Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pharmacology, efficacy and safety of oral phosphate binders

Abstract

The ideal serum level of phosphate in patients on dialysis, and the benefits of controlling levels of phosphate in serum remain unclear despite observational studies that associate phosphate levels with mortality. In the absence of robust data from trials, current guidelines are necessarily based on opinion. Oral phosphate binders are required by the majority of patients on dialysis, and all of these binders can control serum levels of phosphate to similar degrees. Patient preference and adherence to prescribed therapy is at least as important as the efficacy of the prescribed binder. Avoidance of calcium-containing binders has become accepted practice where the alternatives are affordable, but incontrovertible evidence in favor of this approach is lacking. Use of sevelamer and lanthanum avoids calcium loading, but at considerable financial cost and with no reliable patient outcome data to prove their value. Additional approaches to aid control of serum levels of phosphate include blockade of gastrointestinal phosphate absorption and possibly binding of salivary phosphate. Importantly, the role of phosphate control in determining patient outcomes must be quantified, which is likely to require a large randomized, controlled study of two levels of phosphate control. Without such a study we will continue to rely on observational data with all its uncertainties and potential to mislead.

Key Points

  • The ideal serum level of phosphate and the benefits of controlling phosphate levels in serum remain unclear, and available guidelines are largely based on opinion

  • All phosphate binders can control phosphate levels in serum to a similar degree; however, patient preference and adherence to prescribed therapy must be considered together with the efficacy of the prescribed binder

  • Most clinicians avoid calcium-containing binders where the alternatives are affordable, but evidence to support this strategy is limited

  • Calcium loading can be avoided with sevelamer and lanthanum, but these drugs are expensive and no reliable patient outcome data exist to prove their value

  • Alternative approaches to control of phosphate absorption include blockade of gastrointestinal phosphate and possibly binding of salivary phosphate

  • Randomized, controlled trials are required to determine the ideal range for control of phosphate in serum

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phosphate balance in a patient receiving dialysis.

Similar content being viewed by others

References

  1. Cancer Research UK. Ovarian cancer survival statistics [online], (2011).

  2. Ansell, D. et al. UK Renal Registry 12th Annual Report 117–144 (The Renal Association, Bristol, UK, 2009).

    Google Scholar 

  3. Block, G. A., Hulbert-Shearon, T. E., Levin, N. W. & Port, F. K. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am. J. Kidney Dis. 31, 607–617 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Mathew, S. et al. The mechanism of phosphorus as a cardiovascular risk factor in CKD. J. Am. Soc. Nephrol. 19, 1092–1105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cozzolino, M., Ciceri, P., Volpi, E. M., Olivi, L. & Messa, P. G. Pathophysiology of calcium and phosphate metabolism impairment in chronic kidney disease. Blood Purif. 27, 338–344 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Hruska, K. A., Saab, G., Mathew, S. & Lund, R. Renal osteodystrophy, phosphate homeostasis, and vascular calcification. Semin. Dial. 20, 309–315 (2007).

    Article  PubMed  Google Scholar 

  7. Uribarri, J. Phosphorus additives in food and their effect in dialysis patients. Clin. J. Am. Soc. Nephrol. 4, 1290–1292 (2009).

    Article  PubMed  Google Scholar 

  8. Uribarri, J. Phosphorus homeostasis in normal health and in chronic kidney disease patients with special emphasis on dietary phosphorus intake. Semin. Dial. 20, 295–301 (2007).

    Article  PubMed  Google Scholar 

  9. Zisman, A. L. & Wolf, M. Recent advances in the rapidly evolving field of fibroblast growth factor 23 in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 19, 335–342 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Kooienga, L. Phosphorus balance with daily dialysis. Semin. Dial. 20, 342–345 (2007).

    Article  PubMed  Google Scholar 

  11. Kolek, O. I. et al. 1α, 25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G1036–G1042 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Larsson, T., Nisbeth, U., Ljunggren, O., Juppner, H. & Jonsson, K. B. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int. 64, 2272–2279 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Gutiérrez, O. et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J. Am. Soc. Nephrol. 16, 2205–2215 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Perwad, F. et al. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 146, 5358–5364 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Antoniucci, D. M., Yamashita, T. & Portale, A. A. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J. Clin. Endocrinol. Metab. 91, 3144–3149 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, S. et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J. Am. Soc. Nephrol. 17, 1305–1315 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Imanishi, Y. et al. FGF-23 in patients with end-stage renal disease on hemodialysis. Kidney Int. 65, 1943–1946 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Shigematsu, T. et al. Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am. J. Kidney Dis. 44, 250–256 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Shimada, T. et al. Circulating fibroblast growth factor 23 in patients with end-stage renal disease treated by peritoneal dialysis is intact and biologically active. J. Clin. Endocrinol. Metab. 95, 578–585 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fliser, D. et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J. Am. Soc. Nephrol. 18, 2600–2608 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Hsu, H. J. & Wu, M. S. Fibroblast growth factor 23: a possible cause of left ventricular hypertrophy in hemodialysis patients. Am. J. Med. Sci. 337, 116–122 (2009).

    Article  PubMed  Google Scholar 

  22. Gutiérrez, O. M. et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 119, 2545–2552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gutiérrez, O. M. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 359, 584–592 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ben-Dov, I. Z. et al. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest. 117, 4003–4008 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Komaba, H. & Fukagawa, M. FGF23-parathyroid interaction: implications in chronic kidney disease. Kidney Int. 77, 292–298 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Koh, N. et al. Severely reduced production of klotho in human chronic renal failure kidney. Biochem. Biophys. Res. Commun. 280, 1015–1020 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Komaba, H. et al. Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int. 77, 232–238 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Galitzer, H., Ben-Dov, I. Z., Silver, J. & Naveh-Many, T. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int. 77, 211–218 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Z. et al. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat. Med. 13, 1176–1184 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Adragão, T. et al. A plain X-ray vascular calcification score is associated with arterial stiffness and mortality in dialysis patients. Nephrol. Dial. Transplant. 24, 997–1002 (2009).

    Article  PubMed  Google Scholar 

  31. Adragão, T. et al. A simple vascular calcification score predicts cardiovascular risk in haemodialysis patients. Nephrol. Dial. Transplant. 19, 1480–1488 (2004).

    Article  PubMed  Google Scholar 

  32. Isakova, T. et al. Phosphorus binders and survival on hemodialysis. J. Am. Soc. Nephrol. 20, 388–396 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wills, M. R. & Savory, J. Aluminium poisoning: dialysis encephalopathy, osteomalacia, and anaemia. Lancet 2, 29–34 (1983).

    Article  CAS  PubMed  Google Scholar 

  34. González-Revaldería, J. et al. Biochemical and hematological changes in low-level aluminum intoxication. Clin. Chem. Lab. Med. 38, 221–225 (2000).

    Article  PubMed  Google Scholar 

  35. Becaria, A., Campbell, A. & Bondy, S. C. Aluminum as a toxicant. Toxicol. Ind. Health 18, 309–320 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Rüster, M., Abendroth, K., Lehmann, G. & Stein, G. Aluminum deposition in the bone of patients with chronic renal failure—detection of aluminum accumulation without signs of aluminum toxicity in bone using acid solochrome azurine. Clin. Nephrol. 58, 305–312 (2002).

    Article  PubMed  Google Scholar 

  37. Jaffe, J. A., Liftman, C. & Glickman, J. D. Frequency of elevated serum aluminum levels in adult dialysis patients. Am. J. Kidney Dis. 46, 316–319 (2005).

    Article  PubMed  Google Scholar 

  38. Andrade, L. G. et al. Dialysis encephalopathy secondary to aluminum toxicity, diagnosed by bone biopsy. Nephrol. Dial. Transplant. 20, 2581–2582 (2005).

    Article  PubMed  Google Scholar 

  39. Feith, G. W. Oral phosphate binders in patients with kidney failure. N. Engl. J. Med. 363, 989–990 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Slatopolsky, E., Weerts, C., Stokes, T., Windus, D. & Delmez, J. Alternative phosphate binders in dialysis patients: calcium carbonate. Semin. Nephrol. 6, 35–41 (1986).

    CAS  PubMed  Google Scholar 

  41. Schaefer, K., Umlauf, E. & von Herrath, D. Reduced risk of hypercalcemia for hemodialysis patients by administering calcitriol at night. Am. J. Kidney Dis. 19, 460–464 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Stamatakis, M. K., Alderman, J. M. & Meyer-Stout, P. J. Influence of pH on in vitro disintegration of phosphate binders. Am. J. Kidney Dis. 32, 808–812 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Sheikh, M. S. et al. Reduction of dietary phosphorus absorption by phosphorus binders. A theoretical, in vitro, and in vivo study. J. Clin. Invest. 83, 66–73 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pflanz, S., Henderson, I. S., McElduff, N. & Jones, M. C. Calcium acetate versus calcium carbonate as phosphate-binding agents in chronic haemodialysis. Nephrol. Dial. Transplant. 9, 1121–1124 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Harris, D. C. & Yuill, L. Calcium alginate versus aluminum hydroxide in patients on hemodialysis. Nephron 65, 324–325 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Passlick, J., Wilhelm, M., Busch, T., Grabensee, B. & Ohnesorge, F. K. Calcium alginate, an aluminum-free phosphate binder, in patients on CAPD. Clin. Nephrol. 32, 96–100 (1989).

    CAS  PubMed  Google Scholar 

  47. Takahashi, N. et al. Effect of histamine H2-receptor antagonist on the phosphorus-binding abilities of calcium carbonate and calcium lactate in hemodialysis patients. J. Am. Soc. Nephrol. 10, 1090–1094 (1999).

    CAS  PubMed  Google Scholar 

  48. Birck, R., Zimmermann, E., Wassmer, S., Nowack, R. & van der Woude, F. J. Calcium ketoglutarate versus calcium acetate for treatment of hyperphosphataemia in patients on maintenance haemodialysis: a cross-over study. Nephrol. Dial. Transplant. 14, 1475–1479 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Macia, M. & Coronel, F. Serum phosphate control: what about calcium salts of keto-amino acids? Nephrol. Dial. Transplant. 10, 2159–2160 (1995).

    CAS  PubMed  Google Scholar 

  50. Schaefer, K., von Herrath, D., Asmus, G. & Umlauf, E. The beneficial effect of ketoacids on serum phosphate and parathyroid hormone in patients with chronic uremia. Clin. Nephrol. 30, 93–96 (1988).

    CAS  PubMed  Google Scholar 

  51. Nilsson, P., Johansson, S. G. & Danielson, B. G. Magnesium studies in hemodialysis patients before and after treatment with low dialysate magnesium. Nephron 37, 25–29 (1984).

    Article  CAS  PubMed  Google Scholar 

  52. Hutchison, A. J. et al. Hypercalcaemia, hypermagnesaemia, hyperphosphataemia and hyperaluminaemia in CAPD: improvement in serum biochemistry by reduction in dialysate calcium and magnesium concentrations. Nephron 72, 52–58 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Hutchison, A. J., Merchant, M., Boulton, H. F., Hinchcliffe, R. & Gokal, R. Calcium and magnesium mass transfer in peritoneal dialysis patients using 1.25 mmol/L calcium, 0.25 mmol/L magnesium dialysis fluid. Perit. Dial. Int. 13, 219–223 (1993).

    CAS  PubMed  Google Scholar 

  54. Meema, H. E., Oreopoulos, D. G. & Rapoport, A. Serum magnesium level and arterial calcification in end-stage renal disease. Kidney Int. 32, 388–394 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Montezano, A. C. et al. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium. Hypertension 56, 453–462 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Gorgels, T. G. et al. Dietary magnesium, not calcium, prevents vascular calcification in a mouse model for pseudoxanthoma elasticum. J. Mol. Med. 88, 467–475 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Turgut, F. et al. Magnesium supplementation helps to improve carotid intima media thickness in patients on hemodialysis. Int. Urol. Nephrol. 40, 1075–1082 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Autissier, V., Damment, S. J. & Henderson, R. A. Relative in vitro efficacy of the phosphate binders lanthanum carbonate and sevelamer hydrochloride. J. Pharm. Sci. 96, 2818–2827 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Damment, S. J. & Pennick, M. Clinical pharmacokinetics of the phosphate binder lanthanum carbonate. Clin. Pharmacokinet. 47, 553–563 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Damment, S. J. & Pennick, M. Systemic lanthanum is excreted in the bile of rats. Toxicol. Lett. 171, 69–77 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Persy, V. P., Behets, G. J., Bervoets, A. R., De Broe, M. E. & D'Haese, P. C. Lanthanum: a safe phosphate binder. Semin. Dial. 19, 195–199 (2006).

    Article  PubMed  Google Scholar 

  62. Altmann, P., Barnett, M. E. & Finn, W. F. Cognitive function in stage 5 chronic kidney disease patients on hemodialysis: no adverse effects of lanthanum carbonate compared with standard phosphate-binder therapy. Kidney Int. 71, 252–259 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Albaaj, F. & Hutchison, A. J. Lanthanum carbonate for the treatment of hyperphosphataemia in renal failure and dialysis patients. Expert Opin. Pharmacother. 6, 319–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Goldsmith, D. R., Scott, L. J., Cvetkovic, R. S. & Plosker, G. L. Sevelamer hydrochloride: a review of its use for hyperphosphataemia in patients with end-stage renal disease on haemodialysis. Drugs 68, 85–104 (2008).

    Article  PubMed  Google Scholar 

  65. Burke, S., Amin, N., Incerti, C., Plone, M. & Watson, N. Sevelamer hydrochloride (Renagel), a nonabsorbed phosphate-binding polymer, does not interfere with digoxin or warfarin pharmacokinetics. J. Clin. Pharmacol. 41, 193–198 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Burke, S. K., Slatopolsky, E. A. & Goldberg, D. I. RenaGel, a novel calcium- and aluminium-free phosphate binder, inhibits phosphate absorption in normal volunteers. Nephrol. Dial. Transplant. 12, 1640–1644 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Wrong, O. & Harland, C. Sevelamer. Nephrol. Dial. Transplant. 23, 2108 (2008).

    Article  PubMed  Google Scholar 

  68. Plone, M. A., Petersen, J. S., Rosenbaum, D. P. & Burke, S. K. Sevelamer, a phosphate-binding polymer, is a non-absorbed compound. Clin. Pharmacokinet. 41, 517–523 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Rosenbaum, D. P., Holmes-Farley, S. R., Mandeville, W. H., Pitruzzello, M. & Goldberg, D. I. Effect of RenaGel, a non-absorbable, cross-linked, polymeric phosphate binder, on urinary phosphorus excretion in rats. Nephrol. Dial. Transplant. 12, 961–964 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Burke, S. K., Amin, N. S., Incerti, C., Plone, M. A. & Lee, J. W. Sevelamer hydrochloride (Renagel), a phosphate-binding polymer, does not alter the pharmacokinetics of two commonly used antihypertensives in healthy volunteers. J. Clin. Pharmacol. 41, 199–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Kays, M. B., Overholser, B. R., Mueller, B. A., Moe, S. M. & Sowinski, K. M. Effects of sevelamer hydrochloride and calcium acetate on the oral bioavailability of ciprofloxacin. Am. J. Kidney Dis. 42, 1253–1259 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Pieper, A. K. et al. The effect of sevelamer on the pharmacokinetics of cyclosporin A and mycophenolate mofetil after renal transplantation. Nephrol. Dial. Transplant. 19, 2630–2633 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Delmez, J. et al. A randomized, double-blind, crossover design study of sevelamer hydrochloride and sevelamer carbonate in patients on hemodialysis. Clin. Nephrol. 68, 386–391 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Pai, A. B. & Shepler, B. M. Comparison of sevelamer hydrochloride and sevelamer carbonate: risk of metabolic acidosis and clinical implications. Pharmacotherapy 29, 554–561 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Fan, S. et al. A randomized, crossover design study of sevelamer carbonate powder and sevelamer hydrochloride tablets in chronic kidney disease patients on haemodialysis. Nephrol. Dial. Transplant. 24, 3794–3799 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chertow, G. M. et al. Poly[allylamine hydrochloride] (RenaGel): a noncalcemic phosphate binder for the treatment of hyperphosphatemia in chronic renal failure. Am. J. Kidney Dis. 29, 66–71 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Al-Baaj, F., Speake, M. & Hutchison, A. J. Control of serum phosphate by oral lanthanum carbonate in patients undergoing haemodialysis and continuous ambulatory peritoneal dialysis in a short-term, placebo-controlled study. Nephrol. Dial. Transplant. 20, 775–782 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. McIntyre, C. W. et al. Iron-magnesium hydroxycarbonate (fermagate): a novel non-calcium-containing phosphate binder for the treatment of hyperphosphatemia in chronic hemodialysis patients. Clin. J. Am. Soc. Nephrol. 4, 401–409 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Locatelli, F. et al. Effect of MCI-196 on serum phosphate and cholesterol levels in haemodialysis patients with hyperphosphataemia: a double-blind, randomized, placebo-controlled study. Nephrol. Dial. Transplant. 25, 574–581 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Johnson, D. W. Sevelamer versus calcium-based phosphate binders in chronic kidney disease: what should we conclude from the evidence to date? Nephrol. Dial. Transplant. 24, 2970–2972 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Navaneethan, S. D., Palmer, S. C., Craig, J. C., Elder, G. J. & Strippoli, G. F. Benefits and harms of phosphate binders in CKD: a systematic review of randomized controlled trials. Am. J. Kidney Dis. 54, 619–637 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Chertow, G. M., Burke, S. K. & Raggi, P. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int. 62, 245–252 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Jamal, S. A., Fitchett, D., Lok, C. E., Mendelssohn, D. C. & Tsuyuki, R. T. The effects of calcium-based versus non-calcium-based phosphate binders on mortality among patients with chronic kidney disease: a meta-analysis. Nephrol. Dial. Transplant. 24, 3168–3174 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Sprague, S. M. et al. Lanthanum carbonate vs. sevelamer hydrochloride for the reduction of serum phosphorus in hemodialysis patients: a crossover study. Clin. Nephrol. 72, 252–258 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Arenas, M. D. et al. A comparative study of 2 new phosphate binders (sevelamer and lanthanum carbonate) in routine clinical practice. J. Nephrol. 23, 683–692 (2010).

    PubMed  Google Scholar 

  86. Suki, W. N. et al. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int. 72, 1130–1137 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Wilson, R., Zhang, P., Smyth, M. & Pratt, R. Assessment of survival in a 2-year comparative study of lanthanum carbonate versus standard therapy. Curr. Med. Res. Opin. 25, 3021–3028 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. [No authors listed] KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 76, S1–S130 (2009).

  89. Parham, R., Riley, S., Hutchison, A. & Horne, R. Patients' satisfaction with information about phosphate-binding medication. J. Ren. Care 35 (Suppl. 1), 86–93 (2009).

    Article  PubMed  Google Scholar 

  90. Chiu, Y. W. et al. Pill burden, adherence, hyperphosphatemia, and quality of life in maintenance dialysis patients. Clin. J. Am. Soc. Nephrol. 4, 1089–1096 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Arenas, M. D. et al. Phosphorus binders: preferences of patients on haemodialysis and its impact on treatment compliance and phosphorus control [Spanish]. Nefrologia 30, 522–530 (2010).

    CAS  PubMed  Google Scholar 

  92. Hutchison, A. J. & Laville, M. Switching to lanthanum carbonate monotherapy provides effective phosphate control with a low tablet burden. Nephrol. Dial. Transplant. 23, 3677–3684 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hutchison, A. J. et al. Long-term efficacy and tolerability of lanthanum carbonate: results from a 3-year study. Nephron Clin. Pract. 102, c61–c71 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Hutchison, A. J., Barnett, M. E., Krause, R. & Siami, G. A. Lanthanum carbonate treatment, for up to 6 years, is not associated with adverse effects on the liver in patients with chronic kidney disease stage 5 receiving hemodialysis. Clin. Nephrol. 71, 286–295 (2009).

    CAS  PubMed  Google Scholar 

  95. Hutchison, A. J., Barnett, M. E., Krause, R., Kwan, J. T. & Siami, G. A. Long-term efficacy and safety profile of lanthanum carbonate: results for up to 6 years of treatment. Nephron Clin. Pract. 110, c15–c23 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. [No authors listed] Sevelamer: constipation and occlusion. Complications, sometimes fatal. Prescrire Int. 17, 111 (2008).

  97. Madan, P., Bhayana, S., Chandra, P. & Hughes, J. I. Lower gastrointestinal bleeding: association with sevelamer use. World J. Gastroenterol. 14, 2615–2616 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Friedman, E. A. Calcium-based phosphate binders are appropriate in chronic renal failure. Clin. J. Am. Soc. Nephrol. 1, 704–709 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Moe, S. M. & Chertow, G. M. The case against calcium-based phosphate binders. Clin. J. Am. Soc. Nephrol. 1, 697–703 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Bushinsky, D. A. Phosphate binders: hold the calcium? Clin. J. Am. Soc. Nephrol. 1, 695–696 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Spiegel, D. M. The role of magnesium binders in chronic kidney disease. Semin. Dial. 20, 333–336 (2007).

    Article  PubMed  Google Scholar 

  102. O'Donovan, R., Baldwin, D., Hammer, M., Moniz, C. & Parsons, V. Substitution of aluminium salts by magnesium salts in control of dialysis hyperphosphataemia. Lancet 1, 880–882 (1986).

    Article  CAS  PubMed  Google Scholar 

  103. Spiegel, D. M. & Farmer, B. Long-term effects of magnesium carbonate on coronary artery calcification and bone mineral density in hemodialysis patients: a pilot study. Hemodial. Int. 13, 453–459 (2009).

    Article  PubMed  Google Scholar 

  104. Spiegel, D. M., Farmer, B., Smits, G. & Chonchol, M. Magnesium carbonate is an effective phosphate binder for chronic hemodialysis patients: a pilot study. J. Ren. Nutr. 17, 416–422 (2007).

    Article  PubMed  Google Scholar 

  105. Baradaran, A. & Nasri, H. Correlation of serum magnesium with serum parathormone levels in patients on regular hemodialysis. Saudi J. Kidney Dis. Transpl. 17, 344–350 (2006).

    PubMed  Google Scholar 

  106. Wei, M., Esbaei, K., Bargman, J. & Oreopoulos, D. G. Relationship between serum magnesium, parathyroid hormone, and vascular calcification in patients on dialysis: a literature review. Perit. Dial. Int. 26, 366–373 (2006).

    CAS  PubMed  Google Scholar 

  107. Navarro, J. F., Mora, C. & Garcia, J. Serum magnesium and parathyroid hormone levels in dialysis patients. Kidney Int. 57, 2654 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. de Francisco, A. L. et al. Evaluation of calcium acetate/magnesium carbonate as a phosphate binder compared with sevelamer hydrochloride in haemodialysis patients: a controlled randomized study (CALMAG study) assessing efficacy and tolerability. Nephrol. Dial. Transplant. 25, 3707–3717 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hutchison, A. J. et al. Efficacy, tolerability, and safety of lanthanum carbonate in hyperphosphatemia: a 6-month, randomized, comparative trial versus calcium carbonate. Nephron Clin. Pract. 100, c8–c19 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Finn, W. F. & SPD 405–307 Lanthanum Study Group. Lanthanum carbonate versus standard therapy for the treatment of hyperphosphatemia: safety and efficacy in chronic maintenance hemodialysis patients. Clin. Nephrol. 65, 191–202 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Hutchison, A. J. et al. Long-term efficacy and tolerability of lanthanum carbonate: results from a 3-year study. Nephron Clin. Pract. 102, c61–c71 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Molony, D. A. & Murthy, B. Accumulation of metals and minerals from phosphate binders. Blood Purif. 23 (Suppl. 1), 2–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Lacour, B. et al. Chronic renal failure is associated with increased tissue deposition of lanthanum after 28-day oral administration. Kidney Int. 67, 1062–1069 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Damment, S. J. Enlightenment on liver lanthanum exposure. Kidney Int. 70, 1372–1373 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. D'Haese, P. C. et al. A multicenter study on the effects of lanthanum carbonate (Fosrenol) and calcium carbonate on renal bone disease in dialysis patients. Kidney Int. Suppl. 63, S73–S78 (2003).

    Article  Google Scholar 

  116. Brezina, B., Qunibi, W. Y. & Nolan, C. R. Acid loading during treatment with sevelamer hydrochloride: mechanisms and clinical implications. Kidney Int. Suppl. S39–S45 (2004).

  117. Ketteler, M. et al. Efficacy and tolerability of sevelamer carbonate in hyperphosphatemic patients who have chronic kidney disease and are not on dialysis. Clin. J. Am. Soc. Nephrol. 3, 1125–1130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pierce, D. et al. The effect of sevelamer carbonate and lanthanum carbonate on the pharmacokinetics of oral calcitriol. Nephrol. Dial. Transplant. 26, 1615–1621 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Block, G. A., Brillhart, S. L., Persky, M. S., Amer, A. & Slade, A. J. Efficacy and safety of SBR759, a new iron-based phosphate binder. Kidney Int. 77, 897–903 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Katai, K. et al. Nicotinamide inhibits sodium-dependent phosphate cotransport activity in rat small intestine. Nephrol. Dial. Transplant. 14, 1195–1201 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Takahashi, Y. et al. Nicotinamide suppresses hyperphosphatemia in hemodialysis patients. Kidney Int. 65, 1099–1104 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Young, D. O., Cheng, S. C., Delmez, J. A. & Coyne, D. W. The effect of oral niacinamide on plasma phosphorus levels in peritoneal dialysis patients. Perit. Dial. Int. 29, 562–567 (2009).

    CAS  PubMed  Google Scholar 

  123. Knip, M. et al. Safety of high-dose nicotinamide: a review. Diabetologia 43, 1337–1345 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Kirchner, S. et al. Luminal fructose inhibits rat intestinal sodium-phosphate cotransporter gene expression and phosphate uptake. Am. J. Clin. Nutr. 87, 1028–1038 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Hilfiker, H. et al. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc. Natl Acad. Sci. USA 95, 14564–14569 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. White, K. E., Biber, J., Murer, H. & Econs, M. J. Chromosomal localization of two human genes involved in phosphate homeostasis: the type IIb sodium-phosphate cotransporter and stanniocalcin-2. Somat. Cell Mol. Genet. 24, 357–362 (1998).

    Article  CAS  PubMed  Google Scholar 

  127. Shibasaki, Y. et al. Targeted deletion of the tybe IIb Na(+)-dependent Pi-co-transporter, NaPi-IIb, results in early embryonic lethality. Biochem. Biophys. Res. Commun. 381, 482–486 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Sabbagh, Y. et al. Intestinal npt2b plays a major role in phosphate absorption and homeostasis. J. Am. Soc. Nephrol. 20, 2348–2358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Marks, J. et al. Intestinal phosphate absorption and the effect of vitamin D: a comparison of rats with mice. Exp. Physiol. 91, 531–537 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Savica, V. et al. Salivary phosphate-binding chewing gum reduces hyperphosphatemia in dialysis patients. J. Am. Soc. Nephrol. 20, 639–644 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Arenas, M. D. et al. Challenge of phosphorus control in hemodialysis patients: a problem of adherence? J. Nephrol. 23, 525–534 (2010).

    PubMed  Google Scholar 

  132. [No authors listed] The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

Download references

Acknowledgements

C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, discussion of the content and reviewing and editing the manuscript before submission. A. J. Hutchison wrote the article.

Corresponding author

Correspondence to Alastair J. Hutchison.

Ethics declarations

Competing interests

A. J. Hutchison has received research grants from and previously been a consultant for Amgen. He is a consultant for Fresenius Healthcare. A. J. Hutchison has received research grants from, is a speaker for, and was previously a consultant to, Shire Pharmaceuticals. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchison, A., Smith, C. & Brenchley, P. Pharmacology, efficacy and safety of oral phosphate binders. Nat Rev Nephrol 7, 578–589 (2011). https://doi.org/10.1038/nrneph.2011.112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing