Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging risk factors and markers of chronic kidney disease progression

Abstract

Chronic kidney disease (CKD) is a common condition with an increasing prevalence. A number of comorbidities are associated with CKD and prognosis is poor, with many patients experiencing disease progression. Recognizing the factors associated with CKD progression enables high-risk patients to be identified and given more intensive treatment if necessary. The identification of new predictive markers might improve our understanding of the pathogenesis and progression of CKD. This Review discusses a number of emerging factors and markers for which epidemiological evidence from prospective studies indicates an association with progression of CKD. The following factors and markers are discussed: asymmetric dimethylarginine, factors involved in calcium–phosphate metabolism, adrenomedullin, A-type natriuretic peptide, N-terminal pro-brain natriuretic peptide, liver-type fatty acid binding protein, kidney injury molecule 1, neutrophil gelatinase-associated lipocalin, apolipoprotein A-IV, adiponectin and some recently identified genetic polymorphisms. Additional epidemiological and experimental data are required before these markers can be broadly used for the prediction of CKD progression and before the risk factors can be considered as potential drug targets in clinical interventional trials.

Key Points

  • Chronic kidney disease (CKD) is a highly prevalent health problem with an increasing incidence and a strong tendency for progression

  • Few studies have searched for emerging risk factors or markers for progression of CKD

  • Available studies have identified markers related to nitric oxide synthesis, calcium–phosphate metabolism, natriuretic peptides, apolipoprotein A-IV, adiponectin and other parameters

  • Further epidemiological and experimental studies are required to determine whether these factors are involved in the pathogenesis of CKD progression or whether they are just markers of the risk for disease progression

  • Hypothesis-free approaches such as genome-wide association studies, metabolomic studies and other '-omics' technologies will identify new risk factors and markers of CKD progression in well-defined cohorts

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Risk factors and markers for the initiation and progression of chronic kidney disease.
Figure 2: The role of ADMA in the progression of kidney disease.
Figure 3: Receiver operating curves from the MMKD study for GFR measured by iohexol, ADMA, FGF23, apoA-IV and the natriuretic peptides ANP, NT-proBNP and adrenomedullin to predict progression of CKD.
Figure 4: Application of the concept of Mendelian randomization for identifying parameters causally related to progression of CKD, using adiponectin as an example.
Figure 5: The systems biology approach for identifying contributors to CKD, progression of CKD, cardiovascular outcomes and responses to drug treatment.

Similar content being viewed by others

References

  1. Coresh, J., Astor, B. C., Greene, T., Eknoyan, G. & Levey, A. S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am. J. Kidney Dis. 41, 1–12 (2003).

    Article  PubMed  Google Scholar 

  2. Hallan, S. I. et al. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J. Am. Soc. Nephrol. 17, 2275–2284 (2006).

    Article  PubMed  Google Scholar 

  3. Hallan, S. I. & Vikse, B. E. Relationship between chronic kidney disease prevalence and end-stage renal disease risk. Curr. Opin. Nephrol. Hypertens. 17, 286–291 (2008).

    Article  PubMed  Google Scholar 

  4. Coresh, J. et al. Prevalence of chronic kidney disease in the United States. JAMA 298, 2038–2047 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Foley, R. N. & Collins, A. J. End-stage renal disease in the United States: an update from the United States Renal Data System. J. Am. Soc. Nephrol. 18, 2644–2648 (2007).

    Article  PubMed  Google Scholar 

  6. Baylis, C., Mitruka, B. & Deng, A. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J. Clin. Invest. 90, 278–281 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kang, D. H., Nakagawa, T., Feng, L. & Johnson, R. J. Nitric oxide modulates vascular disease in the remnant kidney model. Am. J. Pathol. 161, 239–248 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kielstein, J. T. & Zoccali, C. Asymmetric dimethylarginine: a novel marker of risk and a potential target for therapy in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 17, 609–615 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Sharma, M. et al. ADMA injures the glomerular filtration barrier: role of nitric oxide and superoxide. Am. J. Physiol. Renal Physiol. 296, F1386–F1395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Achan, V. et al. Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler. Thromb. Vasc. Biol. 23, 1455–1459 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Kielstein, J. T. et al. Marked increase of asymmetric dimethylarginine in patients with incipient primary chronic renal disease. J. Am. Soc. Nephrol. 13, 170–176 (2002).

    CAS  PubMed  Google Scholar 

  12. Nijveldt, R. J. et al. Net renal extraction of asymmetrical (ADMA) and symmetrical (SDMA) dimethylarginine in fasting humans. Nephrol. Dial. Transplant. 17, 1999–2002 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Valkonen, V. P. et al. Risk of acute coronary events and serum concentration of asymmetrical dimethylarginine. Lancet 358, 2127–2128 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Vallance, P., Leone, A., Calver, A., Collier, J. & Moncada, S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339, 572–575 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Fliser, D. et al. Asymmetric dimethylarginine and progression of chronic kidney disease: The Mild to Moderate Kidney Disease Study. J. Am. Soc. Nephrol. 16, 2456–2461 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Ravani, P. et al. Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: a competing risks modeling approach. J. Am. Soc. Nephrol. 16, 2449–2455 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Lajer, M. et al. Plasma concentration of asymmetric dimethylarginine (ADMA) predicts cardiovascular morbidity and mortality in type 1 diabetic patients with diabetic nephropathy. Diabetes Care 31, 747–752 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Hanai, K. et al. Asymmetric dimethylarginine is closely associated with the development and progression of nephropathy in patients with type 2 diabetes. Nephrol. Dial. Transplant. 24, 1884–1888 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Matsumoto, Y. et al. Dimethylarginine dimethylaminohydrolase prevents progression of renal dysfunction by inhibiting loss of peritubular capillaries and tubulointerstitial fibrosis in a rat model of chronic kidney disease. J. Am. Soc. Nephrol. 18, 1525–1533 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Ueda, S. et al. Involvement of asymmetric dimethylarginine (ADMA) in glomerular capillary loss and sclerosis in a rat model of chronic kidney disease (CKD). Life Sci. 84, 853–856 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Shibata, R. et al. Involvement of asymmetric dimethylarginine (ADMA) in tubulointerstitial ischaemia in the early phase of diabetic nephropathy. Nephrol. Dial. Transplant. 24, 1162–1169 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Teplan, V. et al. Reduction of plasma asymmetric dimethylarginine in obese patients with chronic kidney disease after three years of a low-protein diet supplemented with keto-amino acids: a randomized controlled trial. Wien. Klin. Wochenschr. 120, 478–485 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Schwarz, S., Trivedi, B. K., Kalantar-Zadeh, K. & Kovesdy, C. P. Association of disorders in mineral metabolism with progression of chronic kidney disease. Clin. J. Am. Soc. Nephrol. 1, 825–831 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Norris, K. C. et al. Baseline predictors of renal disease progression in the African American Study of Hypertension and Kidney Disease. J. Am. Soc. Nephrol. 17, 2928–2936 (2006).

    Article  PubMed  Google Scholar 

  25. Fliser, D. et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: The Mild to Moderate Kidney Disease (MMKD) Study. J. Am. Soc. Nephrol. 18, 2600–2608 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Voormolen, N. et al. High plasma phosphate as a risk factor for decline in renal function and mortality in pre-dialysis patients. Nephrol. Dial. Transplant. 22, 2909–2916 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Levin, A., Djurdjev, O., Beaulieu, M. & Er, L. Variability and risk factors for kidney disease progression and death following attainment of stage 4 CKD in a referred cohort. Am. J. Kidney Dis. 52, 661–671 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Loghman-Adham, M. Role of phosphate retention in the progression of renal failure. J. Lab. Clin. Med. 122, 16–26 (1993).

    CAS  PubMed  Google Scholar 

  29. Cozzolino, M. et al. Sevelamer hydrochloride attenuates kidney and cardiovascular calcifications in long-term experimental uremia. Kidney Int. 64, 1653–1661 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Ibels, L. S., Alfrey, A. C., Haut, L. & Huffer, W. E. Preservation of function in experimental renal disease by dietary restriction of phosphate. N. Engl. J. Med. 298, 122–126 (1978).

    Article  CAS  PubMed  Google Scholar 

  31. Schumock, G. T. et al. Association of secondary hyperparathyroidism with CKD progression, health care costs and survival in diabetic predialysis CKD patients. Nephron Clin. Pract. 113, c54–c61 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Tomford, R. C., Karlinsky, M. L., Buddington, B. & Alfrey, A. C. Effect of thyroparathyroidectomy and parathyroidectomy on renal function and the nephrotic syndrome in rat nephrotoxic serum nephritis. J. Clin. Invest. 68, 655–664 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ritz, E., Gross, M. L. & Dikow, R. Role of calcium-phosphorous disorders in the progression of renal failure. Kidney Int. Suppl. S66–S70 (2005).

  34. Ogata, H., Ritz, E., Odoni, G., Amann, K. & Orth, S. R. Beneficial effects of calcimimetics on progression of renal failure and cardiovascular risk factors. J. Am. Soc. Nephrol. 14, 959–967 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 357, 266–281 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Ravani, P. et al. Vitamin D levels and patient outcome in chronic kidney disease. Kidney Int. 75, 88–95 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Christiansen, C., Rodbro, P., Christensen, M. S., Hartnack, B. & Transbol, I. Deterioration of renal function during treatment of chronic renal failure with 1, 25-dihydroxycholecalciferol. Lancet 2, 700–703 (1978).

    Article  CAS  PubMed  Google Scholar 

  38. Schwarz, U. et al. Effect of 1, 25 (OH)2 vitamin D3 on glomerulosclerosis in subtotally nephrectomized rats. Kidney Int. 53, 1696–1705 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Panichi, V. et al. Effects of 1, 25(OH)2D3 in experimental mesangial proliferative nephritis in rats. Kidney Int. 60, 87–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Weber, T. J., Liu, S., Indridason, O. S. & Quarles, L. D. Serum FGF23 levels in normal and disordered phosphorus homeostasis. J. Bone Miner. Res. 18, 1227–1234 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Fukagawa, M. & Kazama, J. J. With or without the kidney: the role of FGF23 in CKD. Nephrol. Dial. Transplant. 20, 1295–1298 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. White, K. E. et al. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26, 345–348 (2000).

    Article  CAS  Google Scholar 

  43. Jonsson, K. B. et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N. Engl. J. Med. 348, 1656–1663 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA 98, 6500–6505 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shimada, T. et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest. 113, 561–568 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ferrari, S. L., Bonjour, J. P. & Rizzoli, R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J. Clin. Endocrinol. Metab. 90, 1519–1524 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Larsson, T., Nisbeth, U., Ljunggren, O., Juppner, H. & Jonsson, K. B. Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int. 64, 2272–2279 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Imanishi, Y. et al. FGF-23 in patients with end-stage renal disease on hemodialysis. Kidney Int. 65, 1943–1946 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Nagano, N. et al. Effect of manipulating serum phosphorus with phosphate binder on circulating PTH and FGF23 in renal failure rats. Kidney Int. 69, 531–537 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Gutierrez, O. et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J. Am. Soc. Nephrol. 16, 2205–2215 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Block, G. A., Hulbert-Shearon, T. E., Levin, N. W. & Port, F. K. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am. J. Kidney Dis. 31, 607–617 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Ganesh, S. K., Stack, A. G., Levin, N. W., Hulbert-Shearon, T. & Port, F. K. Association of elevated serum PO(4), Ca x PO(4) product, and parathyroid hormone with cardiac mortality risk in chronic hemodialysis patients. J. Am. Soc. Nephrol. 12, 2131–2138 (2001).

    CAS  PubMed  Google Scholar 

  53. Tonelli, M., Sacks, F., Pfeffer, M., Gao, Z. & Curhan, G. Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation 112, 2627–2633 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Kusano, K., Saito, H., Segawa, H., Fukushima, N. & Miyamoto, K. Mutant FGF23 prevents the progression of chronic kidney disease but aggravates renal osteodystrophy in uremic rats. J. Nutr. Sci. Vitaminol. (Tokyo) 55, 99–105 (2009).

    Article  CAS  Google Scholar 

  55. Gutierrez, O. M. et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 119, 2545–2552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gutierrez, O. M. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 359, 584–592 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rabin, K. R., Kamari, Y., Avni, I., Grossman, E. & Sharabi, Y. Adiponectin: linking the metabolic syndrome to its cardiovascular consequences. Expert Rev. Cardiovasc. Ther. 3, 465–471 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Weyer, C. et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86, 1930–1935 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Zoccali, C. et al. Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J. Am. Soc. Nephrol. 13, 134–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Menzaghi, C. et al. A haplotype at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome. Diabetes 51, 2306–2312 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Costacou, T. et al. The prospective association between adiponectin and coronary artery disease among individuals with type 1 diabetes. The Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia 48, 41–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Schulze, M. B. et al. Adiponectin and future coronary heart disease events among men with type 2 diabetes. Diabetes 54, 534–539 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Pischon, T. et al. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 291, 1730–1737 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Becker, B. et al. Renal insulin resistance syndrome, adiponectin and cardiovascular events in patients with kidney disease: The Mild and Moderate Kidney Disease Study. J. Am. Soc. Nephrol. 16, 1091–1098 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Kollerits, B. et al. Gender-specific association of adiponectin as a predictor of progression of chronic kidney disease: The Mild to Moderate Kidney Disease (MMKD) Study. Kidney Int. 71, 1279–1286 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Jorsal, A. et al. Serum adiponectin predicts all-cause mortality and end stage renal disease in patients with type I diabetes and diabetic nephropathy. Kidney Int. 74, 649–654 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Saraheimo, M. et al. Serum adiponectin and progression of diabetic nephropathy in patients with type 1 diabetes. Diabetes Care 31, 1165–1169 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Shen, Y., Peake, P. W. & Kelly, J. J. Should we quantify insulin resistance in patients with renal disease? Nephrology (Carlton) 10, 599–605 (2005).

    Article  Google Scholar 

  69. Isobe, T. et al. Influence of gender, age and renal function on plasma adiponectin level: the Tanno and Sobetsu study. Eur. J. Endocrinol. 153, 91–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Zoccali, C. et al. Adiponectin is markedly increased in patients with nephrotic syndrome and is related to metabolic risk factors. Kidney Int. Suppl. 63 (Suppl. 84), S98–S102 (2003).

    Article  Google Scholar 

  71. Ishizawa, K. et al. Inhibitory effects of adiponectin on platelet-derived growth factor-induced mesangial cell migration. J. Endocrinol. 202, 309–316 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Kadowaki, T. & Yamauchi, T. Adiponectin and adiponectin receptors. Endocr. Rev. 26, 439–451 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Furuhashi, M. et al. Possible impairment of transcardiac utilization of adiponectin in patients with type 2 diabetes. Diabetes Care 27, 2217–2221 (2004).

    Article  PubMed  Google Scholar 

  74. Pilz, S. et al. Adiponectin and mortality in patients undergoing coronary angiography. J. Clin. Endocrinol. Metab. 91, 4277–4286 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Menon, V. et al. Adiponectin and mortality in patients with chronic kidney disease. J. Am. Soc. Nephrol. 17, 2599–2606 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Kistorp, C. et al. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation 112, 1756–1762 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Schalkwijk, C. G., Chaturvedi, N., Schram, M. T., Fuller, J. H. & Stehouwer, C. D. Adiponectin is inversely associated with renal function in type 1 diabetic patients. J. Clin. Endocrinol. Metab. 91, 129–135 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Mori, K. & Nakao, K. Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int. 71, 967–970 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Bolignano, D. et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am. J. Kidney Dis. 52, 595–605 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Bolignano, D., Coppolino, G., Lacquaniti, A., Nicocia, G. & Buemi, M. Pathological and prognostic value of urinary neutrophil gelatinase-associated lipocalin in macroproteinuric patients with worsening renal function. Kidney Blood Press. Res. 31, 274–279 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Bolignano, D. et al. Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin. J. Am. Soc. Nephrol. 4, 337–344 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nickolas, T. L., Barasch, J. & Devarajan, P. Biomarkers in acute and chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 17, 127–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Kuwabara, T. et al. Urinary neutrophil gelatinase-associated lipocalin levels reflect damage to glomeruli, proximal tubules, and distal nephrons. Kidney Int. 75, 285–294 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Bolignano, D. et al. Effect of a single intravenous immunoglobulin infusion on neutrophil gelatinase-associated lipocalin levels in proteinuric patients with normal renal function. J. Investig. Med. 56, 997–1003 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Kamijo, A. et al. Urinary excretion of fatty acid-binding protein reflects stress overload on the proximal tubules. Am. J. Pathol. 165, 1243–1255 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kamijo, A. et al. Urinary fatty acid-binding protein as a new clinical marker of the progression of chronic renal disease. J. Lab. Clin. Med. 143, 23–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Ishimitsu, T. et al. Urinary excretion of liver fatty acid-binding protein in health-check participants. Clin. Exp. Nephrol. 9, 34–39 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Nakamura, T. et al. Effect of pitavastatin on urinary liver-type fatty acid-binding protein levels in patients with early diabetic nephropathy. Diabetes Care 28, 2728–2732 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Kamijo, A. et al. Urinary liver-type fatty acid binding protein as a useful biomarker in chronic kidney disease. Mol. Cell. Biochem. 284, 175–182 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Bonventre, J. V. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol. Dial. Transplant. doi:10.1093/ndt/gfp010

  91. van Timmeren, M. M. et al. Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J. Pathol. 212, 209–217 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. van Timmeren, M. M. et al. High urinary excretion of kidney injury molecule-1 is an independent predictor of graft loss in renal transplant recipients. Transplantation 84, 1625–1630 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Waanders, F. et al. Effect of renin-angiotensin-aldosterone system inhibition, dietary sodium restriction, and/or diuretics on urinary kidney injury molecule 1 excretion in nondiabetic proteinuric kidney disease: a post hoc analysis of a randomized controlled trial. Am. J. Kidney Dis. 53, 16–25 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Utermann, G. & Beisiegel, U. Apolipoprotein A-IV: a protein occurring in human mesenteric lymph chylomicrons and free in plasma. Isolation and quantification. Eur. J. Biochem. 99, 333–343 (1979).

    Article  CAS  PubMed  Google Scholar 

  95. Dieplinger, H., Schoenfeld, P. Y. & Fielding, J. Plasma cholesterol metabolism in end-stage renal disease: difference between treatment by hemodialysis or peritoneal dialysis. J. Clin. Invest. 77, 1071–1083 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nestel, P. J., Fide, N. H. & Tan, M. H. Increased lipoprotein-remnant formation in chronic renal failure. N. Engl. J. Med. 307, 329–333 (1982).

    Article  CAS  PubMed  Google Scholar 

  97. Kronenberg, F. et al. Multicenter study of lipoprotein(a) and apolipoprotein(a) phenotypes in patients with end-stage renal disease treated by hemodialysis or continuous ambulatory peritoneal dialysis. J. Am. Soc. Nephrol. 6, 110–120 (1995).

    CAS  PubMed  Google Scholar 

  98. Kronenberg, F. et al. Apolipoprotein A-IV serum concentrations are elevated in mild and moderate renal failure. J. Am. Soc. Nephrol. 13, 461–469 (2002).

    CAS  PubMed  Google Scholar 

  99. Haiman, M. et al. Immunohistochemical localization of apolipoprotein A-IV in human kidney tissue. Kidney Int. 68, 1130–1136 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Lingenhel, A. et al. Role of the kidney in the metabolism of apolipoprotein A-IV: influence of the type of proteinuria. J. Lipid Res. 47, 2071–2079 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Boes, E. et al. Apolipoprotein A-IV predicts progression of chronic kidney disease: The Mild to Moderate Kidney Disease Study. J. Am. Soc. Nephrol. 17, 528–536 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Qin, X., Swertfeger, D. K., Zheng, S., Hui, D. Y. & Tso, P. Apolipoprotein AIV: a potent endogenous inhibitor of lipid oxidation. Am. J. Physiol. 274, H1836–H1840 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Kronenberg, F. et al. Low apolipoprotein A-IV plasma concentrations in men with coronary artery disease. J. Am. Coll. Cardiol. 36, 751–757 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Warner, M. M., Guo, J. & Zhao, Y. The relationship between plasma apolipoprotein A-IV levels and coronary heart disease. Chin. Med. J. (Engl.) 114, 275–279 (2001).

    CAS  Google Scholar 

  105. Ronco, C., Haapio, M., House, A. A., Anavekar, N. & Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 52, 1527–1539 (2008).

    Article  PubMed  Google Scholar 

  106. Vesely, D. L. Atrial natriuretic peptides in pathophysiological diseases. Cardiovasc. Res. 51, 647–658 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Bunton, D. C., Petrie, M. C., Hillier, C., Johnston, F. & McMurray, J. J. The clinical relevance of adrenomedullin: a promising profile? Pharmacol. Ther. 103, 179–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Wieczorek, S. J. et al. A rapid B-type natriuretic peptide assay accurately diagnoses left ventricular dysfunction and heart failure: a multicenter evaluation. Am. Heart J. 144, 834–839 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Lerman, A. et al. Circulating N-terminal atrial natriuretic peptide as a marker for symptomless left-ventricular dysfunction. Lancet 341, 1105–1109 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Ishimitsu, T. et al. Plasma levels of adrenomedullin, a newly identified hypotensive peptide, in patients with hypertension and renal failure. J. Clin. Invest. 94, 2158–2161 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Spanaus, K.-S. et al. B-type natriuretic peptide concentrations predict the progression of non-diabetic chronic kidney disease: The Mild-to-Moderate Kidney Disease Study. Clin. Chem. 53, 1264–1272 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Dieplinger, B. et al. Pro-A-type natriuretic peptide and pro-adrenomedullin predict progression of chronic kidney disease: the MMKD Study. Kidney Int. 75, 408–414 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Astor, B. C. et al. N-terminal prohormone brain natriuretic peptide as a predictor of cardiovascular disease and mortality in blacks with hypertensive kidney disease: the African American Study of Kidney Disease and Hypertension (AASK). Circulation 117, 1685–1692 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Carr, S. J., Bavanandan, S., Fentum, B. & Ng, L. Prognostic potential of brain natriuretic peptide in predialysis chronic kidney disease patients. Clin. Sci. (Lond.) 109, 75–82 (2005).

    Article  CAS  Google Scholar 

  115. Prokopenko, I., McCarthy, M. I. & Lindgren, C. M. Type 2 diabetes: new genes, new understanding. Trends Genet. 24, 613–621 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Davey, S. G. & Ebrahim, S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).

    Article  Google Scholar 

  117. Heid, I. M. et al. Genetic architecture of the APM1 gene and its influence on adiponectin plasma levels and parameters of the metabolic syndrome in 1,727 healthy Caucasians. Diabetes 55, 375–384 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Köttgen, A. et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 41, 712–717 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rampoldi, L. et al. Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics. Hum. Mol. Genet. 12, 3369–3384 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Vylet'al, P. et al. Alterations of uromodulin biology: a common denominator of the genetically heterogeneous FJHN/MCKD syndrome. Kidney Int. 70, 1155–1169 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Hart, T. C. et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J. Med. Genet. 39, 882–892 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Luttropp, K. et al. Understanding the role of genetic polymorphisms in chronic kidney disease. Pediatr. Nephrol. 23, 1941–1949 (2008).

    Article  PubMed  Google Scholar 

  123. Hsu, C. C. et al. Genetic variation of the renin-angiotensin system and chronic kidney disease progression in black individuals in the atherosclerosis risk in communities study. J. Am. Soc. Nephrol. 17, 504–512 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Ruggenenti, P., Bettinaglio, P., Pinares, F. & Remuzzi, G. Angiotensin converting enzyme insertion/deletion polymorphism and renoprotection in diabetic and nondiabetic nephropathies. Clin. J. Am. Soc. Nephrol. 3, 1511–1525 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Köttgen, A. et al. TCF7L2 variants associate with CKD progression and renal function in population-based cohorts. J. Am. Soc. Nephrol. 19, 1989–1999 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Heid, I. M. et al. Genome-wide association analysis of high-density lipoprotein cholesterol in the population-based KORA Study sheds new light on intergenic regions. Circ. Cardiovasc. Genetics 1, 10–20 (2008).

    Article  CAS  Google Scholar 

  127. Aulchenko, Y. S. et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat. Genet. 41, 47–55 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Döring, A. et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat. Genet. 40, 430–436 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Lusis, A. J., Attie, A. D. & Reue, K. Metabolic syndrome: from epidemiology to systems biology. Nat. Rev. Genet. 9, 819–830 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nicholson, J. K. & Lindon, J. C. Systems biology: metabonomics. Nature 455, 1054–1056 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Kronenberg, F. Genome-wide association studies in aging-related processes such as diabetes mellitus, atherosclerosis and cancer. Exp. Gerontol. 43, 39–43 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. McCarthy, M. I. & Hirschhorn, J. N. Genome-wide association studies: past, present and future. Hum. Mol. Genet. 17, R100–R101 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Gieger, C. et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet. 4, e1000282 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Heid, I. M. et al. Meta-analysis of the INSIG2 association with obesity including 74,345 individuals: does heterogeneity of estimates relate to study design? PLoS Genet. (in press).

  135. National Kidney Disease Education Program: Creatinine Standardization Program [online], (2008).

  136. Lash, J. P. et al. Chronic Renal Insufficiency Cohort (CRIC) study: baseline characteristics and associations with kidney function. Clin. J. Am. Soc. Nephrol. 4, 1302–1311 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Taal, M. W. & Brenner, B. M. Predicting initiation and progression of chronic kidney disease: developing renal risk scores. Kidney Int. 70, 1694–1705 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Boes, E., Coassin, S., Kollerits, B., Heid, I. M. & Kronenberg, F. Genetic-epidemiological evidence on genes associated with HDL cholesterol levels: a systematic in-depth review. Exp. Gerontol. 44, 136–160 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Kronenberg, F. & Heid, I. M. Genetik intermediärer Phänotypen. Medizinische Genetik 19, 304–308 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank all collaborators of the Mild to Moderate Kidney Disease (MMKD) study who have continuously contributed to the investigation. In particular, he would like to thank Dr B. Kollerits for her contributions to the study. Funding from the Genomics of Lipid-associated Disorders (GOLD) of the Austrian Genome Research Programme (GEN-AU), and support from the German Ministry of Education and Research (BMBF) and the KfH - Stiftung Präventivmedizin to the German Chronic Kidney Disease (GCKD) study is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Kronenberg.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kronenberg, F. Emerging risk factors and markers of chronic kidney disease progression. Nat Rev Nephrol 5, 677–689 (2009). https://doi.org/10.1038/nrneph.2009.173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing