Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Case Study
  • Published:

A case of lactic acidosis induced by linezolid

Abstract

Background. A 36-year-old African American man with end-stage renal disease on chronic maintenance hemodialysis was transferred first from a hospital to a long-term acute care facility for advanced care then to the intensive care unit of our university hospital with unexplained abdominal pain, nausea, hypotension, altered mental status and anion gap metabolic acidosis. Subsequent review of the patient's medication list revealed that the he had been on linezolid for 6 weeks for the treatment of vancomycin-resistant Enterococcus fecalis bacteremia.

Investigations. Medical history, physical examination, laboratory tests, CT imaging of the thorax, abdomen and pelvis and PCR-based tests to determine the presence of polymorphisms in the 16S ribosomal RNA gene.

Diagnosis. Lactic acidosis associated with prolonged exposure to linezolid.

Management. Discontinuation of linezolid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical course of the case patient.
Figure 2: Mechanism by which linezolid inhibits protein translation by the bacterial initiation complex.

References

  1. Palenzuela, L. et al. Does linezolid cause lactic acidosis by inhibiting mitochondrial protein synthesis? Clin. Infect. Dis. 40, e113–e116 (2005).

    Article  Google Scholar 

  2. Misbin, R. I. Phenformin-associated lactic acidosis: pathogenesis and treatment. Ann. Intern. Med. 87, 591–595 (1977).

    Article  CAS  Google Scholar 

  3. Leach, K. L. et al. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol. Cell. 26, 393–402 (2007).

    Article  CAS  Google Scholar 

  4. Wilson, D. N. et al. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Proc. Natl Acad. Sci. USA 105, 13339–13344 (2008).

    Article  CAS  Google Scholar 

  5. Thompson, J., O'Connor, M., Mills, J. A. & Dahlberg, A. E. The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause extensive translational inaccuracy in vivo. J. Mol. Biol. 322, 273–279 (2002).

    Article  CAS  Google Scholar 

  6. Sharma, M. R. et al. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell 115, 97–108 (2003).

    Article  CAS  Google Scholar 

  7. McKee, E. E., Ferguson, M., Bentley, A. T. & Marks, T. A. Inhibition of mammalian mitochondrial protein synthesis by oxazolidinones. Antimicrob. Agents Chemother. 50, 2042–2049 (2006).

    Article  CAS  Google Scholar 

  8. Nagiec, E. E. et al. Oxazolidinones inhibit cellular proliferation via inhibition of mitochondrial protein synthesis. Antimicrob. Agents Chemother. 49, 3896–3902 (2005).

    Article  CAS  Google Scholar 

  9. Soriano, A., Miró, O. & Mensa, J. Mitochondrial toxicity associated with linezolid. N. Engl. J. Med. 353, 2305–2306 (2005).

    Article  CAS  Google Scholar 

  10. Carson, J., Cerda, J., Chae, J. H., Hirano, M. & Maggiore, P. Severe lactic acidosis associated with linezolid use in a patient with the mitochondrial DNA A2706G polymorphism. Pharmacotherapy 27, 2771–2774 (2007).

    Article  Google Scholar 

  11. Naranjo, C. A. et al. A method for estimating the probability of adverse drug reactions. Clin. Pharmacol. Ther. 30, 239–245 (1981).

    Article  CAS  Google Scholar 

  12. Narita, M., Tsuji, B. T. & Yu, V. L. Linezolid-associated peripheral and optic neuropathy, lactic acidosis, and serotonin syndrome. Pharmacotherapy 27, 1189–1197 (2007).

    Article  CAS  Google Scholar 

  13. Apodaca, A. A. & Rakita, R. M. Linezolid-induced lactic acidosis. N. Engl. J. Med. 348, 86–87 (2003).

    Article  Google Scholar 

  14. Garrabou, G. et al. Reversible inhibition of mitochondrial protein synthesis during linezolid-related hyperlactatemia. Antimicrob. Agents Chemother. 51, 962–967 (2007).

    Article  CAS  Google Scholar 

  15. Thorell, E. A., Sharma, M., Jackson, M. A., Selvarangan, R. & Woods, G. M. Disseminated nontuberculous mycobacterial infections in sickle cell anemia patients. J. Pediatr. Hematol. Oncol. 28, 678–681 (2006).

    Article  Google Scholar 

  16. Boutoille, D., Grossi, O., Depatureaux, A. & Tattevin, P. Fatal lactic acidosis after prolonged linezolid exposure for treatment of multidrug-resistant tuberculosis. Eur. J. Intern. Med. 20, e134–e135 (2009).

    Article  Google Scholar 

  17. Fernández de Orueta, L., Díaz, V., Ramírez, M. & Alvarez, R. Linezolid-induced lactic acidosis [Spanish]. Enferm. Infecc. Microbiol. Clin. 27, 550–551 (2009).

    Article  Google Scholar 

  18. De Vriese, A. S. et al. Linezolid-induced inhibition of mitochondrial protein synthesis. Clin. Infect. Dis. 42, 1111–1117 (2006).

    Article  CAS  Google Scholar 

  19. Bernard, L., Stern, R., Lew, D. & Hoffmeyer, P. Serotonin syndrome after concomitant treatment with linezolid and citalopram. Clin. Infect. Dis. 36, 1197 (2003).

    Article  CAS  Google Scholar 

  20. Bishop, E., Melvani, S., Howden, B. P., Charles, P. G. & Grayson, M. L. Good clinical outcomes but high rates of adverse reactions during linezolid therapy for serious infections: a proposed protocol for monitoring therapy in complex patients. Antimicrob. Agents Chemother. 50, 1599–1602 (2006).

    Article  CAS  Google Scholar 

  21. Scotton, P. et al. Early linezolid-associated lactic acidosis in a patient treated for tuberculous spondylodiscitis. Infection 36, 387–388 (2008).

    Article  CAS  Google Scholar 

  22. Wiener, M., Guo, Y., Patel, G. & Fries, B. C. Lactic acidosis after treatment with linezolid. Infection 35, 278–281 (2007).

    Article  CAS  Google Scholar 

  23. Lee, Y. R. et al. Early development of lactic acidosis with short term linezolid treatment in a renal recipient. J. Chemother. 20, 766–767 (2008).

    Article  CAS  Google Scholar 

  24. Kopterides, P., Papadomichelakis, E. & Armaganidis, A. Linezolid use associated with lactic acidosis. Scand. J. Infect. Dis. 37, 153–154 (2005).

    Article  CAS  Google Scholar 

  25. Pea, F. et al. Hyperlactacidemia potentially due to linezolid overexposure in a liver transplant recipient. Clin. Infect. Dis. 42, 434–435 (2006).

    Article  Google Scholar 

  26. Vu, N.-S. D. & Walia, R. Linezolid-induced lactic acidosis [abstract]. Chest 130, 337–338 (2006).

    Article  Google Scholar 

  27. Beekmann, S. E., Gilbert, D. N. & Polgreen, P. M. Toxicity of extended courses of linezolid: results of an Infectious Diseases Society of America Emerging Infections Network survey. Diagn. Microbiol. Infect. Dis. 62, 407–410 (2008).

    Article  CAS  Google Scholar 

  28. Herrnstadt, C. et al. Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences for the major African, Asian, and European haplogroups. Am. J. Hum. Genet. 70, 1152–1171 (2002).

    Article  CAS  Google Scholar 

  29. Suzuki, T. et al. Structural compensation for the deficit of rRNA with proteins in the mammalian mitochondrial ribosome. Systematic analysis of protein components of the large ribosomal subunit from mammalian mitochondria. J. Biol. Chem. 276, 21724–21736 (2001).

    Article  CAS  Google Scholar 

  30. Haas, R. H. et al. The in-depth evaluation of suspected mitochondrial disease. Mol. Genet. Metab. 94, 16–37 (2008).

    Article  CAS  Google Scholar 

  31. Wynalda, M. A., Hauer, M. J. & Wienkers, L. C. Oxidation of the novel oxazolidinone antibiotic linezolid in human liver microsomes. Drug Metab. Dispos. 28, 1014–1017 (2000).

    CAS  PubMed  Google Scholar 

  32. Stalker, D. J. & Jungbluth, G. L. Clinical pharmacokinetics of linezolid, a novel oxazolidinone antibacterial. Clin. Pharmacokinet. 42, 1129–1140 (2003).

    Article  CAS  Google Scholar 

  33. Brier, M. E. et al. Pharmacokinetics of linezolid in subjects with renal dysfunction. Antimicrob. Agents Chemother. 47, 2775–2780 (2003).

    Article  CAS  Google Scholar 

  34. Chodock, R. et al. Survival of a human immunodeficiency patient with nucleoside-induced lactic acidosis--role of haemodialysis treatment. Nephrol. Dial. Transplant. 14, 2484–2486 (1999).

    Article  CAS  Google Scholar 

  35. Roy, P. M., Gouello, J. P., Pennison-Besnier, I. & Chennebault, J. M. Severe lactic acidosis induced by nucleoside analogues in an HIV-infected man. Ann. Emerg. Med. 34, 282–284 (1999).

    Article  CAS  Google Scholar 

  36. Fiaccadori, E. et al. Removal of linezolid by conventional intermittent hemodialysis, sustained low-efficiency dialysis, or continuous venovenous hemofiltration in patients with acute renal failure. Crit. Care Med. 32, 2437–2442 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research work of Dr. J. C. Q. Velez is supported by a NIH NIDDK K08 Career Development Award. The research work of Dr. M. G. Janech is supported by a Veterans Affairs CDA-2 Career Development Award and the Nephcure Foundation.

Charles P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Q. Velez.

Ethics declarations

Competing interests

The authors, the Journal Editor S. Allison and the CME questions author C. P. Vega declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velez, J., Janech, M. A case of lactic acidosis induced by linezolid. Nat Rev Nephrol 6, 236–242 (2010). https://doi.org/10.1038/nrneph.2010.20

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.20

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing