Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A 'biomarker signature' for tolerance in transplantation

Abstract

In the past decade, an explosion in the number of high-throughput tools for the measurement of different cellular products has occurred. These tools have the potential to further our understanding of human disease and this development has facilitated the identification of new biomarkers in all areas of medicine. In the field of solid organ transplantation, two different areas have developed: the use of biomarkers to predict allograft tolerance for the identification of patients who can be weaned from immunosuppressive therapy, and biomarkers for the prediction of allograft rejection, so that parenchymal damage can be prevented before it becomes irreversible. In this Review, we discuss the development of biomarkers that are indicative of transplant tolerance. Identifying patients in whom donor-specific tolerance has developed would constitute a major advance in the care of organ transplant recipients. This ability would allow the minimization or even the withdrawal of immunosuppressive therapy in selected patients, thus reducing the number of adverse effects and costs, and optimizing long-term graft outcomes. The routine clinical use of these biomarkers, once validated, would bring to the fore the possibility of personalized medicine.

Key Points

  • The use of biomarkers may allow the possibility of personalized medicine in fields such as renal transplantation

  • In the follow-up of solid organ transplant recipients, validated biomarkers of tolerance may be as clinically useful as biomarkers of rejection

  • Biomarkers of tolerance may be used in the future to identify patients in whom immunosuppression can be weaned or even withdrawn

  • Such biomarkers could also be used to establish the success of tolerance-inducing protocols

  • Cross-platform biomarkers may be more effective at identifying tolerance than single biomarkers

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Opportunities to modify the management of transplant recipients according to their biomarker signature.

Similar content being viewed by others

References

  1. Afzali, B., Lombardi, G. & Lechler, R. I. Pathways of major histocompatibility complex allorecognition. Curr. Opin. Organ Transplant. 13, 438–444 (2008).

    Article  Google Scholar 

  2. Roussey-Kesler, G. et al. Clinical operational tolerance after kidney transplantation. Am. J. Transplant. 6, 736–746 (2006).

    Article  CAS  Google Scholar 

  3. Mazariegos, G. V. et al. Weaning of immunosuppression in liver transplant recipients. Transplantation 63, 243–249 (1997).

    Article  CAS  Google Scholar 

  4. Lerut, J. & Sanchez-Fueyo, A. An appraisal of tolerance in liver transplantation. Am. J. Transplant. 6, 1774–1780 (2006).

    Article  CAS  Google Scholar 

  5. Martínez-Llordella, M. et al. Using transcriptional profiling to develop a diagnostic test of operational tolerance in liver transplant recipients. J. Clin. Invest. 118, 2845–2857 (2008).

    PubMed  PubMed Central  Google Scholar 

  6. Mazariegos, G. V. et al. Cytokine gene polymorphisms in children successfully withdrawn from immunosuppression after liver transplantation. Transplantation 73, 1342–1345 (2002).

    Article  CAS  Google Scholar 

  7. Denhaerynck, K. et al. Prevalence, consequences, and determinants of nonadherence in adult renal transplant patients: a literature review. Transpl. Int. 18, 1121–1133 (2005).

    Article  Google Scholar 

  8. Pinsky, B. W. et al. Transplant outcomes and economic costs associated with patient noncompliance to immunosuppression. Am. J. Transplant. 9, 2597–2606 (2009).

    Article  CAS  Google Scholar 

  9. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

  10. Biomarkers 2011 The 6th Annual Biomarkers Congress [online], (2010).

  11. Trusheim, M. R., Berndt, E. R. & Douglas, F. L. Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers. Nat. Rev. Drug Discov. 6, 287–293 (2007).

    Article  CAS  Google Scholar 

  12. Tol, J. et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N. Engl. J. Med. 360, 563–572 (2009).

    Article  CAS  Google Scholar 

  13. FDA U.S. Food and Drug Administration Class Labeling Changes to anti-EGFR Monoclonal Antibodies, Cetuximab (Erbitux) and Panitumumab (Vectibix): KRAS Mutations [online], (2010).

  14. Hamburg, M. A. & Collins, F. S. The path to personalized medicine. N. Engl. J. Med. 363, 301–304 (2010).

    Article  CAS  Google Scholar 

  15. Hudis, C. A. Trastuzumab—mechanism of action and use in clinical practice. N. Engl. J. Med. 357, 39–51 (2007).

    Article  CAS  Google Scholar 

  16. Samani, N. J., Tomaszewski, M. & Schunkert, H. The personal genome—the future of personalised medicine? Lancet 375, 1497–1498 (2010).

    Article  Google Scholar 

  17. Personalized Medicine Coalition The Case for Personalized Medicine [online], (2009).

  18. Bellomo, R., Kellum, J. A. & Ronco, C. Defining acute renal failure: physiological principles. Intensive Care Med. 30, 33–37 (2004).

    Article  Google Scholar 

  19. Khatri, P. & Sarwal, M. M. Using gene arrays in diagnosis of rejection. Curr. Opin. Organ Transplant. 14, 34–39 (2009).

    Article  Google Scholar 

  20. Peltonen, L. & McKusick, V. A. Genomics and medicine. Dissecting human disease in the postgenomic era. Science 291, 1224–1229 (2001).

    Article  CAS  Google Scholar 

  21. The United Kingdom and Ireland Renal Transplant Consortium Defining the Genetic Basis of Interactions Between Donor and Recipient DNA that Determine Early and Late Renal Transplant Dysfunction [online], (2010).

  22. Diamandis, E. P. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations. Mol. Cell. Proteomics 3, 367–378 (2004).

    Article  CAS  Google Scholar 

  23. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  Google Scholar 

  24. Zhang, Y. et al. Analysis of chronic lung transplant rejection by MALDI-TOF profiles of bronchoalveolar lavage fluid. Proteomics 6, 1001–1010 (2006).

    Article  CAS  Google Scholar 

  25. Tomizaki, K. Y., Usui, K. & Mihara, H. Protein–protein interactions and selection: array-based techniques for screening disease-associated biomarkers in predictive/early diagnosis. FEBS J. 277, 1996–2005 (2010).

    Article  CAS  Google Scholar 

  26. Hofmann, M. & Zerwes, H. G. Identification of organ-specific T cell populations by analysis of multiparameter flow cytometry data using DNA-chip analysis software. Cytometry A 69, 533–540 (2006).

    Article  Google Scholar 

  27. Billingham, L. J. & Abrams, K. R. Simultaneous analysis of quality of life and survival data. Stat. Methods Med. Res. 11, 25–48 (2002).

    Article  CAS  Google Scholar 

  28. Bossuyt, P. M. Interpreting diagnostic test accuracy studies. Semin. Hematol. 45, 189–195 (2008).

    Article  Google Scholar 

  29. Bossuyt, P. M. Clinical validity: defining biomarker performance. Scand. J. Clin. Lab. Invest. Suppl. 242, 46–52 (2010).

    Article  Google Scholar 

  30. Lechler, R. I., Garden, O. A. & Turka, L. A. The complementary roles of deletion and regulation in transplantation tolerance. Nat. Rev. Immunol. 3, 147–158 (2003).

    Article  CAS  Google Scholar 

  31. Brouard, S. et al. Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance. Proc. Natl Acad. Sci. USA 104, 15448–15453 (2007).

    Article  CAS  Google Scholar 

  32. Louis, S. et al. Contrasting CD25hiCD4+T cells/FOXP3 patterns in chronic rejection and operational drug-free tolerance. Transplantation 81, 398–407 (2006).

    Article  Google Scholar 

  33. Velásquez, S. Y., Arias, L. F., García, L. F. & Alvarez, C. M. T cell receptor beta chain (TCR-Vbeta) repertoire of circulating CD4(+) CD25(–), CD4(+) CD25(low) and CD4(+) CD25(high) T cells in patients with long-term renal allograft survival. Transpl. Int. 23, 54–63 (2010).

    Article  Google Scholar 

  34. Indices of Tolerance [online]

  35. Immune Tolerance Network [online].

  36. Newell, K. et al. Identification of a B-cell signature associated with renal transplant tolerance in humans. J. Clin. Invest. 120, 1836–1847 (2010).

    Article  CAS  Google Scholar 

  37. Sagoo, P. et al. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J. Clin. Invest. 120, 1848–1861 (2010).

    Article  CAS  Google Scholar 

  38. Reprogramming the Immune System for Establishment of Tolerance [online]

  39. Mazariegos, G. V. et al. Dendritic cell subset ratio in peripheral blood correlates with successful withdrawal of immunosuppression in liver transplant patients. Am. J. Transplant. 3, 689–696 (2003).

    Article  Google Scholar 

  40. Martínez-Llordella, M. et al. Multiparameter immune profiling of operational tolerance in liver transplantation. Am. J. Transplant. 7, 309–319 (2007).

    Article  Google Scholar 

  41. Koshiba, T. et al. Clinical, immunological, and pathological aspects of operational tolerance after pediatric living-donor liver transplantation. Transpl. Immunol. 17, 94–97 (2007).

    Article  CAS  Google Scholar 

  42. Kurian, S. et al. Applying genomics to organ transplantation medicine in both discovery and validation of biomarkers. Int. Immunopharmacol. 7, 1948–1960 (2007).

    Article  CAS  Google Scholar 

  43. Li, B. et al. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N. Engl. J. Med. 344, 947–954 (2001).

    Article  CAS  Google Scholar 

  44. Muthukumar, T. et al. Serine proteinase inhibitor-9, an endogenous blocker of granzyme B/perforin lytic pathway, is hyperexpressed during acute rejection of renal allografts. Transplantation 75, 1565–1570 (2003).

    Article  CAS  Google Scholar 

  45. Ding, R. et al. CD103 mRNA levels in urinary cells predict acute rejection of renal allografts. Transplantation 75, 1307–1312 (2003).

    Article  CAS  Google Scholar 

  46. Øzbay, A., Torring, C., Olsen, R. & Carstens, J. Transcriptional profiles in urine during acute rejection, bacteriuria, CMV infection and stable graft function after renal transplantation. Scand. J. Immunol. 69, 357–365 (2009).

    Article  Google Scholar 

  47. Tatapudi, R. R. et al. Noninvasive detection of renal allograft inflammation by measurements of mRNA for IP-10 and CXCR3 in urine. Kidney Int. 65, 2390–2397 (2004).

    Article  CAS  Google Scholar 

  48. Peng, W. et al. Urinary fractalkine is a marker of acute rejection. Kidney Int. 74, 1454–1460 (2008).

    Article  CAS  Google Scholar 

  49. Seiler, M. et al. Heightened expression of the cytotoxicity receptor NKG2D correlates with acute and chronic nephropathy after kidney transplantation. Am. J. Transplant. 7, 423–433 (2007).

    Article  CAS  Google Scholar 

  50. Renesto, P. G., Ponciano, V. C., Cenedeze, M. A., Saraiva Câmara, N. O. & Pacheco-Silva, A. High expression of Tim-3 mRNA in urinary cells from kidney transplant recipients with acute rejection. Am. J. Transplant. 7, 1661–1665 (2007).

    Article  CAS  Google Scholar 

  51. Hartono, C., Muthukumar, T. & Suthanthiran, M. Noninvasive diagnosis of acute rejection of renal allografts. Curr. Opin. Organ Transplant. 15, 35–41 (2010).

    Article  Google Scholar 

  52. Shin, G. T., Kim, S. J., Lee, T. S., Oh, C. K. & Kim, H. Gene expression of perforin by peripheral blood lymphocytes as a marker of acute rejection. Nephron Clin. Pract. 100, c63–c70 (2005).

    Article  CAS  Google Scholar 

  53. Simon, T., Opelz, G., Wiesel, M., Ott, R. C. & Süsal, C. Serial peripheral blood perforin and granzyme B gene expression measurements for prediction of acute rejection in kidney graft recipients. Am. J. Transplant. 3, 1121–1127 (2003).

    Article  CAS  Google Scholar 

  54. Simon, T. et al. Serial peripheral blood interleukin-18 and perforin gene expression measurements for prediction of acute kidney graft rejection. Transplantation 77, 1589–1595 (2004).

    Article  Google Scholar 

  55. Alakulppi, N. S., Kyllönen, L. E., Partanen, J., Salmela, K. T. & Laine, J. T. Diagnosis of acute renal allograft rejection by analyzing whole blood mRNA expression of lymphocyte marker molecules. Transplantation 83, 791–798 (2007).

    Article  CAS  Google Scholar 

  56. Aquino-Dias, E. C. et al. Non-invasive diagnosis of acute rejection in kidney transplants with delayed graft function. Kidney Int. 73, 877–884 (2008).

    Article  CAS  Google Scholar 

  57. Solez, K. et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am. J. Transplant. 8, 753–760 (2008).

    Article  CAS  Google Scholar 

  58. Hoffmann, S. C. et al. Functionally significant renal allograft rejection is defined by transcriptional criteria. Am. J. Transplant. 5, 573–581 (2005).

    Article  CAS  Google Scholar 

  59. Sarwal, M. et al. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N. Engl. J. Med. 349, 125–138 (2003).

    Article  CAS  Google Scholar 

  60. Mueller, T. F. et al. Microarray analysis of rejection in human kidney transplants using pathogenesis-based transcript sets. Am. J. Transplant. 7, 2712–2722 (2007).

    Article  CAS  Google Scholar 

  61. Famulski, K. S. et al. Defining the canonical form of T-cell-mediated rejection in human kidney transplants. Am. J. Transplant. 10, 810–820 (2010).

    Article  CAS  Google Scholar 

  62. Einecke, G. et al. A molecular classifier for predicting future graft loss in late kidney transplant biopsies. J. Clin. Invest. 120, 1862–1872 (2010).

    Article  CAS  Google Scholar 

  63. Anglicheau, D. et al. MicroRNA expression profiles predictive of human renal allograft status. Proc. Natl Acad. Sci. USA 106, 5330–5335 (2009).

    Article  CAS  Google Scholar 

  64. King's College London Nephrology & Transplantation Genetic Analysis and Monitoring of Biomarkers of Immunological Tolerance [online], (2010).

  65. Näther, B. J. et al. Modified ELISPOT technique--highly significant inverse correlation of post-Tx donor-reactive IFNgamma-producing cell frequencies with 6 and 12 months graft function in kidney transplant recipients. Transpl. Immunol. 16, 232–237 (2006).

    Article  Google Scholar 

  66. Gagliani, N. et al. Antigen-specific dependence of Tr1-cell therapy in preclinical models of islet transplant. Diabetes 59, 433–439 (2010).

    Article  CAS  Google Scholar 

  67. Issa, F., Schiopu, A. & Wood, K. J. Role of T cells in graft rejection and transplantation tolerance. Expert Rev. Clin. Immunol. 6, 155–169 (2010).

    Article  CAS  Google Scholar 

  68. Kawai, T. et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N. Engl. J. Med. 358, 353–361 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. P. Hernandez-Fuentes and R. I. Lechler acknowledge financial support from the EU (QLRT–2002–02127, from FP5), Immune Tolerance Network (ITN503ST), RISET consortium (512090 IP, from FP6), MRC (G0801537/ID: 88245) and Guy's & St Thomas' Charity (Grant 080530). M. P. Hernandez-Fuentes acknowledges financial support from the Department of Health via the NIH Research (NIHR) comprehensive Biomedical Research Center award to Guy's & St Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital NHS Foundation Trust.

Author information

Authors and Affiliations

Authors

Contributions

M. P. Hernandez-Fuentes and R. I. Lechler substantially contributed to the discussion of content and reviewed/edited the manuscript before submission. M. P. Hernandez-Fuentes also researched data for the article and wrote the article.

Corresponding author

Correspondence to Robert I. Lechler.

Ethics declarations

Competing interests

M. P. Hernandez-Fuentes and R. I. Lechler have a patent application with King's College London.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernandez-Fuentes, M., Lechler, R. A 'biomarker signature' for tolerance in transplantation. Nat Rev Nephrol 6, 606–613 (2010). https://doi.org/10.1038/nrneph.2010.112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing