Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Left–right asymmetry in the nervous system: the Caenorhabditis elegans model

Key Points

  • The body plan of most adult animals is largely bilaterally symmetrical, although several organs, such as the heart, liver and spleen, are only present on one side of the animal. In a second type of asymmetry, structures that are present on both sides of the body show deviations from bilateral symmetry. In vertebrates, this symmetry breakage is manifested in the asymmetrical size of otherwise bilaterally symmetrical structures. In invertebrates, it is apparent at the level of gene expression patterns and cell positioning.

  • Two-thirds of the neurons of the nematode Caenorhabditis elegans are present as bilaterally symmetrical pairs, and most of the remaining neurons are located on or close to the midline, with no contralateral analogue. Within the head ganglia, there are four neurons that are located on only one side of the animal; these are termed 'unilateral' neurons. Bilateral symmetry in the ventral nerve cord (VNC) is more subtle, and the left and right fascicles of the VNC are the only major fascicles in the worm that are not strictly bilaterally symmetrical.

  • Similar lineage histories are neither sufficient nor necessary for two cells to adopt bilaterally symmetrical cell fates. The adoption of bilateral symmetry by two neurons that have no lineage relationship requires extensive rearrangements of cell position; in some cases, neuroblasts even migrate over the midline to take up a bilaterally symmetrical position to their analogous cell.

  • Particularly intriguing components of left–right (L–R) asymmetry in the C. elegans nervous system are neuron pairs that are bilaterally symmetrical in terms of several criteria, but, after bilaterality has been established, undergo L–R-specific sub-differentiation programmes. Examples include the AWC odorsensory neurons, the ASE taste receptor neurons and the Q blast cells.

  • Breakage of bilateral symmetry has also been observed in the nervous systems of several other invertebrate and vertebrate species. In the leech, two classes of neurons within the ganglia of each segment undergo L–R asymmetrical sub-differentiation programmes. In the human brain, there are significant size differences in the temporal lobes of the left and right hemispheres. The zebrafish brain shows L–R asymmetry in the size of the habenular nuclei, and the parapineal organ is located on the left side of the midline.

  • The progression from symmetry to antisymmetry (randomized asymmetry) to directional asymmetry can be observed both ontogenetically and phylogenetically. The creation of a symmetrical body axis could have resulted in redundancy in L–R structures, providing evolution with the 'playground' to diversify along the L–R axis; for example, leading to the diversification of sensory function in C. elegans.

Abstract

Although the overall architecture of the nervous system of most animals shows a large degree of bilateral symmetry, there are striking patterns of left–right (L–R) asymmetry in the brains of some species. Some structures show L–R-specific differences in size, whereas others show asymmetrical patterns of gene expression and have diversified at the functional level. The nematode Caenorhabditis elegans offers a unique opportunity to address how symmetrical neuronal assemblies deviate to create functional lateralizations. Here, we provide a detailed cellular and molecular perspective on L–R asymmetry in the nervous system of C. elegans. We also give an overview of symmetry and asymmetry in the nervous systems of other organisms. We will relate these observations to general concepts of the mechanistic and phylogenetic origin of laterality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Left–right symmetry of neuronal nuclei position, axon fascicle position and axon placement within fascicles.
Figure 2: Left–right symmetry of axon fascicle position and axon placement within fascicles.
Figure 3: Lineage descent of bilaterally symmetrical cells.
Figure 4: Breaking left–right symmetry in the AWCL/AWCR, ASEL/ASER, QL/QR and P11/P12 neurons.
Figure 5: Examples of symmetry and asymmetry in other invertebrates and in vertebrates.
Figure 6: Progression from symmetry to antisymmetry to directional asymmetry can be observed ontogenetically as well as phylogenetically.
Figure 7: A model for the induction of left–right asymmetry in the Caenorhabditis elegans nervous system.

Similar content being viewed by others

References

  1. Ludwig, W. Das Rechts–Links Problem im Tierreich und beim Menschen (Springer, Berlin, 1932).An excellent monograph that describes anatomical L–R asymmetry across the animal kingdom, the plant kingdom and the inorganic world. It provides several conceptual frameworks of symmetry in nature, in addition to an amusing reference to the translation of L–R concepts into the good–bad classification of folk myths. This book, which is unfortunately available only in German, is an invaluable introduction to and resource for the L–R asymmetry field.

    Book  Google Scholar 

  2. Ramsdell, A. F. & Yost, H. J. Molecular mechanisms of vertebrate left–right development. Trends Genet. 14, 459–465 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Mercola, M. & Levin, M. Left–right asymmetry determination in vertebrates. Annu. Rev. Cell Dev. Biol. 17, 779–805 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Wood, W. B. Left–right asymmetry in animal development. Annu. Rev. Cell Dev. Biol. 13, 53–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Hamada, H., Meno, C., Watanabe, D. & Saijoh, Y. Establishment of vertebrate left–right asymmetry. Nature Rev. Genet. 3, 103–113 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Burdine, R. D. & Schier, A. F. Conserved and divergent mechanisms in left–right axis formation. Genes Dev. 14, 763–776 (2000).

    CAS  PubMed  Google Scholar 

  7. Davidson, R. J. & Hugdahl, K. (eds) Brain Asymmetry (MIT Press, Cambridge, Massachusetts, 1994).

    Google Scholar 

  8. Glick, S. D. & Ross, D. A. Lateralization of function in the rat brain. Trends Neurosci. 4, 196–199 (1981).

    Article  Google Scholar 

  9. Miklosi, A., Andrew, R. J. & Savage, H. Behavioural lateralisation of the tetrapod type in the zebrafish (Brachydanio rerio). Physiol. Behav. 63, 127–135 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Wes, P. D. & Bargmann, C. I. C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature 410, 698–701 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Pierce-Shimomura, J. T., Faumont, S., Gaston, M. R., Pearson, B. J. & Lockery, S. R. The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans. Nature 410, 694–698 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).This paper documents the heroic efforts that were made in elucidating the complete neuronal wiring diagram of a metazoan organism. It is the first and still the only report of its kind, on which several generations of C. elegans researchers have now feasted.

    Article  CAS  Google Scholar 

  13. Bowerman, B., Tax, F. E., Thomas, J. H. & Priess, J. R. Cell interactions involved in development of the bilaterally symmetrical intestinal valve cells during embryogenesis in Caenorhabditis elegans. Development 116, 1113–1122 (1992).

    CAS  PubMed  Google Scholar 

  14. Hermann, G. J., Leung, B. & Priess, J. R. Left–right asymmetry in C. elegans intestine organogenesis involves a LIN-12/Notch signaling pathway. Development 127, 3429–3440 (2000).

    CAS  PubMed  Google Scholar 

  15. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Sulston, J. E. Neuronal cell lineages in the nematode Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol. 48, 443–452 (1983).

    Article  PubMed  Google Scholar 

  17. Schnabel, R., Hutter, H., Moerman, D. & Schnabel, H. Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. Dev. Biol. 184, 234–265 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Schnabel, R. Pattern formation: regional specification in the early C. elegans embryo. Bioessays 18, 591–594 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Lin, R., Hill, R. J. & Priess, J. R. POP-1 and anterior–posterior fate decisions in C. elegans embryos. Cell 92, 229–239 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Bargmann, C. I., Hartwieg, E. & Horvitz, H. R. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515–527 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Troemel, E. R., Sagasti, A. & Bargmann, C. I. Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans. Cell 99, 387–398 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Graham, J. H., Freeman, D. C. & Emlen, J. M. Antisymmetry, directional asymmetry and dynamic morphogenesis. Genetica 89, 121–137 (1993).

    Article  Google Scholar 

  23. Palmer, A. R. From symmetry to asymmetry: phylogenetic patterns of asymmetry variation in animals and their evolutionary significance. Proc. Natl Acad. Sci. USA 93, 14279–14286 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sagasti, A. et al. The CaMKII UNC-43 activates the MAPKKK NSY-1 to execute a lateral signaling decision required for asymmetric olfactory neuron fates. Cell 105, 221–232 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Ward, S. Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc. Natl Acad. Sci. USA 70, 817–821 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bargmann, C. I. & Horvitz, H. R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7, 729–742 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Yu, S., Avery, L., Baude, E. & Garbers, D. L. Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc. Natl Acad. Sci. USA 94, 3384–3387 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hobert, O., Tessmar, K. & Ruvkun, G. The Caenorhabditis elegans lim-6 LIM homeobox gene regulates neurite outgrowth and function of particular GABAergic neurons. Development 126, 1547–1562 (1999).

    CAS  PubMed  Google Scholar 

  29. Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977).

    Article  CAS  PubMed  Google Scholar 

  30. Salser, S. J. & Kenyon, C. Activation of a C. elegans Antennapedia homologue in migrating cells controls their direction of migration. Nature 355, 255–258 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Harris, J., Honigberg, L., Robinson, N. & Kenyon, C. Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position. Development 122, 3117–3131 (1996).

    CAS  PubMed  Google Scholar 

  32. Maloof, J. N., Whangbo, J., Harris, J. M., Jongeward, G. D. & Kenyon, C. A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development 126, 37–49 (1999).

    CAS  PubMed  Google Scholar 

  33. Whangbo, J. & Kenyon, C. A Wnt signaling system that specifies two patterns of cell migration in C. elegans. Mol. Cell 4, 851–858 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Honigberg, L. & Kenyon, C. Establishment of left/right asymmetry in neuroblast migration by UNC-40/DCC, UNC-73/Trio and DPY-19 proteins in C. elegans. Development 127, 4655–4668 (2000).

    CAS  PubMed  Google Scholar 

  35. Delattre, M. & Felix, M. A. Development and evolution of a variable left–right asymmetry in nematodes: the handedness of P11/P12 migration. Dev. Biol. 232, 362–371 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Greenwald, I. LIN-12/Notch signaling: lessons from worms and flies. Genes Dev. 12, 1751–1762 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Goldschmidt, R. Das Nervensystem von Ascaris lumbricoides und megalocephala. II. Z. Wiss. Zool. 92, 306–357 (1909).

    Google Scholar 

  38. Chitwood, B. G. & Chitwood, M. B. Introduction to Nematology (University Park Press, Baltimore, 1974).

    Google Scholar 

  39. Aguinaldo, A. M. et al. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Aurelio, O., Hall, D. H. & Hobert, O. Immunoglobulin-domain proteins required for maintenance of ventral nerve cord organization. Science 295, 686–690 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Wightman, B., Baran, R. & Garriga, G. Genes that guide growth cones along the C. elegans ventral nerve cord. Development 124, 2571–2580 (1997).

    CAS  PubMed  Google Scholar 

  42. Zallen, J. A., Kirch, S. A. & Bargmann, C. I. Genes required for axon pathfinding and extension in the C. elegans nerve ring. Development 126, 3679–3692 (1999).

    CAS  PubMed  Google Scholar 

  43. Kim, S. & Wadsworth, W. G. Positioning of longitudinal nerves in C. elegans by nidogen. Science 288, 150–154 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Wood, W. B. Evidence from reversal of handedness in C. elegans embryos for early cell interactions determining cell fates. Nature 349, 536–538 (1991).

    Article  CAS  PubMed  Google Scholar 

  45. Hutter, H. & Schnabel, R. glp-1 and inductions establishing embryonic axes in C. elegans. Development 120, 2051–2064 (1994).

    CAS  PubMed  Google Scholar 

  46. Hutter, H. & Schnabel, R. Establishment of left–right asymmetry in the Caenorhabditis elegans embryo: a multistep process involving a series of inductive events. Development 121, 3417–3424 (1995).

    CAS  PubMed  Google Scholar 

  47. Wood, W. B. & Edgar, L. G. Patterning in the C. elegans embryo. Trends Genet. 10, 49–54 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Schnabel, R. & Priess, J. R. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 361–382 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997).

    Google Scholar 

  49. Schnabel, R. Why does a nematode have an invariant cell lineage. Semin. Cell Dev. Biol. 8, 341–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Hayashi, T. & Murakami, R. Left–right asymmetry in Drosophila melanogaster gut development. Dev. Growth Differ. 43, 239–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Blair, S. S., Martindale, M. Q. & Shankland, M. Interactions between adjacent ganglia bring about the bilaterally alternating differentiation of RAS and CAS neurons in the leech nerve cord. J. Neurosci. 10, 3183–3193 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martindale, M. Q. & Shankland, M. Neuronal competition determines the spatial pattern of neuropeptide expression by identified neurons of the leech. Dev. Biol. 139, 210–226 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Shankland, M. & Martindale, M. Q. Segmental specificity and lateral asymmetry in the differentiation of developmentally homologous neurons during leech embryogenesis. Dev. Biol. 135, 431–448 (1989).

    Article  CAS  PubMed  Google Scholar 

  54. Weisblat, D. A. & Shankland, M. Cell lineage and segmentation in the leech. Phil. Trans. R. Soc. Lond. B 312, 39–56 (1985).

    Article  CAS  Google Scholar 

  55. LeMay, M. Morphological aspects of human brain asymmetry. Trends Neurosci. 5, 273–275 (1982).

    Article  Google Scholar 

  56. Geschwind, N. & Levitsky, W. Human brain: left–right asymmetries in temporal speech region. Science 161, 186–187 (1968).

    Article  CAS  PubMed  Google Scholar 

  57. Galaburda, A. M. in Brain Asymmetry (eds Davidson, R. J. & Hugdahl, K.) 51–73 (MIT Press, Cambridge, Massachusetts, 1994).

    Google Scholar 

  58. Chi, J. G., Dooling, E. C. & Gilles, F. H. Left–right asymmetries of the temporal speech areas of the human fetus. Arch. Neurol. 34, 346–348 (1977).

    Article  CAS  PubMed  Google Scholar 

  59. Galaburda, A. M. in Biological Asymmetry and Handedness (ed. Wolpert, L.) 219–226 (Wiley, West Sussex, 1991).

    Google Scholar 

  60. Glick, S. D., Ross, D. A. & Hough, L. B. Lateral asymmetry of neurotransmitters in human brain. Brain Res. 234, 53–63 (1982).

    Article  CAS  PubMed  Google Scholar 

  61. Kennedy, D. N. et al. Structural and functional brain asymmetries in human situs inversus totalis. Neurology 53, 1260–1265 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Concha, M. L. & Wilson, S. W. Asymmetry in the epithalamus of vertebrates. J. Anat. 199, 63–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Concha, M. L., Burdine, R. D., Russell, C., Schier, A. F. & Wilson, S. W. A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron 28, 399–409 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Rebagliati, M. R., Toyama, R., Fricke, C., Haffter, P. & Dawid, I. B. Zebrafish nodal-related genes are implicated in axial patterning and establishing left–right asymmetry. Dev. Biol. 199, 261–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Sampath, K. et al. Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395, 185–189 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Cheng, A. M., Thisse, B., Thisse, C. & Wright, C. V. The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L–R axis development in Xenopus. Development 127, 1049–1061 (2000).

    CAS  PubMed  Google Scholar 

  67. Bisgrove, B. W., Essner, J. J. & Yost, H. J. Multiple pathways in the midline regulate concordant brain, heart and gut left–right asymmetry. Development 127, 3567–3579 (2000).

    CAS  PubMed  Google Scholar 

  68. Liang, J. O. et al. Asymmetric nodal signaling in the zebrafish diencephalon positions the pineal organ. Development 127, 5101–5112 (2000).

    CAS  PubMed  Google Scholar 

  69. Essner, J. J., Branford, W. W., Zhang, J. & Yost, H. J. Mesendoderm and left–right brain, heart and gut development are differentially regulated by pitx2 isoforms. Development 127, 1081–1093 (2000).

    CAS  PubMed  Google Scholar 

  70. Ishikawa, Y. Medakafish as a model system for vertebrate developmental genetics. Bioessays 22, 487–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Brown, N. A., McCarthy, A. & Wolpert, L. Development of handed body asymmetry in mammals. Ciba Found. Symp. 162, 182–96; discussion 196–201 (1991).

    CAS  PubMed  Google Scholar 

  72. Rein, K., Zockler, M., Mader, M. T., Grubel, C. & Heisenberg, M. The Drosophila standard brain. Curr. Biol. 12, 227–231 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Shankland, M., Martindale, M. Q., Nardelli-Haefliger, D., Baxter, E. & Price, D. J. Origin of segmental identity in the development of the leech nervous system. Development Suppl. 2, 29–38 (1991).

Download references

Acknowledgements

We thank H. Bigelow for help with evaluating asymmetry at the level of synaptic connectivity, and C. Kenyon, A. Schier, B. Wood and P. Sengupta for comments on the manuscript. Research in our lab is supported by the Whitehall, March of Dimes and McKnight Foundations, the American Paralysis Association, the Muscle Dystrophy Association and the National Institutes of Health (NIH). O.H. is a Searle and Sloan scholar. R.J.J. is supported by a National Science Foundation predoctoral fellowship, and S.C. by an NIH predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Hobert.

Supplementary information

41583_2002_BFnrn897_MOESM1_ESM.pdf

Left–right symmetry of axon fascicle position in the ventral ganglion. The image is based on an electron micrograph from which the outlines of the axon cross-sections (lower half, coded by shading) and cell bodies (upper half, not colour coded) have been traced. The electron micrograph was obtained from a transverse section through Caenorhabditis elegans12. The approximate location of the section is shown in FIG. 2a. Color coding: red, left–right (L–R) asymmetrical neuron; beige, L–R symmetrical pairs (matched by shading). Note that as well as similar cell positions (FIG. 1b), L–R bilaterally homologous neurons also share a similar axonal neighbourhood. (PDF 136 kb)

Related links

Related links

DATABASES

LocusLink

lefty1

nodal-related

pitx2

WormBase

AB praaa

AIYL

AIYR

ALA

AQR

ASEL

ASER

AVAL

AVAR

AVDL

AVDR

AVEL

AVER

AVG

AVL

AVM

AWBL

AWBR

AWCL

AWCR

dpy-19

EGL-20

gcy-5

gcy-6

gcy-7

lim-6

lin-12

mab-5

nid-1

P1

P2

P11

P12

PQR

PVM

QL

QR

RID

RIH

RIR

RIS

RMED

RMEV

SABD

SDQL

SDQR

str-2

unc-40

UNC-6

Y

FURTHER INFORMATION

Encyclopedia of Life Sciences

Caenorhabditis elegans as an experimental organism

Caenorhabditis elegans embryo: establishment of asymmetry

vertebrate embryo: establishment of left–right asymmetry

Flybrain

Flybrain

The Hobert Lab

The Hobert Lab

Glossary

NEMATODE

A phylum of worms that are characterized by cylindrical, unsegmented bodies.

VENTRAL NERVE CORD

A major bundle of axons that runs along the ventral side of the animal. It contains mainly motor neuron axons and some interneuron axons, and is probably homologous to the vertebrate spinal cord.

CHEMOTAXIS

Directed movement of an animal towards or away from a point source of a chemical cue. If the cue is a volatile odour, the process is known as 'odortaxis'; if the cue is water soluble, the process is known as 'chemotaxis'.

MOSAIC ANALYSIS

A method that is used to determine in what cell type an individual gene product acts. In C. elegans, the method is based on the random loss of extrachromosomal pieces of DNA that contain the gene of interest. Loss or presence of the DNA is correlated with the absence or presence of the mutant phenotype, allowing the cell type in which the gene acts to be inferred.

HOMEOBOX GENES

Homeobox genes are transcription factors that contain a homeodomain, which binds directly to DNA. Some homeobox genes are organized in chromosomal clusters (for example, HOX cluster genes) and are involved in determining regional identity along the anteroposterior axis. Non-HOX-cluster homeobox genes act in a variety of locations during development.

HYPODERMAL RIDGE

A ridge of hypodermal (equivalent to epidermal) tissue that is located between the left and right fascicles of the ventral nerve cord. Structurally and functionally, it is thought to be similar to midline glial cells in the fly and in vertebrates.

GASTRULATION

The process by which the embryo becomes regionalized into three layers: ectoderm, mesoderm and endoderm.

TELEOSTS

A taxonomic group that includes most bony fish, notable exceptions being sturgeons and lungfish.

PARAPINEAL ORGAN

A photoreceptive structure in the forebrain that forms a complex with the pineal organ.

PINEAL ORGAN

A photoreceptive organ that is an important component of the circadian clock in lower vertebrates.

MONOCILIA

Cilia are present on the outside of many embryonic tissues. They are thin, motile processes that extend into the extraembryonic space. Monocilia are an ultrastructurally specialized type of cilia that are found, for example, on node cells.

NODE

A major organizing centre in primitive-streak-stage embryos that regulates pattern formation. It is known as Hensen's node in chick and the Spemann organizer in frog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hobert, O., Johnston, R. & Chang, S. Left–right asymmetry in the nervous system: the Caenorhabditis elegans model. Nat Rev Neurosci 3, 629–640 (2002). https://doi.org/10.1038/nrn897

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn897

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing