Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathophysiology and treatment of cystinuria

Abstract

Cystinuria is a primary inherited aminoaciduria caused by mutations in the genes that encode the two subunits (neutral and basic amino acid transport protein rBAT and b(0,+)-type amino acid transporter 1) of the amino acid transport system b0,+. This autosomal recessive disorder (in which few cases show dominant inheritance) causes a failure in the reabsorption of filtered cystine and dibasic amino acids in the proximal tubule. The clinical symptoms of this disease are caused by the loss of poorly soluble cystine, which precipitates to form stones. Although rare, the prevalence of cystinuria is sufficiently high that the disease results in a substantial contribution to pediatric renal lithiasis. A thorough understanding of cystine transport processes over the past 15 years and the genetic abnormalities responsible for the disease has led to a new classification of cystinuria and recognition that some cases result from an autosomal dominant etiology with incomplete penetrance. This Review examines the molecular and mechanistic effects of some of the mutations that cause cystinuria based on our current understanding of the structural and cellular biology of system b0,+. This Review also describes the current treatments to prevent recurrent cystine lithiasis.

Key Points

  • Cystinuria is characterized by the inadequate reabsorption of cystine and dibasic amino acids in the kidney, which leads to the hyperexcretion of these amino acids in urine

  • Cystinuria represents 1–2% of all cases of renal lithiasis and 6–8% of cases of pediatric renal lithiasis

  • The amino acid transport system b0,+ is the main effector of cystine reabsorption in the kidney

  • The functional unit of the system b0,+ comprises a heterodimer in which the neutral and basic amino acid transport protein rBAT (rBAT) is linked via a disulfide bridge to b(0,+)-type amino acid transporter 1 (b0,+AT)

  • Mutations in either rBAT or b0,+AT can cause cystinuria; mutations in the gene that encodes rBAT cause trafficking defects probably due to protein misfolding and mutations in the gene that encodes b0,+AT cause trafficking defects or inactivation of system b0,+

  • Two genetically modified mouse lines exhibit the features of the two main types of cystinuria, type I cystinuria and non-type I cystinuria

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trafficking of cystine and dibasic amino acids in epithelial cells of the renal proximal tubule or small intestine.
Figure 2: 3D model of the amino acid transport system b0,+.
Figure 3
Figure 4: The '5+5' inverted repeat fold of APC transporters.

Similar content being viewed by others

References

  1. Cystinuria Online Mendelian Inheritance in Man® [online].

  2. Garrod, A. E. Inborn errors of metabolism (lectures I–IV). Lancet 2, 1–214 (1908).

    Article  CAS  Google Scholar 

  3. Palacín, M., Goodyer, P., Nunes, V. & Gasparini, P. in Metabolic and Molecular Bases of Inherited Diseases (eds Scriver, C. R., Beaudet, A. L., Sly, S. W. & Valle, D.) 4909–4932 (McGraw-Hill, New York, 2001).

    Google Scholar 

  4. Palacín, M., Borsani, G. & Sebastio, G. The molecular bases of cystinuria and lysinuric protein intolerance. Curr. Opin. Genet. Dev. 11, 328–335 (2001).

    Article  PubMed  Google Scholar 

  5. Thier, S., Fox, M., Segal, S. & Rosenberg, L. E. Cystinuria: in vitro demonstration of an intestinal transport defect. Science 143, 482–484 (1964).

    Article  CAS  PubMed  Google Scholar 

  6. Thier, S. O., Segal, S., Fox, M., Blair, A. & Rosenberg, L. E. Cystinuria: defective intestinal transport of dibasic amino acids and cystine. J. Clin. Invest. 44, 442–448 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosenberg, L. E., Durant, J. L. & Holland, J. M. Intestinal absorption and renal extraction of cystine and cysteine in cystinuria. N. Engl. J. Med. 273, 1239–1245 (1965).

    Article  CAS  PubMed  Google Scholar 

  8. Milliner, D. S. & Murphy, M. E. Urolithiasis in pediatric patients. Mayo Clin. Proc. 68, 241–248 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Daniel, H. Molecular and integrative physiology of intestinal peptide transport. Annu. Rev. Physiol. 66, 361–384 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Pras, E. et al. Localization of a gene causing cystinuria to chromosome 2p. Nat. Genet. 6, 415–419 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Calonge, M. J. et al. Cystinuria caused by mutations in rBAT, a gene involved in the transport of cystine. Nat. Genet. 6, 420–425 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Calonge, M. J. et al. Genetic heterogeneity in cystinuria: the SLC3A1 gene is linked to type I but not to type III cystinuria. Proc. Natl Acad. Sci. USA 92, 9667–9671 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wartenfeld, R. et al. Molecular analysis of cystinuria in Libyan Jews: exclusion of the SLC3A1 gene and mapping of a new locus on 19q. Am. J. Hum. Genet. 60, 617–624 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bisceglia, L. et al. Localization, by linkage analysis, of the cystinuria type III gene to chromosome 19q13.1. Am. J. Hum. Genet. 60, 611–616 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Feliubadaló, L. et al. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (b0,+AT) of rBAT. Nat. Genet. 23, 52–57 (1999).

    Article  PubMed  Google Scholar 

  16. Segal, S. & Thier, S. O. in Metabolic and Molecular Bases of Inherited Diseases (eds Scriver, C. H., Beaudet, A. L., Sly, W. S. & Valle, D.) 2479–2496 (McGraw-Hill, New York, 1995).

    Google Scholar 

  17. Rosenberg, L. E., Downing, S., Durant, J. L. & Segal, S. Cystinuria: biochemical evidence for three genetically distinct diseases. J. Clin. Invest. 45, 365–371 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Font-Llitjós, M. et al. New insights into cystinuria: 40 new mutations, genotype-phenotype correlation, and digenic inheritance causing partial phenotype. J. Med. Genet. 42, 58–68 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goodyer, P. R., Clow, C., Reade, T. & Girardin, C. Prospective analysis and classification of patients with cystinuria identified in a newborn screening program. J. Pediatr. 122, 568–572 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Reig, N. et al. The light subunit of system b(0, +) is fully functional in the absence of the heavy subunit. EMBO J. 21, 4906–4914 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dello Strologo, L. et al. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J. Am. Soc. Nephrol. 13, 2547–2553 (2002).

    Article  PubMed  Google Scholar 

  22. Harnevik, L., Fjellstedt, E., Molbaek, A., Denneberg, T. & Söderkvist, P. Mutation analysis of SLC7A9 in cystinuria patients in Sweden. Genet. Test. 7, 13–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Brodehl, J., Gellissen, K. & Kowaleski, S. Isolated cystinuria (without lysine-ornithine-argininuria) in a family with hypocalcemia tetany. Klin. Wochenschr. 45, 38 (1967).

    Article  CAS  PubMed  Google Scholar 

  24. Eggermann, T., Elbracht, M., Haverkamp, F., Schmidt, C. & Zerres, K. Isolated cystinuria (OMIM 238200) is not a separate entity but is caused by a mutation in the cystinuria gene SLC7A9. Clin. Genet. 71, 597–598 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Parvari, R. et al. A recessive contiguous gene deletion of chromosome 2p16 associated with cystinuria and a mitochondrial disease. Am. J. Hum. Genet. 69, 869–875 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jaeken, J. et al. Deletion of PREPL, a gene encoding a putative serine oligopeptidase, in patients with hypotonia–cystinuria syndrome. Am. J. Hum. Genet. 78, 38–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Martens, K. et al. Global distribution of the most prevalent deletions causing hypotonia-cystinuria syndrome. Eur. J. Hum. Genet. 15, 1029–1033 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Chabrol, B. et al. Deletion of C2orf34, PREPL and SLC3A1 causes atypical hypotonia-cystinuria syndrome. J. Med. Genet. 45, 314–318 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Hypotonia–cystinuria syndrome Online Mendelian Inheritance in Man® [online].

  30. Pras, E. et al. Mutations in the SLC3A1 transporter gene in cystinuria. Am. J. Hum. Genet. 56, 1297–1303 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gitomer, W. L., Reed, B. Y., Ruml, L. A., Sakhaee, K. & Pak, C. Y. Mutations in the genomic deoxyribonucleic acid for SLC3A1 in patients with cystinuria. J. Clin. Endocrinol. Metab. 83, 3688–3694 (1998).

    CAS  PubMed  Google Scholar 

  32. Martens, K., Jaeken, J., Matthijs, G. & Creemers, J. W. Multi-system disorder syndromes associated with cystinuria type I. Curr. Mol. Med. 8, 544–550 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Shigeta, Y. et al. A novel missense mutation of SLC7A9 frequent in Japanese cystinuria cases affecting the C-terminus of the transporter. Kidney Int. 69, 1198–1206 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Bisceglia, L. et al. Large rearrangements detected by MLPA, point mutations, and survey of the frequency of mutations within the SLC3A1 and SLC7A9 genes in a cohort of 172 cystinuric Italian patients. Mol. Genet. Metab. 99, 42–52 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Harnevik, L. et al. Identification of 12 novel mutations in the SLC3A1 gene in Swedish cystinuria patients. Hum. Mutat. 18, 516–525 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Pineda, M. et al. The amino acid transporter asc-1 is not involved in cystinuria. Kidney Int. 66, 1453–1464 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Brauers, E., Vester, U., Zerres, K. & Eggermann, T. Search for mutations in SLC1A5 (19q13) in cystinuria patients. J. Inherit. Metab. Dis. 28, 1169–1171 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt, C. et al. Genetic variations of the SLC7A9 gene: allele distribution of 13 polymorphic sites in German cystinuria patients and controls. Clin. Nephrol. 59, 353–359 (2003).

    CAS  PubMed  Google Scholar 

  39. Chatzikyriakidou, A., Sofikitis, N., Kalfakakou, V., Siamopoulos, K. & Georgiou, I. Evidence for association of SLC7A9 gene haplotypes with cystinuria manifestation in SLC7A9 mutation carriers. Urol. Res. 34, 299–303 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. DiBartola, S. P., Chew, D. J. & Horton, M. L. Cystinuria in a cat. J. Am. Vet. Med. Assoc. 198, 102–104 (1991).

    CAS  PubMed  Google Scholar 

  41. Henthorn, P. S. et al. Canine cystinuria: polymorphism in the canine SLC3A1 gene and identification of a nonsense mutation in cystinuric Newfoundland dogs. Hum. Genet. 107, 295–303 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Bovée, K. C., Bush, M., Dietz, J., Jezyk, P. & Segal, S. Cystinuria in the maned wolf of South America. Science 212, 919–920 (1981).

    Article  PubMed  Google Scholar 

  43. Peters, T. et al. A mouse model for cystinuria type I. Hum. Mol. Genet. 12, 2109–2120 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Feliubadaló, L. et al. SLC7A9-deficient mice develop cystinuria non-I and cystine urolithiasis. Hum. Mol. Genet. 12, 2097–2108 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Verrey, F. et al. CATs and HATs: the SLC7 family of amino acid transporters. Pflugers Arch. 447, 532–542 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Palacín, M. & Kanai, Y. The ancillary proteins of HATs: SLC3 family of amino acid transporters. Pflugers Arch. 447, 490–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Bertran, J. et al. Expression cloning of a cDNA from rabbit kidney cortex that induces a single transport system for cystine and dibasic and neutral amino acids. Proc. Natl Acad. Sci. USA 89, 5601–5605 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tate, S. S. & Yan, N. & Udenfriend, S. Expression cloning of a Na(+)-independent neutral amino acid transporter from rat kidney. Proc. Natl Acad. Sci. USA 89, 1–5 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bertran, J. et al. Stimulation of system y(+)-like amino acid transport by the heavy chain of human 4F2 surface antigen in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 89, 5606–5610 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wells, R. G., Lee, W. S., Kanai, Y., Leiden, J. M. & Hediger, M. A. The 4F2 antigen heavy chain induces uptake of neutral and dibasic amino acids in Xenopus oocytes. J. Biol. Chem. 267, 15285–15288 (1992).

    CAS  PubMed  Google Scholar 

  51. Ohgimoto, S. et al. Molecular characterization of fusion regulatory protein-1 (FRP-1) that induces multinucleated giant cell formation of monocytes and HIV gp160-mediated cell fusion. FRP-1 and 4F2/CD98 are identical molecules. J. Immunol. 155, 3585–3592 (1995).

    CAS  PubMed  Google Scholar 

  52. Mastroberardino, L. et al. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395, 288–291 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Kanai, Y. et al. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J. Biol. Chem. 273, 23629–23632 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Fernández, E., Torrents, D., Zorzano, A., Palacín, M. & Chillarón, J. Identification and functional characterization of a novel low affinity aromatic-preferring amino acid transporter (arpAT). One of the few proteins silenced during primate evolution. J. Biol. Chem. 280, 19364–19372 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Palacín, M. et al. The genetics of heteromeric amino acid transporters. Physiology (Bethesda). 20, 112–124 (2005).

    PubMed  Google Scholar 

  56. Torrents, D. et al. Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L. A candidate gene for lysinuric protein intolerance. J. Biol. Chem. 273, 32437–32445 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Feral, C. C. et al. CD98hc (SLC3A2) mediates integrin signaling. Proc. Natl Acad. Sci. USA 102, 355–360 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Cantor, J. et al. CD98hc facilitates B cell proliferation and adaptive humoral immunity. Nat. Immunol. 10, 412–419 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fogelstrand, P., Féral, C. C., Zargham, R. & Ginsberg, M. H. Dependence of proliferative vascular smooth muscle cells on CD98hc (4F2hc, SLC3A2). J. Exp. Med. 206, 2397–2406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Busch, A. E. et al. Opposite directed currents induced by the transport of dibasic and neutral amino acids in Xenopus oocytes expressing the protein rBAT. J. Biol. Chem. 269, 25581–25586 (1994).

    CAS  PubMed  Google Scholar 

  61. Chillaron, J. et al. Obligatory amino acid exchange via systems b(0,+)-like and y(+)L-like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids. J. Biol. Chem. 271, 17761–17770 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Mora, C. et al. The rBAT gene is responsible for L-cystine uptake via the b(0, +)-like amino acid transport system in a “renal proximal tubular” cell line (OK cells). J. Biol. Chem. 271, 10569–10576 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Munck, B. G. Lysine transport across the small intestine. Stimulating and inhibitory effects of neutral amino acids. J. Membr. Biol. 53, 45–63 (1980).

    Article  CAS  PubMed  Google Scholar 

  64. Munck, B. G. Transport of neutral and cationic amino acids across the brush-border membrane of the rabbit ileum. J. Membr. Biol. 83, 1–13 (1985).

    Article  CAS  PubMed  Google Scholar 

  65. Fernandez, E. et al. rBAT-b0,+AT heterodimer is the main apical reabsorption system for cystine in the kidney. Am. J. Physiol. Renal Physiol. 283, F540–F548 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Silbernagl, S. The renal handling of amino acids and oligopeptides. Physiol. Rev. 68, 911–1007 (1988).

    Article  CAS  PubMed  Google Scholar 

  67. Gabrisko, M. & Janecek, S. Looking for the ancestry of the heavy-chain subunits of heteromeric amino acid transporters rBAT and 4F2hc within the GH13 alpha-amylase family. FEBS J. 276, 7265–7278 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Fort, J. et al. The structure of human 4F2hc ectodomain provides a model for homodimerization and electrostatic interaction with plasma membrane. J. Biol. Chem. 282, 31444–31452 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Ravaud, S. et al. Structural determinants of product specificity of sucrose isomerases. FEBS Lett. 583, 1964–1968 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Hondoh, H. et al. Substrate recognition mechanism of alpha-1, 6-glucosidic linkage hydrolyzing enzyme, dextran glucosidase from Streptococcus mutans. J. Mol. Biol. 378, 913–922 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Shirai, T., Hung, V. S., Morinaka, K., Kobayashi, T. & Ito, S. Crystal structure of GH13 alpha-glucosidase GSJ from one of the deepest sea bacteria. Proteins 73, 126–133 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Watanabe, K., Hata, Y., Kizaki, H., Katsube, Y. & Suzuki, Y. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 A resolution: structural characterization of proline-substitution sites for protein thermostabilization. J. Mol. Biol. 269, 142–153 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, D., Li, N., Lok, S. M., Zhang, L. H. & Swaminathan, K. Isomaltulose synthase (PalI) of Klebsiella sp. LX3. Crystal structure and implication of mechanism. J. Biol. Chem. 278, 35428–35434 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Gasol, E., Jimenez-Vidal, M., Chillaron, J., Zorzano, A. & Palacín, M. Membrane topology of system xc- light subunit reveals a re-entrant loop with substrate-restricted accessibility. J. Biol. Chem. 279, 31228–31236 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Jack, D. L., Paulsen, I. T. & Saier, M. H. Jr. The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146, 1797–1814 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Reig, N. et al. Functional and structural characterization of the first prokaryotic member of the L-amino acid transporter (LAT) family: a model for APC transporters. J. Biol. Chem. 282, 13270–13281 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Gao, X. et al. Structure and mechanism of an amino acid antiporter. Science 324, 1565–1568 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Fang, Y. et al. Structure of a prokaryotic virtual proton pump at 3.2 A resolution. Nature 460, 1040–1043 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shaffer, P. L., Goehring, A., Shankaranarayanan, A. & Gouaux, E. Structure and mechanism of a Na+-independent amino acid transporter. Science 325, 1010–1014 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Faham, S. et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321, 810–814 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Weyand, S. et al. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322, 709–713 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ressl, S., Terwisscha van Scheltinga, A. C., Vonrhein, C., Ott, V. & Ziegler, C. Molecular basis of transport and regulation in the Na(+)/betaine symporter BetP. Nature 458, 47–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Krishnamurthy, H., Piscitelli, C. L. & Gouaux, E. Unlocking the molecular secrets of sodium-coupled transporters. Nature 459, 347–355 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gao, X. et al. Mechanism of substrate recognition and transport by an amino acid antiporter. Nature 463, 828–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Franca, R., Veljkovic, E., Walter, S., Wagner, C. A. & Verrey, F. Heterodimeric amino acid transporter glycoprotein domains determining functional subunit association. Biochem. J. 388, 435–443 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fernández, E. et al. The structural and functional units of heteromeric amino acid transporters. The heavy subunit rBAT dictates oligomerization of the heteromeric amino acid transporters. J. Biol. Chem. 281, 26552–26561 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Sitte, H. H., Farhan, H. & Javitch, J. A. Sodium-dependent neurotransmitter transporters: oligomerization as a determinant of transporter function and trafficking. Mol. Interv. 4, 38–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Bartoccioni, P., Rius, M., Zorzano, A., Palacín, M. & Chillarón, J. Distinct classes of trafficking rBAT mutants cause the type I cystinuria phenotype. Hum. Mol. Genet. 17, 1845–1854 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Bauch, C. & Verrey, F. Apical heterodimeric cystine and cationic amino acid transporter expressed in MDCK cells. Am. J. Physiol. Renal Physiol. 283, F181–F189 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Sakamoto, S. et al. A novel role of the C-terminus of b0,+ AT in the ER-Golgi trafficking of the rBAT-b0,+ AT heterodimeric amino acid transporter. Biochem. J. 417, 441–448 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Vembar, S. S. & Brodsky, J. L. One step at a time: endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell Biol. 9, 944–957 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pineda, M. et al. Cystinuria-specific rBAT(R365W) mutation reveals two translocation pathways in the amino acid transporter rBAT-b0,+AT. Biochem. J. 377, 665–674 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Font, M. A. et al. Functional analysis of mutations in SLC7A9, and genotype-phenotype correlation in non-Type I cystinuria. Hum. Mol. Genet. 10, 305–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Jaeger, P., Portmann, L., Saunders, A., Rosenberg, L. E. & Thier, S. O. Anticystinuric effects of glutamine and of dietary sodium restriction. N. Engl. J. Med. 315, 1120–1123 (1986).

    Article  CAS  PubMed  Google Scholar 

  96. Goldfarb, D. S., Coe, F. L. & Asplin, J. R. Urinary cystine excretion and capacity in patients with cystinuria. Kidney Int. 69, 1041–1047 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Rodríguez, L. M., Santos, F., Málaga, S. & Martínez, V. Effect of a low sodium diet on urinary elimination of cystine in cystinuric children. Nephron 71, 416–418 (1995).

    Article  PubMed  Google Scholar 

  98. Rodman, J. S. et al. The effect of dietary protein on cystine excretion in patients with cystinuria. Clin. Nephrol. 22, 273–278 (1984).

    CAS  PubMed  Google Scholar 

  99. Dent, C. E., Friedman, M., Green, H. & Watson, L. C. Treatment of cystinuria. Br. Med. J. 1, 403–408 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fjellstedt, E., Denneberg, T., Jeppsson, J. O. & Tiselius, H. G. A comparison of the effects of potassium citrate and sodium bicarbonate in the alkalinization of urine in homozygous cystinuria. Urol. Res. 29, 295–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Sterrett, S. P., Penniston, K. L., Wolf, J. S. Jr & Nakada, S. Y. Acetazolamide is an effective adjunct for urinary alkalization in patients with uric acid and cystine stone formation recalcitrant to potassium citrate. Urology 72, 278–281 (2008).

    Article  PubMed  Google Scholar 

  102. Lotz, M. & Bartter, F. C. Stone dissolution with D-penicillamine in cystinuria. Br. Med. J. 2, 1408–1409 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pak, C. Y., Fuller, C., Sakhaee, K., Zerwekh, J. E. & Adams, B. V. Management of cystine nephrolithiasis with alpha-mercaptopropionylglycine. J. Urol. 136, 1003–1008 (1986).

    Article  CAS  PubMed  Google Scholar 

  104. Font-Llitjós, M. et al. SLC7A9 knockout mouse is a good cystinuria model for antilithiasic pharmacological studies. Am. J. Physiol. Renal Physiol. 293, F732–F740 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Nakagawa, Y., Asplin, J. R., Goldfarb, D. S., Parks, J. H. & Coe, F. L. Clinical use of cystine supersaturation measurements. J. Urol. 164, 1481–1485 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Coe, F. L., Clark, C., Parks, J. H. & Asplin, J. R. Solid phase assay of urine cystine supersaturation in the presence of cystine binding drugs. J. Urol. 166, 688–693 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Pastore, A. et al. Fully automated assay for total homocysteine, cysteine, cysteinylglycine, glutathione, cysteamine, and 2-mercaptopropionylglycine in plasma and urine. Clin. Chem. 44, 825–832 (1998).

    CAS  PubMed  Google Scholar 

  108. Dello Strologo, L., Laurenzi, C., Legato, A. & Pastore, A. Cystinuria in children and young adults: success of monitoring free-cystine urine levels. Pediatr. Nephrol. 22, 1869–1873 (2007).

    Article  PubMed  Google Scholar 

  109. Preminger, G. M. et al. 2007 Guideline for the management of ureteral calculi. Eur. Urol. 52, 1610–1631 (2007).

    Article  PubMed  Google Scholar 

  110. Bhatta, K. M., Prien, E. L. Jr & Dretler, S. P. Cystine calculi--rough and smooth: a new clinical distinction. J. Urol. 142, 937–940 (1989).

    Article  CAS  PubMed  Google Scholar 

  111. Rudnick, D. M., Bennett, P. M. & Dretler, S. P. Retrograde renoscopic fragmentation of moderate-size (1.5–30-cm) renal cystine stones. J. Endourol. 13, 483–485 (1999).

    Article  CAS  Google Scholar 

  112. Dretler, S. P., Pfister, R. C., Newhouse, J. H. & Prien, E. L. Jr. Percutaneous catheter dissolution of cystine calculi. J. Urol. 131, 216–219 (1984).

    Article  CAS  PubMed  Google Scholar 

  113. Chaudhuri, T. K. & Paul, S. Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J. 273, 1331–1349 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Ringe, D. & Petsko, G. What are pharmacological chaperones and why are they interesting? J. Biol. 8, 80 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Fan, J. Q. & Ishii, S. Active-site-specific chaperone therapy for Fabry disease. Yin and Yang of enzyme inhibitors. FEBS J. 274, 4962–4971 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Lieberman, R. L. et al. Structure of acid beta-glucosidase with pharmacological chaperone provides insight into Gaucher disease. Nat. Chem. Biol. 2, 101–107 (2006).

    Google Scholar 

  117. Pey, A. L. et al. Mechanisms underlying responsiveness to tetrahydrobiopterin in mild phenylketonuria mutations. Hum. Mutat. 24, 388–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Amaral, M. D. Therapy through chaperones: sense or antisense? Cystic fibrosis as a model disease. J. Inherit. Metab. Dis. 29, 477–487 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Parenti, G. Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol. Med. 1, 268–279 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bröer, S. Apical transporters for neutral amino acids: physiology and pathophysiology. Physiology (Bethesda) 23, 95–103 (2008).

    Google Scholar 

  122. Torrents, D. et al. Identification of SLC7A7, encoding y+LAT-1, as the lysinuric protein intolerance gene. Nat. Genet. 21, 293–296 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Borsani, G. et al. SLC7A7, encoding a putative permease-related protein, is mutated in patients with lysinuric protein intolerance. Nat. Genet. 21, 297–301 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Fernández, E. et al. Basolateral LAT-2 has a major role in the transepithelial flux of L-cystine in the renal proximal tubule cell line OK. J. Am. Soc. Nephrol. 14, 837–847 (2003).

    Article  PubMed  Google Scholar 

  125. Ramadan, T. et al. Basolateral aromatic amino acid transporter TAT1 (Slc16a10) functions as an efflux pathway. J. Cell. Physiol. 206, 771–779 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Ramadan, T. et al. Recycling of aromatic amino acids via TAT1 allows efflux of neutral amino acids via LAT2–4F2hc exchanger. Pflugers Arch. 454, 507–516 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  CAS  PubMed  Google Scholar 

  128. Gasparini, P. et al. Molecular genetics of cystinuria: identification of four new mutations and seven polymorphisms, and evidence for genetic heterogeneity. Am. J. Hum. Genet. 57, 781–788 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Bisceglia, L. et al. Molecular analysis of the cystinuria disease gene: identification of four new mutations, one large deletion, and one polymorphism. Hum. Genet. 98, 447–451 (1996).

    Article  CAS  PubMed  Google Scholar 

  130. Bisceglia, L. et al. Cystinuria type I: identification of eight new mutations in SLC3A1. Kidney Int. 59, 1250–1256 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Guillén, M. et al. Identification of novel SLC3A1 gene mutations in Spanish cystinuria families and association with clinical phenotypes. Clin. Genet. 67, 240–251 (2005).

    Article  PubMed  Google Scholar 

  132. Di Perna, M. et al. Twenty-four novel mutations identified in a cohort of 85 patients by direct sequencing of the SLC3A1 and SLC7A9 cystinuria genes. Genet. Test. 12, 351–355 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Chatzikyriakidou, A. et al. An overview of SLC3A1 and SLC7A9 mutations in Greek cystinuria patients. Mol. Genet. Metab. 95, 192–193 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Brauers, E. et al. Identification of novel cystinuria mutations in pediatric patients. J. Pediatr. Urol. 2, 575–578 (2006).

    Article  PubMed  Google Scholar 

  135. Saadi, I. et al. Molecular genetics of cystinuria: mutation analysis of SLC3A1 and evidence for another gene in type I (silent) phenotype. Kidney Int. 54, 48–55 (1998).

    Article  CAS  PubMed  Google Scholar 

  136. Skopková, Z., Hrabincová, E., Stástná, S., Kozák, L. & Adam, T. Molecular genetic analysis of SLC3A1 and SLC7A9 genes in Czech and Slovak cystinuric patients. Ann. Hum. Genet. 69, 501–507 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Chillarón, J. et al. An intracellular trafficking defect in type I cystinuria rBAT mutants M467T and M467K. J. Biol. Chem. 272, 9543–9549 (1997).

    Article  PubMed  Google Scholar 

  138. Guillén, M., Corella, D., Cabello, M. L., García, A. M. & Hernández-Yago, J. Reference values of urinary excretion of cystine and dibasic aminoacids: classification of patients with cystinuria in the Valencian Community, Spain. Clin. Biochem. 32, 25–30 (1999).

    Article  PubMed  Google Scholar 

  139. Botzenhart, E. et al. Cystinuria in children: distribution and frequencies of mutations in the SLC3A1 and SLC7A9 genes. Kidney Int. 62, 1136–1142 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Leclerc, D. et al. SLC7A9 mutations in all three cystinuria subtypes. Kidney Int. 62, 1550–1559 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Chillarón receives support from the Spanish Ministry of Science and Innovation, grant BFU2009-07-215. Dr. Goldfarb receives support from the National Institutes of Diabetes and Digestive and Kidney Diseases and the Office of Rare Diseases Research, grant 1U54DK083908-01. Dr. Nunes and Dr. Palacín receive support from the Spanish Ministry of Science and Innovation, grants BFU2006-14, 600-C02-01 and BFU2006-14-600-C02-02, and SAF2009-12606-C02-01 and SAF2009-12606-C02-02, from the Center for Biomedical Research on Rare Diseases (CIBERER), from the European Commission, grant EDICT and from Generalitat de Catalunya 2009 SGR 1355 and 2009 SGR 1490.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Palacín.

Supplementary information

Supplementary Figure 1

Alignment of human b0,+AT and Escherichia coli AdiC. (DOC 37 kb)

Supplementary Figure 2

Structural alignment of human rBAT ectodomain (ED-rBAT) and GH13 α-glucosidase. (DOC 43 kb)

Supplementary Table 1

Frequency of the reported SLC3A1 mutations associated with cystinuria. (DOC 974 kb)

Supplementary Table 2

Frequency of the SLC7A9 mutations reported. (DOC 560 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chillarón, J., Font-Llitjós, M., Fort, J. et al. Pathophysiology and treatment of cystinuria. Nat Rev Nephrol 6, 424–434 (2010). https://doi.org/10.1038/nrneph.2010.69

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.69

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing