C. & Lan, H. Y. Chemokines in renal injury. J. Am. Soc. Nephrol. 22, 802–809 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Nathan, C. & Ding, A. Nonresolving inflammation. Cell 140, 871–882 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Vielhauer, V., Kulkarni, O., Reichel, C. A. & Anders, H. J. Targeting the recruitment of monocytes and macrophages in renal disease. Semin. Nephrol. 30, 318–333 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Vernon, M. A., Mylonas, K. J. & Hughes, J. Macrophages and renal fibrosis. Semin. Nephrol. 30, 302–317 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Duffield, J. S. Macrophages and immunologic inflammation of the kidney. Semin. Nephrol. 30, 234–254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ricardo, S. D., van Goor, H. & Eddy, A. A. Macrophage diversity in renal injury and repair. J. Clin. Invest. 118, 3522–3530 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, Y. & Harris, D. C. Macrophages in renal disease. J. Am. Soc. Nephrol. 22, 21–27 (2011).

    Article  PubMed  Google Scholar 

  21. Grande, M. T., Pérez-Barriocanal, F. & López-Novoa, J. M. Role of inflammation in tubulo-interstitial damage associated to obstructive nephropathy. J. Inflamm. 7, 19 (2010).

    Article  CAS  Google Scholar 

  22. Tapmeier, T. T. et al. Pivotal role of CD4+ T cells in renal fibrosis following ureteric obstruction. Kidney Int. 78, 351–362 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Lin, S. L., Castaño, A. P., Nowlin, B. T., Lupher, M. L. Jr & Duffield, J. S. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J. Immunol. 183, 6733–6743 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Henderson, N. C. et al. Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am. J. Pathol. 172, 288–298 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ko, G. J., Boo, C. S., Jo, S. K., Cho, W. Y. & Kim, H. K. Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury. Nephrol. Dial. Transplant. 23, 842–852 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, Y. et al. By homing to the kidney, activated macrophages potently exacerbate renal injury. Am. J. Pathol. 172, 1491–1499 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaissling, B. & Le Hir, M. The renal cortical interstitium: morphological and functional aspects. Histochem. Cell Biol. 130, 247–262 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. John, R. & Nelson, P. J. Dendritic cells in the kidney. J. Am. Soc. Nephrol. 18, 2628–2635 (2007).

    Article  PubMed  Google Scholar 

  29. Teteris, S. A., Engel, D. R. & Kurts, C. Homeostatic and pathogenic role of renal dendritic cells. Kidney Int. 80, 139–145 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Macconi, D. et al. Proteasomal processing of albumin by renal dendritic cells generates antigenic peptides. J. Am. Soc. Nephrol. 20, 123–130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heymann, F. et al. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J. Clin. Invest. 119, 1286–1297 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hochheiser, K. et al. Kidney dendritic cells become pathogenic during crescentic glomerulonephritis with proteinuria. J. Am. Soc. Nephrol. 22, 306–316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Timoshanko, J. R., Kitching, A. R., Semple, T. J., Tipping, P. G. & Holdsworth, S. R. A pathogenetic role for mast cells in experimental crescentic glomerulonephritis. J. Am. Soc. Nephrol. 17, 150–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Holdsworth, S. R. & Summers, S. A. Role of mast cells in progressive renal diseases. J. Am. Soc. Nephrol. 19, 2254–2261 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Kanamaru, Y. et al. Mast cell-mediated remodeling and fibrinolytic activity protect against fatal glomerulonephritis. J. Immunol. 176, 5607–5615 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Anders, H. J. et al. A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J. Clin. Invest. 109, 251–259 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sayyed, S. G. et al. An orally active chemokine receptor CCR2 antagonist prevents glomerulosclerosis and renal failure in type 2 diabetes. Kidney Int. 80, 68–78 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Tan, X., Wen, X. & Liu, Y. Paricalcitol inhibits renal inflammation by promoting vitamin D receptor-mediated sequestration of NF-κB signaling. J. Am. Soc. Nephrol. 19, 1741–1752 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wen, X., Li, Y. & Liu, Y. Opposite action of peroxisome proliferator-activated receptor-γ in regulating renal inflammation: functional switch by its ligand. J. Biol. Chem. 285, 29981–29988 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kawai, T. et al. PPAR-γ agonist attenuates renal interstitial fibrosis and inflammation through reduction of TGF-β. Lab. Invest. 89, 47–58 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Khan, S. B. et al. Antibody blockade of TNF-α reduces inflammation and scarring in experimental crescentic glomerulonephritis. Kidney Int. 67, 1812–1820 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Giannopoulou, M. et al. Hepatocyte growth factor exerts its anti-inflammatory action by disrupting nuclear factor-κB signaling. Am. J. Pathol. 173, 30–41 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gong, R., Rifai, A. & Dworkin, L. D. Anti-inflammatory effect of hepatocyte growth factor in chronic kidney disease: targeting the inflamed vascular endothelium. J. Am. Soc. Nephrol. 17, 2464–2473 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Jones, L. K. et al. IL-1RI deficiency ameliorates early experimental renal interstitial fibrosis. Nephrol. Dial. Transplant. 24, 3024–3032 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Yu, C., Gong, R., Rifai, A., Tolbert, E. M. & Dworkin, L. D. Long-term, high-dosage candesartan suppresses inflammation and injury in chronic kidney disease: nonhemodynamic renal protection. J. Am. Soc. Nephrol. 18, 750–759 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Pate, M., Damarla, V., Chi, D. S., Negi, S. & Krishnaswamy, G. Endothelial cell biology: role in the inflammatory response. Adv. Clin. Chem. 52, 109–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. López-Novoa, J. M. & Nieto, M. A. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol. Med. 1, 303–314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nightingale, J. et al. Oncostatin M, a cytokine released by activated mononuclear cells, induces epithelial cell-myofibroblast transdifferentiation via Jak/Stat pathway activation. J. Am. Soc. Nephrol. 15, 21–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Li, Q. et al. Monocytes induce proximal tubular epithelial mesenchymal transition through NF-κB dependent upregulation of ICAM-1. J. Cell. Biochem. 112, 1585–1592 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Wu, Y. et al. Stabilization of snail by NF-κB is required for inflammation-induced cell migration and invasion. Cancer Cell 15, 416–428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boutet, A. et al. Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO J. 25, 5603–5613 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rowe, R. G. et al. Mesenchymal cells reactivate Snail1 expression to drive three-dimensional invasion programs. J. Cell Biol. 184, 399–408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Inoue, T. et al. Fibroblast expression of an IκB dominant-negative transgene attenuates renal fibrosis. J. Am. Soc. Nephrol. 21, 2047–2052 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, Y., Yang, J., Luo, J. H., Dedhar, S. & Liu, Y. Tubular epithelial cell dedifferentiation is driven by the helix-loop-helix transcriptional inhibitor Id1. J. Am. Soc. Nephrol. 18, 449–460 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Yang, Y., Liou, H. C. & Sun, X. H. Id1 potentiates NF-κB activation upon T cell receptor signaling. J. Biol. Chem. 281, 34989–34996 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Lin, J. et al. Inhibitor of differentiation 1 contributes to head and neck squamous cell carcinoma survival via the NF-κB/survivin and phosphoinositide 3-kinase/Akt signaling pathways. Clin. Cancer Res. 16, 77–87 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Duffield, J. S. Macrophages in kidney repair and regeneration. J. Am. Soc. Nephrol. 22, 199–201 (2011).

    Article  PubMed  Google Scholar 

  59. Gandolfo, M. T. et al. Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury. Kidney Int. 76, 717–729 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Cao, Q. et al. IL-10/TGF-β-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. J. Am. Soc. Nephrol. 21, 933–942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Meran, S. & Steadman, R. Fibroblasts and myofibroblasts in renal fibrosis. Int. J. Exp. Pathol. 92, 158–167 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grande, M. T. & López-Novoa, J. M. Fibroblast activation and myofibroblast generation in obstructive nephropathy. Nat. Rev. Nephrol. 5, 319–328 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Schrimpf, C. & Duffield, J. S. Mechanisms of fibrosis: the role of the pericyte. Curr. Opin. Nephrol. Hypertens. 20, 297–305 (2011).

    Article  PubMed  Google Scholar 

  64. Barnes, J. L. & Gorin, Y. Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases. Kidney Int. 79, 944–956 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hewitson, T. D. Renal tubulointerstitial fibrosis: common but never simple. Am. J. Physiol. Renal Physiol. 296, F1239–F1244 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Strutz, F. & Zeisberg, M. Renal fibroblasts and myofibroblasts in chronic kidney disease. J. Am. Soc. Nephrol. 17, 2992–2998 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Paliege, A. et al. Hypoxia-inducible factor-2α-expressing interstitial fibroblasts are the only renal cells that express erythropoietin under hypoxia-inducible factor stabilization. Kidney Int. 77, 312–318 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Boor, P. & Floege, J. Chronic kidney disease growth factors in renal fibrosis. Clin. Exp. Pharmacol. Physiol. 38, 391–400 (2011).

    Article  CAS  Google Scholar 

  69. Floege, J., Eitner, F. & Alpers, C. E. A new look at platelet-derived growth factor in renal disease. J. Am. Soc. Nephrol. 19, 12–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Boye, K. & Maelandsmo, G. M. S100A4 and metastasis: a small actor playing many roles. Am. J. Pathol. 176, 528–535 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grigorian, M., Ambartsumian, N. & Lukanidin, E. Metastasis-inducing S100A4 protein: implication in non-malignant human pathologies. Curr. Mol. Med. 8, 492–496 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Wynn, T. A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Invest. 117, 524–529 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hinz, B. et al. The myofibroblast: one function, multiple origins. Am. J. Pathol. 170, 1807–1816 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lin, S. L., Kisseleva, T., Brenner, D. A. & Duffield, J. S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol. 173, 1617–1627 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Takeji, M. et al. Smooth muscle α-actin deficiency in myofibroblasts leads to enhanced renal tissue fibrosis. J. Biol. Chem. 281, 40193–40200 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Zou, J. et al. Upregulation of nestin, vimentin, and desmin in rat podocytes in response to injury. Virchows Arch. 448, 485–492 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Phanish, M. K., Winn, S. K. & Dockrell, M. E. Connective tissue growth factor-(CTGF, CCN2)—a marker, mediator and therapeutic target for renal fibrosis. Nephron Exp. Nephrol. 114, e83–e92 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Böttinger, E. P. TGF-β in renal injury and disease. Semin. Nephrol. 27, 309–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Strutz, F. et al. Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney Int. 57, 1521–1538 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Ostendorf, T., Eitner, F. & Floege, J. The PDGF family in renal fibrosis. Pediatr. Nephrol. http://dx.doi.org/10.1007/s00467-011-1892-z.

  81. Hu, K. et al. tPA protects renal interstitial fibroblasts and myofibroblasts from apoptosis. J. Am. Soc. Nephrol. 19, 503–514 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hao, S., Shen, H., Hou, Y., Mars, W. M. & Liu, Y. tPA is a potent mitogen for renal interstitial fibroblasts: role of β1 integrin/focal adhesion kinase. Am. J. Pathol. 177, 1164–1175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lin, L. et al. tPA activates LDL receptor-related protein 1-mediated mitogenic signaling involving the p90RSK and GSK3β pathway. Am. J. Pathol. 177, 1687–1696 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hu, K., Wu, C., Mars, W. M. & Liu, Y. Tissue-type plasminogen activator promotes murine myofibroblast activation through LDL receptor-related protein 1-mediated integrin signaling. J. Clin. Invest. 117, 3821–3832 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hu, K. et al. Tissue-type plasminogen activator acts as a cytokine that triggers intracellular signal transduction and induces matrix metalloproteinase-9 gene expression. J. Biol. Chem. 281, 2120–2127 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Duffield, J. S. & Humphreys, B. D. Origin of new cells in the adult kidney: results from genetic labeling techniques. Kidney Int. 79, 494–501 (2011).

    Article  PubMed  Google Scholar 

  87. Humphreys, B. D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Acloque, H., Adams, M. S., Fishwick, K., Bronner-Fraser, M. & Nieto, M. A. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J. Clin. Invest. 119, 1438–1449 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sleeman, J. P. & Thiery, J. P. SnapShot: the epithelial-mesenchymal transition. Cell 145, 162.e1 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Li, J., Qu, X. & Bertram, J. F. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am. J. Pathol. 175, 1380–1388 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zeisberg, E. M., Potenta, S. E., Sugimoto, H., Zeisberg, M. & Kalluri, R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J. Am. Soc. Nephrol. 19, 2282–2287 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kriz, W., Kaissling, B. & Le Hir, M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J. Clin. Invest. 121, 468–474 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zeisberg, M. & Duffield, J. S. Resolved: EMT produces fibroblasts in the kidney. J. Am. Soc. Nephrol. 21, 1247–1253 (2010).

    Article  PubMed  Google Scholar 

  95. Liu, Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J. Am. Soc. Nephrol. 21, 212–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Li, J. & Bertram, J. F. Endothelial-myofibroblast transition, a new player in diabetic renal fibrosis. Nephrology 15, 507–512 (2010).

    Article  PubMed  Google Scholar 

  97. Burns, W. C. & Thomas, M. C. The molecular mediators of type 2 epithelial to mesenchymal transition (EMT) and their role in renal pathophysiology. Expert Rev. Mol. Med. 12, e17 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Grgic, I., Duffield, J. S. & Humphreys, B. D. The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr. Nephrol. http://dx.doi.org/10.1007/s00467-011-1772-6.

  99. Quaggin, S. E. & Kapus, A. Scar wars: mapping the fate of epithelial-mesenchymal-myofibroblast transition. Kidney Int. 80, 41–50 (2011).

    Article  PubMed  Google Scholar 

  100. Yang, J. & Liu, Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am. J. Pathol. 159, 1465–1475 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Iwano, M. et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110, 341–350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, L., Zepeda-Orozco, D., Black, R. & Lin, F. Autophagy is a component of epithelial cell fate in obstructive uropathy. Am. J. Pathol. 176, 1767–1778 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Togawa, H. et al. Epithelial-to-mesenchymal transition in cyst lining epithelial cells in an orthologous PCK rat model of autosomal-recessive polycystic kidney disease. Am. J. Physiol. Renal Physiol. 300, F511–F520 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Boonla, C. et al. Fibrosis and evidence for epithelial-mesenchymal transition in the kidneys of patients with staghorn calculi. BJU Int. 108, 1336–1345 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Yang, J. & Liu, Y. Blockage of tubular epithelial to myofibroblast transition by hepatocyte growth factor prevents renal interstitial fibrosis. J. Am. Soc. Nephrol. 13, 96–107 (2002).

    CAS  PubMed  Google Scholar 

  106. Zeisberg, M. et al. BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964–968 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Hertig, A. et al. Early epithelial phenotypic changes predict graft fibrosis. J. Am. Soc. Nephrol. 19, 1584–1591 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Galichon, P. & Hertig, A. Epithelial to mesenchymal transition as a biomarker in renal fibrosis: are we ready for the bedside? Fibrogenesis Tissue Repair 4, 11 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. He, W. et al. Wnt/β-catenin signaling promotes renal interstitial fibrosis. J. Am. Soc. Nephrol. 20, 765–776 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, Y. et al. Inhibition of integrin-linked kinase attenuates renal interstitial fibrosis. J. Am. Soc. Nephrol. 20, 1907–1918 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang, J. et al. Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy. J. Clin. Invest. 110, 1525–1538 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu, Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J. Am. Soc. Nephrol. 15, 1–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Surendran, K., Schiavi, S. & Hruska, K. A. Wnt-dependent β-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis. J. Am. Soc. Nephrol. 16, 2373–2384 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Tan, X., Li, Y. & Liu, Y. Paricalcitol attenuates renal interstitial fibrosis in obstructive nephropathy. J. Am. Soc. Nephrol. 17, 3382–3393 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Zhou, Y. et al. HSP72 inhibits Smad3 activation and nuclear translocation in renal epithelial-to-mesenchymal transition. J. Am. Soc. Nephrol. 21, 598–609 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Herzog, E. L. & Bucala, R. Fibrocytes in health and disease. Exp. Hematol. 38, 548–556 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wada, T. et al. Involvement of bone-marrow-derived cells in kidney fibrosis. Clin. Exp. Nephrol. 15, 8–13 (2011).

    Article  PubMed  Google Scholar 

  118. Pilling, D., Fan, T., Huang, D., Kaul, B. & Gomer, R. H. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS ONE 4, e7475 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Niedermeier, M. et al. CD4+ T cells control the differentiation of Gr1+ monocytes into fibrocytes. Proc. Natl Acad. Sci. USA 106, 17892–17897 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Shao, D. D., Suresh, R., Vakil, V., Gomer, R. H. & Pilling, D. Pivotal Advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation. J. Leukoc. Biol. 83, 1323–1333 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Sakai, N. et al. The renin-angiotensin system contributes to renal fibrosis through regulation of fibrocytes. J. Hypertens. 26, 780–790 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Roufosse, C. et al. Bone marrow-derived cells do not contribute significantly to collagen I synthesis in a murine model of renal fibrosis. J. Am. Soc. Nephrol. 17, 775–782 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Yang, J., Dai, C. & Liu, Y. Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction. Am. J. Pathol. 163, 621–632 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schnaper, H. W. et al. TGF-β signal transduction in chronic kidney disease. Front. Biosci. 14, 2448–2465 (2009).

    Article  CAS  Google Scholar 

  125. Dai, C. & Liu, Y. Hepatocyte growth factor antagonizes the profibrotic action of TGF-β1 in mesangial cells by stabilizing Smad transcriptional corepressor TGIF. J. Am. Soc. Nephrol. 15, 1402–1412 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Liu, Y. Hepatocyte growth factor in kidney fibrosis: therapeutic potential and mechanisms of action. Am. J. Physiol. Renal Physiol. 287, F7–F16 (2004).

    CAS  PubMed  Google Scholar 

  127. Luo, D. D., Phillips, A. & Fraser, D. Bone morphogenetic protein-7 inhibits proximal tubular epithelial cell Smad3 signaling via increased SnoN expression. Am. J. Pathol. 176, 1139–1147 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang, B. et al. miR-200a prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes 60, 280–287 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Kato, M. et al. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney Int. 80, 358–368 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Inui, M., Martello, G. & Piccolo, S. MicroRNA control of signal transduction. Nat. Rev. Mol. Cell Biol. 11, 252–263 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Chung, A. C., Huang, X. R., Meng, X. & Lan, H. Y. miR-192 mediates TGF-β/Smad3-driven renal fibrosis. J. Am. Soc. Nephrol. 21, 1317–1325 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhou, Q. et al. TGF-β-induced MiR-491-5p expression promotes Par-3 degradation in rat proximal tubular epithelial cells. J. Biol. Chem. 285, 40019–40027 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Eyden, B. Fibronexus junctions associated with in vivo human endothelium. Ultrastruct. Pathol. 33, 28–32 (2009).

    Article  PubMed  Google Scholar 

  134. Margadant, C. & Sonnenberg, A. Integrin-TGF-β crosstalk in fibrosis, cancer and wound healing. EMBO Rep. 11, 97–105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Legate, K. R. & Fässler, R. Mechanisms that regulate adaptor binding to β-integrin cytoplasmic tails. J. Cell Sci. 122, 187–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Legate, K. R., Montañez, E., Kudlacek, O. & Fässler, R. ILK, PINCH and parvin: the tIPP of integrin signalling. Nat. Rev. Mol. Cell Biol. 7, 20–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Maydan, M. et al. Integrin-linked kinase is a functional Mn2+-dependent protein kinase that regulates glycogen synthase kinase-3β (GSK-3β) phosphorylation. PLoS ONE 5, e12356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fukuda, K., Gupta, S., Chen, K., Wu, C. & Qin, J. The pseudoactive site of ILK is essential for its binding to α-parvin and localization to focal adhesions. Mol. Cell 36, 819–830 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. He, W. et al. Plasminogen activator inhibitor-1 is a transcriptional target of the canonical pathway of Wnt/β-catenin signaling. J. Biol. Chem. 285, 24665–24675 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. ten Berge, D. et al. Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell 3, 508–518 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Wu, C. PINCH, N(i)ck and the ILK: network wiring at cell-matrix adhesions. Trends Cell Biol. 15, 460–466 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Li, Y., Dai, C., Wu, C. & Liu, Y. PINCH-1 promotes tubular epithelial-to-mesenchymal transition by interacting with integrin-linked kinase. J. Am. Soc. Nephrol. 18, 2534–2543 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Guo, L. & Wu, C. Regulation of fibronectin matrix deposition and cell proliferation by the PINCH–ILK–CH–ILKBP complex. FASEB J. 16, 1298–1300 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Yeh, Y. C. et al. Transforming growth factor-β1 induces Smad3-dependent β1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis. Am. J. Pathol. 177, 1743–1754 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Li, Y., Yang, J., Dai, C., Wu, C. & Liu, Y. Role for integrin-linked kinase in mediating tubular epithelial to mesenchymal transition and renal interstitial fibrogenesis. J. Clin. Invest. 112, 503–516 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Liu, X. C., Liu, B. C., Zhang, X. L., Li, M. X. & Zhang, J. D. Role of ERK1/2 and PI3-K in the regulation of CTGF-induced ILK expression in HK-2 cells. Clin. Chim. Acta 382, 89–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Han, S. Y. et al. High glucose and angiotensin II increase β1 integrin and integrin-linked kinase synthesis in cultured mouse podocytes. Cell Tissue Res. 323, 321–332 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Yang, F. et al. Essential role for Smad3 in angiotensin II-induced tubular epithelial-mesenchymal transition. J. Pathol. 221, 390–401 (2010).

    CAS  PubMed  Google Scholar 

  149. Carvajal, G. et al. Angiotensin II activates the Smad pathway during epithelial mesenchymal transdifferentiation. Kidney Int. 74, 585–595 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Yang, F., Chung, A. C., Huang, X. R. & Lan, H. Y. Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-β-dependent and -independent Smad pathways: the role of Smad3. Hypertension 54, 877–884 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Eddy, A. A. Progression in chronic kidney disease. Adv. Chronic Kidney Dis. 12, 353–365 (2005).

    Article  PubMed  Google Scholar 

  152. Bradshaw, A. D. The role of SPARC in extracellular matrix assembly. J. Cell Commun. Signal. 3, 239–246 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Weaver, M. S., Workman, G. & Sage, E. H. The copper binding domain of SPARC mediates cell survival in vitro via interaction with integrin β1 and activation of integrin-linked kinase. J. Biol. Chem. 283, 22826–22837 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Shweke, N. et al. Tissue transglutaminase contributes to interstitial renal fibrosis by favoring accumulation of fibrillar collagen through TGF-β activation and cell infiltration. Am. J. Pathol. 173, 631–642 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Huang, L. et al. Transglutaminase inhibition ameliorates experimental diabetic nephropathy. Kidney Int. 76, 383–394 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. He, W., Kang, Y. S., Dai, C. & Liu, Y. Blockade of Wnt/β-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J. Am. Soc. Nephrol. 22, 90–103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sharma, S., Sirin, Y. & Susztak, K. The story of Notch and chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 20, 56–61 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bielesz, B. et al. Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J. Clin. Invest. 120, 4040–4054 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Higgins, D. F. et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Invest. 117, 3810–3820 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Sun, S. et al. Hypoxia-inducible factor-1α induces Twist expression in tubular epithelial cells subjected to hypoxia, leading to epithelial-to-mesenchymal transition. Kidney Int. 75, 1278–1287 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Kume, S. et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest. 120, 1043–1055 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jiang, M., Liu, K., Luo, J. & Dong, Z. Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am. J. Pathol. 176, 1181–1192 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Koesters, R. et al. Tubular overexpression of transforming growth factor-β1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. Am. J. Pathol. 177, 632–643 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V. & Bonventre, J. V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16, 535–543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wang, S. et al. Renal bone morphogenetic protein-7 protects against diabetic nephropathy. J. Am. Soc. Nephrol. 17, 2504–2512 (2006).

    Article  CAS  PubMed  Google Scholar 

  166. Tan, X., He, W. & Liu, Y. Combination therapy with paricalcitol and trandolapril reduces renal fibrosis in obstructive nephropathy. Kidney Int. 76, 1248–1257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. de Zeeuw, D. et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet 376, 1543–1551 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Mirkovic, K., van den Born, J., Navis, G. & de Borst, M. H. Vitamin D in chronic kidney disease: new potential for intervention. Curr. Drug Targets 12, 42–53 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Wang, X. et al. Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy. Am. J. Physiol. Renal Physiol. 299, F973–F982 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Cheng, S., Pollock, A. S., Mahimkar, R., Olson, J. L. & Lovett, D. H. Matrix metalloproteinase 2 and basement membrane integrity: a unifying mechanism for progressive renal injury. FASEB J. 20, 1898–1900 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Zeisberg, M. et al. Stage-specific action of matrix metalloproteinases influences progressive hereditary kidney disease. PLoS Med. 3, e100 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li, J. et al. Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59, 2612–2624 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lin, S. L. et al. Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. Am. J. Pathol. 178, 911–923 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Venkatachalam, M. A. et al. Acute kidney injury: a springboard for progression in chronic kidney disease. Am. J. Physiol. Renal Physiol. 298, F1078–F1094 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kelly, K. J., Burford, J. L. & Dominguez, J. H. Postischemic inflammatory syndrome: a critical mechanism of progression in diabetic nephropathy. Am. J. Physiol. Renal Physiol. 297, F923–F931 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Guo, Z. J. et al. Advanced oxidation protein products activate vascular endothelial cells via a RAGE-mediated signaling pathway. Antioxid. Redox Signal. 10, 1699–1712 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wilkinson, L. et al. Loss of renal microvascular integrity in postnatal Crim1 hypomorphic transgenic mice. Kidney Int. 76, 1161–1171 (2009).

    Article  PubMed  Google Scholar 

  178. Mimura, I. & Nangaku, M. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nat. Rev. Nephrol. 6, 667–678 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Touyz, R. M. & Briones, A. M. Reactive oxygen species and vascular biology: implications in human hypertension. Hypertens. Res. 34, 5–14 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Fine, L. G. & Norman, J. T. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int. 74, 867–872 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. Gunaratnam, L. & Bonventre, J. V. HIF in kidney disease and development. J. Am. Soc. Nephrol. 20, 1877–1887 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. D'Agati, V. & Schmidt, A. M. RAGE and the pathogenesis of chronic kidney disease. Nat. Rev. Nephrol. 6, 352–360 (2010).

    Article  CAS  PubMed  Google Scholar 

  183. Negre-Salvayre, A., Coatrieux, C., Ingueneau, C. & Salvayre, R. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br. J. Pharmacol. 153, 6–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Zhou, L. L. et al. Accumulation of advanced oxidation protein products induces podocyte apoptosis and deletion through NADPH-dependent mechanisms. Kidney Int. 76, 1148–1160 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Shi, X. Y. et al. Advanced oxidation protein products promote inflammation in diabetic kidney through activation of renal nicotinamide adenine dinucleotide phosphate oxidase. Endocrinology 149, 1829–1839 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Daroux, M. et al. Advanced glycation end-products: implications for diabetic and non-diabetic nephropathies. Diabetes Metab. 36, 1–10 (2010).

    Article  CAS  PubMed  Google Scholar 

  187. Shanmugam, N. et al. Proinflammatory effects of advanced lipoxidation end products in monocytes. Diabetes 57, 879–888 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hu, K., Mars, W. M. & Liu, Y. Novel actions of tissue-type plasminogen activator in chronic kidney disease. Front. Biosci. 13, 5174–5186 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I apologize to all colleagues whose important findings could not be cited due to space limitations. Our works described in this Review were supported by the National Institutes of Health grants DK064005 and DK071040.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7, 684–696 (2011). https://doi.org/10.1038/nrneph.2011.149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing