Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Impact of treating the metabolic syndrome on chronic kidney disease

Abstract

The metabolic syndrome is defined by the concurrent presence of at least three metabolic disorders that are associated with an increased risk of cardiovascular disease and diabetes. Results from prospective and cross-sectional studies also point to an association between the metabolic syndrome and chronic kidney disease. Visceral obesity and insulin resistance are two important features of the metabolic syndrome that might explain renal injury. We reviewed the literature to examine whether treatment of the metabolic syndrome can favorably influence renal outcomes. Weight loss, regular exercise, and a low-calorie, low-fat diet are first-line treatments of the metabolic syndrome, yet few data are available to indicate that such lifestyle interventions can prevent or reverse renal damage. Similarly, results from few studies show little or no beneficial effect of blood pressure control, use of statins, fibrates, thiazolidinediones or metformin on renal parameters in patients with metabolic syndrome. The reasons for the lack of trials in this research field are also discussed. This Review identifies the need to improve understanding of the role of metabolic syndrome in chronic kidney disease, define consistent criteria for metabolic syndrome and perform clinical trials that analyze renal outcomes as primary end points.

Key Points

  • The metabolic syndrome is a constellation of metabolic risk factors that predict increased risks of cardiovascular disease and diabetes

  • In cross-sectional and longitudinal studies, the metabolic syndrome is associated with chronic kidney disease and microalbuminuria

  • Abdominal obesity and insulin resistance are widely considered to be key mechanisms of metabolic-syndrome-mediated renal damage

  • Limited studies demonstrate that treatment of the metabolic syndrome by way of lifestyle changes, pharmacotherapies, or both, can improve markers of renal function

  • Increased recognition of the metabolic syndrome and early intervention for this condition could improve cardiovascular and renal outcomes

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of metabolic-syndrome-induced renal injury and potential targeted treatments.
Figure 2: Changes in anthropometric, blood pressure, glycemic, lipid, inflammatory and renal parameters 1 year after bariatric surgery.73
Figure 3: Changes in median albumin:creatinine ratio 1 year after bariatric surgery in a single-center study of 94 adults with obesity.73

Similar content being viewed by others

References

  1. Grundy, S. M. et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112, 2735–2752 (2005).

    Article  PubMed  Google Scholar 

  2. Scott, M. et al. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 109, 433–438 (2004).

    Article  Google Scholar 

  3. Kitiyakara, C. et al. The metabolic syndrome and chronic kidney disease in a Southeast Asian cohort. Kidney Int. 71, 693–700 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Luk, A. O. et al. The NCEP-ATPIII but not the IDF criteria for the metabolic syndrome identify type 2 diabetic patients at increased risk of chronic kidney disease. Diabet. Med. 25, 1419–1425 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Ford, E. S., Giles, W. H. & Mokdad, A. H. Increasing prevalence of the metabolic syndrome among US adults. Diabetes Care 27, 2444–2449 (2004).

    Article  PubMed  Google Scholar 

  6. Ford, E. S., Giles, W. H. & Dietz, W. H. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287, 356–359 (2002).

    Article  PubMed  Google Scholar 

  7. Kahn, R. et al. The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 289, 2289–2304 (2005).

    Article  Google Scholar 

  8. Kurella, M., Lo, J. C. & Chertow, G. M. Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J. Am. Soc. Nephrol. 16, 2134–2140 (2005).

    Article  PubMed  Google Scholar 

  9. Fox, C. S. et al. Glycemic status and development of kidney disease: the Framingham Heart Study. Diabetes Care 28, 2436–2440 (2005).

    Article  PubMed  Google Scholar 

  10. Bonnet, F. et al. Waist circumference and the metabolic syndrome predict the development of elevated albuminuria in non-diabetic subjects: the DESIR Study. J. Hypertens. 24, 1157–1163 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Ryu, S. et al. Time-dependent association between metabolic syndrome and risk of CKD in Korean men without hypertension or diabetes. Am. J. Kidney Dis. 53, 59–69 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Lea, J. et al. Metabolic syndrome, proteinuria, and the risk of progressive CKD in hypertensive African Americans. Am. J. Kidney Dis. 51, 732–740 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Tozawa, M. et al. Metabolic syndrome and risk of developing chronic kidney disease in japanese adults. Hypertens. Res. 30, 937–943 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Kitiyakara, C. et al. The metabolic syndrome and chronic kidney disease in a Southeast Asian cohort. Kidney Int. 71, 693–700 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Lucove, J., Vupputuri, S., Heiss, G., North, K. & Russell, M. Metabolic Syndrome and the development of CKD in American Indians: The Strong Heart Study. Am. J. Kidney Dis. 51, 21–28 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Luk, A. O. et al. Metabolic syndrome predicts new onset of chronic kidney disease in 5 829 patients with type 2 diabetes. Diabetes Care 31, 2357–2361 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ninomiya, T. et al. Metabolic syndrome and CKD in a general Japanese population: The Hisayama Study. Am. J. Kidney Dis. 48, 383–391 (2006).

    Article  PubMed  Google Scholar 

  18. Rashidi, A., Ghanbarian, A. & Azizi, F. Are patients who have metabolic syndrome without diabetes at risk for developing chronic kidney disease? Evidence based on data from a large cohort screening population. Clin. J. Am. Soc. Nephrol. 2, 976–983 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, J. et al. The metabolic syndrome and chronic kidney disease in US adults. Ann. Intern. Med. 140, 167–174 (2004).

    Article  PubMed  Google Scholar 

  20. Peralta, C. A., Kurella, M., Lo, J. C. & Chertow, G. M. The metabolic syndrome and chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 15, 361–365 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Bagby, S. P. Obesity-initiated metabolic syndrome and the kidney: a recipe for chronic kidney disease? J. Am. Soc. Nephrol. 15, 2775–2791 (2004).

    Article  PubMed  Google Scholar 

  22. Wahba, I. M. & Mak, R. H. Obesity and obesity-initiated metabolic syndrome: mechanistic links to chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2, 550–562 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Alberti, K. G., Zimmet, P., Shaw, J. & IDF Epidemiology Task Force Consensus Group. The metabolic syndrome—a new worldwide definition. Lancet 366, 1059–1062 (2005).

    Article  PubMed  Google Scholar 

  24. Wajchenberg, B. L. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr. Rev. 21, 697–738 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Elsayed, E. F. et al. Waist-to-hip ratio, body mass index, and subsequent kidney disease and death. Am. J. Kidney Dis. 52, 29–38 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wellen, K. E. & Hotamisligil, G. S. Obesity-induced inflammatory changes in adipose tissue. J. Clin. Invest. 112, 1785–1788 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fontana, L., Eagon, J. C., Trujillo, M. E., Scherer, P. E. & Klein, S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56, 1010–1013 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Wisse, B. E. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J. Am. Soc. Nephrol. 15, 2792–2800 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Freedland, E. S. Role of a critical visceral adipose tissue threshold (CVATT) in metabolic syndrome: implications for controlling dietary carbohydrates: a review. Nutr. Metab. (Lond.) 1, 12 (2004).

    Article  CAS  Google Scholar 

  30. Weinberg, J. M. Lipotoxicity. Kidney Int. 70, 1560–1566 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Nishida, Y., Oda, H. & Yorioka, N. Effect of lipoproteins on mesangial cell proliferation. Kidney Int. 56, S51–S53 (1999).

    Article  Google Scholar 

  32. Walker, W. G. Relation of lipid abnormalities to progression of renal damage in essential hypertension, insulin-dependent and non insulin-dependent diabetes mellitus. Miner. Electrolyte Metab. 19, 137–143 (1993).

    CAS  PubMed  Google Scholar 

  33. Martin, S. S., Qasim, A. & Reilly, M. P. Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J. Am. Coll. Cardiol. 52, 1201–1210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Arita, Y. et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257, 79–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Shulman, G. I. Cellular mechanisms of insulin resistance. J. Clin. Invest. 106, 171–176 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sarafidis, P. A. & Ruilope, L. M. Insulin resistance, hyperinsulinemia, and renal injury: mechanisms and implications. Am. J. Nephrol. 26, 232–244 (2006).

    Article  PubMed  Google Scholar 

  37. Cooper, M. E. Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet 352, 213–219 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. DeFronzo, R. A., Cooke, C. R., Andres, R., Faloona, G. R. & Davis, P. J. The effect of insulin on renal handling of sodium, potassium, calcium, and phosphate in man. J. Clin. Invest. 55, 845–855 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rowe, J. W. et al. Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes 30, 219–225 (1981).

    Article  CAS  PubMed  Google Scholar 

  40. Miller, A. W., Hoenig, M. E. & Ujhelyi, M. R. Mechanisms of impaired endothelial function associated with insulin resistance. J. Cardiovasc. Pharmacol. Ther. 3, 125–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Peterson, J. C. et al. Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann. Intern. Med. 123, 754–762 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Dengel, D. R., Goldberg, A. P., Mayuga, R. S., Kairis, G. M. & Weir, M. R. Insulin resistance, elevated glomerular filtration fraction, and renal injury. Hypertension 28, 127–132 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Kambham, N., Markowitz, G. S., Valeri, A. M., Lin, J. & D'Agati, V. D. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 59, 1498–1509 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Alexander, M. P. et al. Kidney pathological changes in metabolic syndrome: a cross-sectional study. Am. J. Kidney Dis. 53, 751–759 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Strippoli, G. F., Craig, J. C. & Schena, F. P. The number, quality, and coverage of randomized controlled trials in nephrology. J. Am. Soc. Nephrol. 15, 411–419 (2004).

    Article  PubMed  Google Scholar 

  46. Scott, M. Diagnosis and Management of the Metabolic Syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement: Executive Summary. Circulation 112, e285–e290 (2005).

    Google Scholar 

  47. Bestermann, W. et al. Addressing the global cardiovascular risk of hypertension, dyslipidemia, diabetes mellitus, and the metabolic syndrome in the southeastern United States, part II: treatment recommendations for management of the global cardiovascular risk of hypertension, dyslipidemia, diabetes mellitus, and the metabolic syndrome. Am. J. Med. Sci. 329, 292–305 (2005).

    Article  PubMed  Google Scholar 

  48. Gaede, P., Vedel, P., Parving, H. H. & Pedersen, O. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet 353, 617–622 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Wilson, P. W. et al. Prediction of coronary heart disease using risk factor categories. Circulation 97, 1837–1847 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Hayden, M. R. et al. Detecting microalbuminuria and taking action in the cardiometabolic syndrome and type 2 diabetes mellitus. Mo. Med. 103, 533–538 (2006).

    PubMed  Google Scholar 

  51. Balkau, B. et al. The impact of 3-year changes in lifestyle habits on metabolic syndrome parameters: the D. E. S. I. R study. Eur. J. Cardiovasc. Prev. Rehabil. 13, 334–340 (2006).

    PubMed  PubMed Central  Google Scholar 

  52. Tjønna, A. E. et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation 118, 346–354 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Thompson, P. D. et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation 107, 3109–3116 (2003).

    Article  PubMed  Google Scholar 

  54. Finkelstein, J., Joshi, A. & Hise, M. K. Association of physical activity and renal function in subjects with and without metabolic syndrome: a review of the Third National Health and Nutrition Examination Survey (NHANES III). Am. J. Kidney Dis. 48, 372–382 (2006).

    Article  PubMed  Google Scholar 

  55. Fredrickson, S. K., Ferro, T. J. & Schutrumpf, A. C. Disappearance of microalbuminuria in a patient with type 2 diabetes and the metabolic syndrome in the setting of an intense exercise and dietary program with sustained weight reduction. Diabetes Care 27, 1754–1755 (2004).

    Article  PubMed  Google Scholar 

  56. Hong, K., Li, Z., Wang, H. J., Elashoff, R. & Heber, D. Analysis of weight loss outcomes using VLCD in black and white overweight and obese women with and without metabolic syndrome. Int. J. Obes. (Lond.) 29, 436–442 (2005).

    Article  CAS  Google Scholar 

  57. Meckling, K. A. & Sherfey, R. A randomized trial of a hypocaloric high-protein diet, with and without exercise, on weight loss, fitness, and markers of the Metabolic Syndrome in overweight and obese women. Appl. Physiol. Nutr. Metab. 32, 743–752 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Straznicky, N. E. et al. Effects of dietary weight loss on sympathetic activity and cardiac risk factors associated with the metabolic syndrome. J. Clin. Endocrinol. Metab. 90, 5998–6005 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Kushner, R. F. & Doerfler, B. Low-carbohydrate, high-protein diets revisited. Curr. Opin. Gastroenterol. 24, 198–203 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Friedman, A. N. High-protein diets: potential effects on the kidney in renal health and disease. Am. J. Kidney Dis. 44, 950–962 (2004).

    Article  PubMed  Google Scholar 

  61. Dansinger, M. L., Gleason, J. A., Griffith, J. L., Selker, H. P. & Schaefer, E. J. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA 293, 43–53 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Zanella, M. T. et al. Orlistat and cardiovascular risk profile in hypertensive patients with metabolic syndrome: the ARCOS study. Arq. Bras. Endocrinol. Metabol. 50, 368–376 (2006).

    Article  PubMed  Google Scholar 

  63. Reaven, G., Segal, K., Hauptman, J., Boldrin, M. & Lucas, C. Effect of orlistat-assisted weight loss in decreasing coronary heart disease risk in patients with syndrome X. Am. J. Cardiol. 87, 827–831 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Filippatos, T. D. et al. Effect of orlistat, micronised fenofibrate and their combination on metabolic parameters in overweight and obese patients with the metabolic syndrome: the FenOrli study. Curr. Med. Res. Opin. 21, 1997–2006 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Broeders, N., Knoop, C., Antoine, M., Tielemans, C. & Abramowicz, D. Fibrate-induced increase in blood urea and creatinine: is gemfibrozil the only innocuous agent? Nephrol. Dial. Transplant. 15, 1993–1999 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Courtney, A. E., O'Rourke, D. M. & Maxwell, A. P. Rapidly progressive renal failure associated with successful pharmacotherapy for obesity. Nephrol. Dial. Transplant. 22, 621–623 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Krejs, G. J. Metabolic benefits associated with sibutramine therapy. Int. J. Obes. Relat. Metab. Disord. 26 (Suppl. 4), S34–S37 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Kushner, R. F. Medical management of obesity. Semin. Gastrointest. Dis. 13, 123–132 (2002).

    PubMed  Google Scholar 

  69. Lindholm, A. et al. Effect of sibutramine on weight reduction in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Fertil. Steril. 89, 1221–1228 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Van Gaal, L. F. et al. Long-term effect of CB1 blockade with rimonabant on cardiometabolic risk factors: two year results from the RIO-Europe Study. Eur. Heart J. 29, 1761–1771 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Batsis, J. A. et al. Effect of bariatric surgery on the metabolic syndrome: a population-based, long-term controlled study. Mayo Clin. Proc. 83, 897–907 (2008).

    Article  PubMed  Google Scholar 

  72. Chagnac, A. et al. The effects of weight loss on renal function in patients with severe obesity. J. Am. Soc. Nephrol. 14, 1480–1486 (2003).

    Article  PubMed  Google Scholar 

  73. Agrawal, V. et al. The effect of weight loss after bariatric surgery on albuminuria. Clin. Nephrol. 70, 194–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Nelson, W. K., Houghton, S. G., Milliner, D. S., Lieske, J. C. & Sarr, M. G. Enteric hyperoxaluria, nephrolithiasis, and oxalate nephropathy: potentially serious and unappreciated complications of Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 1, 481–485 (2005).

    Article  PubMed  Google Scholar 

  75. Chen, J. & Townsend, R. R. Preventing cardiovascular and renal complications in the management of hypertension and metabolic syndrome. Expert. Opin. Pharmacother. 8, 2001–2009 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Orchard, T. J. et al. The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: the Diabetes Prevention Program randomized trial. Ann. Intern. Med. 142, 611–619 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ford, E. S. Rarer than a blue moon: the use of a diagnostic code for the metabolic syndrome in the US Diabetes Care 28, 1808–1809 (2005).

    Article  PubMed  Google Scholar 

  78. Reynolds, K., Muntner, P. & Fonseca, V. Metabolic syndrome: underrated or underdiagnosed? Diabetes Care 28, 1831–1832 (2005).

    Article  PubMed  Google Scholar 

  79. Kincaid-Smith, P. Hypothesis: obesity and the insulin resistance syndrome play a major role in end-stage renal failure attributed to hypertension and labelled 'hypertensive nephrosclerosis'. J. Hypertens. 22, 1051–1055 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Xie, D. et al. A comparison of change in measured and estimated glomerular filtration rate in patients with nondiabetic kidney disease. Clin. J. Am. Soc. Nephrol. 3, 1332–1338 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Navarro-Díaz, M. et al. Effect of drastic weight loss after bariatric surgery on renal parameters in extremely obese patients: long-term follow-up. J. Am. Soc. Nephrol. 17 (Suppl. 3), S213–S217 (2006).

    Article  PubMed  Google Scholar 

  82. Black, H. R. et al. Metabolic and clinical outcomes in nondiabetic individuals with the metabolic syndrome assigned to chlorthalidone, amlodipine, or lisinopril as initial treatment for hypertension: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) Diabetes Care 31, 353–360 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Uzu, T. et al. Benidipine attenuates glomerular hypertension and reduces albuminuria in patients with metabolic syndrome. Hypertens. Res. 30, 161–165 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Chobanian, A. V. et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 42, 1206–1252 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Segura, J. et al. Should hypertension guidelines be changed for hypertensive patients with the metabolic syndrome? J. Clin. Hypertens. (Greenwich) 9, 595–600 (2007).

    Article  CAS  Google Scholar 

  86. Ruan, X., Zheng, F. & Guan, Y. PPARs and the kidney in metabolic syndrome. Am. J. Physiol. Renal Physiol. 294, F1032–F1047 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Sarafidis, P. A. & Bakris, G. L. Protection of the kidney by thiazolidinediones: an assessment from bench to bedside. Kidney Int. 70, 1223–1233 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Lee, T. M., Su, S. F. & Tsai, C. H. Effect of pravastatin on proteinuria in patients with well-controlled hypertension. Hypertension 40, 67–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Athyros, V. G. et al. Effect of statin treatment on renal function and serum uric acid levels and their relation to vascular events in patients with coronary heart disease and metabolic syndrome: a subgroup analysis of the GREek Atorvastatin and Coronary heart disease Evaluation (GREACE) Study. Nephrol. Dial. Transplant. 22, 118–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Vitale, C. et al. Metformin improves endothelial function in patients with metabolic syndrome. J. Intern. Med. 258, 250–256 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Kidney Disease Outcomes Quality Initiative (K/DOQI) Group. K/DOQI clinical practice guidelines for management of dyslipidemias in patients with kidney disease. Am. J. Kidney Dis. 41 (Suppl. 3), S1–S91 (2003).

  92. Diabetes Prevention Program Research Group. Changes in albumin excretion in the diabetes prevention program. Diabetes Care 32, 720–725 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Agrawal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, V., Shah, A., Rice, C. et al. Impact of treating the metabolic syndrome on chronic kidney disease. Nat Rev Nephrol 5, 520–528 (2009). https://doi.org/10.1038/nrneph.2009.114

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing