Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A common reference frame for movement plans in the posterior parietal cortex

Key Points

  • To execute a movement towards a sensory target, it is necessary to transform the representation of the target from a sensory reference frame (for example, a head-centred reference frame for the auditory system) to a motor reference frame (limb or body centred).

  • The posterior parietal cortex (PPC) is important for reference-frame transformations, and it is proposed that many parietal neurons transform sensory signals into a common, eye-centred reference frame.

  • Neural activity in the PPC reflects movement planning, with different areas being involved in different types of movement (the lateral intraparietal area, LIP, for saccadic eye movements; the parietal reach region, PRR, for reaching; and the anterior intraparietal area, AIP, for grasping).

  • Neurons in area LIP code the location of visual targets in an eye-centred frame of reference. Many also code the location of auditory targets in an eye-centred reference frame, and some code target location in head-centred or intermediate reference frames. Neurons in the PRR show a similar pattern of location coding for auditory and visual targets.

  • For many of these neurons, the magnitude of response is modulated by eye, head, body or limb position. These 'gain fields', in conjunction with eye-centred representations of target location, could provide a distributed representation of target locations in different reference frames, and a mechanism for coordinate transformations.

  • The idea that the reference-frame transformation occurs in the PPC is supported by the fact that auditory inputs to the PPC are coded in a head-centred reference frame; in other words, they are not transformed to eye coordinates before the PPC. Further support comes from network-modelling studies, in which the neural network layers that are responsible for reference-frame transformations show intermediate frames of reference, and gain fields like those seen in areas LIP and PRR.

  • Many issues remain to be addressed, including the mechanisms of readout of the reference frames, and the task dependence of these representations.

Abstract

Orchestrating a movement towards a sensory target requires many computational processes, including a transformation between reference frames. This transformation is important because the reference frames in which sensory stimuli are encoded often differ from those of motor effectors. The posterior parietal cortex has an important role in these transformations. Recent work indicates that a significant proportion of parietal neurons in two cortical areas transforms the sensory signals that are used to guide movements into a common reference frame. This common reference frame is an eye-centred representation that is modulated by eye-, head-, body- or limb-position signals. A common reference frame might facilitate communication between different areas that are involved in coordinating the movements of different effectors. It might also be an efficient way to represent the locations of different sensory targets in the world.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of a lateral view of the macaque cortex.
Figure 2: Schematic of different frames of reference.
Figure 3: A PRR neuron that encodes reaches to visual targets in an eye-centred reference frame.
Figure 4: A PRR neuron that encodes reaches to auditory targets in an eye-centred reference frame.
Figure 5: A PRR neuron that encodes reaches to auditory targets in a head-centred reference frame and is substantially gain modulated by eye position.
Figure 6: Gain modulation of eye-centred representations.

Similar content being viewed by others

References

  1. Posner, M. I. Orienting of attention. Q. J. Exp. Psychol. 32, 3–25 (1980).

    CAS  PubMed  Google Scholar 

  2. LaBerge, D. Attentional Processing: the Brain's Art of Mindfulness (Harvard Univ. Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  3. Snyder, L. H., Batista, A. P. & Andersen, R. A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Kalaska, J. F., Sergio, L. E. & Cisek, P. Cortical control of whole-arm motor tasks. Novartis Found. Symp. 218, 176–190 (1998).This chapter contains a succinct review and synthesis of neurophysiological research on reaching movements.

    CAS  PubMed  Google Scholar 

  5. Cavada, C. & Goldman-Rakic, P. S. Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol. 287, 422–445 (1989).

    CAS  PubMed  Google Scholar 

  6. Johnson, P. B., Ferraina, S., Bianchi, L. & Caminiti, R. Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb. Cortex 6, 102–119 (1996).This study examines the neuroanatomical connections and cell activity of parietal and frontal circuits that are involved in visually guided reaching.

    CAS  PubMed  Google Scholar 

  7. Batista, A. P., Buneo, C. A., Snyder, L. H. & Andersen, R. A. Reach plans in eye-centered coordinates. Science 285, 257–260 (1999).

    CAS  PubMed  Google Scholar 

  8. Cohen, Y. E. & Andersen, R. A. Reaches to sounds encoded in an eye-centered reference frame. Neuron 27, 647–652 (2000).

    CAS  PubMed  Google Scholar 

  9. Stricanne, B., Andersen, R. A. & Mazzoni, P. Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. J. Neurophysiol. 76, 2071–2076 (1996).References 7–9 established for the first time the existence of eye-centred response fields for visually guided reaching in PRR, and eye-centred and intermediate response fields for auditory targets in LIP and PRR.

    CAS  PubMed  Google Scholar 

  10. Colby, C. L. Action-oriented spatial reference frames in cortex. Neuron 20, 15–24 (1998).

    CAS  PubMed  Google Scholar 

  11. Rizzolatti, G., Riggio, L. & Sheliga, B. M. in Attention and Performance XV: Conscious and Nonconscious Information Processing (eds Umilta, C. & Moscovitch, M.) 231–265 (MIT Press, Cambridge, Massachusetts, 1994).This chapter presents a premotor theory of spatial attention. This theory proposes that neural activity that is linked to spatial attention is concomitant with the preparation to perform goal-directed movements.

    Google Scholar 

  12. Graziano, M. S. Is reaching eye-centered, body-centered, hand-centered, or a combination? Rev. Neurosci. 12, 175–185 (2001).

    CAS  PubMed  Google Scholar 

  13. Shadlen, M. N. & Newsome, W. T. Motion perception: seeing and deciding. Proc. Natl Acad. Sci. USA 93, 628–633 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shadlen, M. N. & Newsome, W. T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    CAS  PubMed  Google Scholar 

  15. Platt, M. L. & Glimcher, P. W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999).

    CAS  PubMed  Google Scholar 

  16. Schall, J. D. Neural basis of deciding, choosing, and acting. Nature Rev. Neurosci. 2, 33–42 (2001).

    CAS  Google Scholar 

  17. Goldberg, M. E., Colby, C. L. & Duhamel, J. R. Representation of visuomotor space in the parietal lobe of the monkey. Cold Spring Harb. Symp. Quant. Biol. 55, 729–739 (1990).

    CAS  PubMed  Google Scholar 

  18. Murata, A., Gallese, V., Kaseda, M. & Sakata, H. Parietal neurons related to memory-guided hand manipulation. J. Neurophysiol. 75, 2180–2186 (1996).

    CAS  PubMed  Google Scholar 

  19. Sakata, H., Taira, M., Murata, A. & Mine, S. Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb. Cortex 5, 429–438 (1995).

    CAS  PubMed  Google Scholar 

  20. Gallese, V., Murata, A., Kaseda, M., Niki, N. & Sakata, H. Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Neuroreport 5, 1525–1529 (1994).

    CAS  PubMed  Google Scholar 

  21. Murata, A., Gallese, V., Luppino, G., Kaseda, M. & Sakata, H. Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J. Neurophysiol. 83, 2580–2601 (2000).References 18–21 described for the first time a role of area AIP in the sensorimotor processing for grasping movements.

    CAS  PubMed  Google Scholar 

  22. Gottlieb, J. P., Kusunoki, M. & Goldberg, M. E. The representation of visual salience in monkey parietal cortex. Nature 391, 481–484 (1998).

    CAS  PubMed  Google Scholar 

  23. Sabes, P. N., Breznen, B. & Andersen, R. A. Parietal coding of object-based saccades: temporal aspects. Soc. Neurosci. Abstr. 25, 1547 (1999).

    Google Scholar 

  24. Cohen, Y. E., Batista, A. P. & Andersen, R. A. Comparison of neural activity preceding reaches to auditory and visual stimuli in the parietal reach region. Neuroreport 13, 891–894 (2002).

    PubMed  Google Scholar 

  25. Andersen, R. A. & Buneo, C. A. Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 25, 189–220 (2002).

    CAS  PubMed  Google Scholar 

  26. Snyder, L. H., Batista, A. P. & Andersen, R. A. Intention-related activity in the posterior parietal cortex: a review. Vision Res. 40, 1433–1441 (2000).

    CAS  PubMed  Google Scholar 

  27. Kusunoki, M., Gottlieb, J. & Goldberg, M. E. The lateral intraparietal area as a salience map: the representation of abrupt onset, stimulus motion, and task relevance. Vision Res. 40, 1459–1468 (2000).

    CAS  PubMed  Google Scholar 

  28. Colby, C. L. & Goldberg, M. E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319–349 (1999).

    CAS  PubMed  Google Scholar 

  29. Blatt, G. J., Andersen, R. A. & Stoner, G. R. Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque. J. Comp. Neurol. 299, 421–445 (1990).

    CAS  PubMed  Google Scholar 

  30. Kaas, J. H. & Hackett, T. A. Subdivisions of auditory cortex and levels of processing in primates. Audiol. Neurootol. 3, 73–85 (1998).This paper highlights a new organizational scheme for the auditory cortex in non-human primates.

    CAS  PubMed  Google Scholar 

  31. Seltzer, B. & Pandya, D. N. Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study. J. Comp. Neurol. 343, 445–463 (1994).

    CAS  PubMed  Google Scholar 

  32. Seltzer, B. & Pandya, D. N. Further observations on parieto-temporal connections in the rhesus monkey. Exp. Brain Res. 55, 301–312 (1984).

    CAS  PubMed  Google Scholar 

  33. Linden, J. F., Grunewald, A. & Andersen, R. A. Responses to auditory stimuli in macaque lateral intraparietal area. II. Behavioral modulation. J. Neurophysiol. 82, 343–358 (1999).

    CAS  PubMed  Google Scholar 

  34. Grunewald, A., Linden, J. F. & Andersen, R. A. Responses to auditory stimuli in macaque lateral intraparietal area. I. Effects of training. J. Neurophysiol. 82, 330–342 (1999).

    CAS  PubMed  Google Scholar 

  35. Mazzoni, P., Bracewell, R. M., Barash, S. & Andersen, R. A. Spatially tuned auditory responses in area LIP of macaques performing delayed memory saccades to acoustic targets. J. Neurophysiol. 75, 1233–1241 (1996).

    CAS  PubMed  Google Scholar 

  36. Andersen, R. A., Snyder, L. H., Bradley, D. C. & Xing, J. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu. Rev. Neurosci. 20, 303–330 (1997).

    CAS  PubMed  Google Scholar 

  37. Pouget, A. & Snyder, L. H. Computational approaches to sensorimotor transformations. Nature Neurosci. 3 (Suppl.), 1192–1198 (2000).

    CAS  PubMed  Google Scholar 

  38. Blauert, J. Spatial Hearing: the Psychophysics of Human Sound Localization (MIT Press, Cambridge, Massachusetts, 1997).

    Google Scholar 

  39. Middlebrooks, J. C. & Green, D. M. Sound localization by human listeners. Annu. Rev. Psychol. 42, 135–159 (1991).

    CAS  PubMed  Google Scholar 

  40. Cohen, Y. E. & Knudsen, E. I. Maps versus clusters: different representations of auditory space in the midbrain and forebrain. Trends Neurosci. 22, 128–135 (1999).

    CAS  PubMed  Google Scholar 

  41. Soechting, J. F. & Flanders, M. Psychophysical approaches to motor control. Curr. Opin. Neurobiol. 5, 742–748 (1995).

    CAS  PubMed  Google Scholar 

  42. Klier, E. M., Wang, H. & Crawford, J. D. The superior colliculus encodes gaze commands in retinal coordinates. Nature Neurosci. 4, 627–632 (2001).

    CAS  PubMed  Google Scholar 

  43. Sparks, D. L. The neural encoding of the location of targets for saccadic eye movements. J. Exp. Biol. 146, 195–207 (1989).

    CAS  PubMed  Google Scholar 

  44. Sparks, D. L. & Mays, L. E. Signal transformations required for the generation of saccadic eye movements. Annu. Rev. Neurosci. 13, 309–336 (1990).

    CAS  PubMed  Google Scholar 

  45. Soechting, J. F. & Flanders, M. Moving in three-dimensional space: frames of reference, vectors, and coordinate systems. Annu. Rev. Neurosci. 15, 167–191 (1992).This paper is an excellent review of reference frames and coordinate transformations for movement.

    CAS  PubMed  Google Scholar 

  46. Andersen, R. A., Bracewell, R. M., Barash, S., Gnadt, J. W. & Fogassi, L. Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. J. Neurosci. 10, 1176–1196 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brotchie, P. R., Andersen, R. A., Snyder, L. H. & Goodman, S. J. Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 375, 232–235 (1995).

    CAS  PubMed  Google Scholar 

  48. Snyder, L. H., Grieve, K. L., Brotchie, P. & Andersen, R. A. Separate body- and world-referenced representations of visual space in parietal cortex. Nature 394, 887–891 (1998).

    CAS  PubMed  Google Scholar 

  49. Hallett, P. E. & Lightstone, A. D. Saccadic eye movements to flashed targets. Vision Res. 16, 107–114 (1976).

    CAS  PubMed  Google Scholar 

  50. Mays, L. E. & Sparks, D. L. Saccades are spatially, not retinocentrically, coded. Science 208, 1163–1165 (1980).

    CAS  PubMed  Google Scholar 

  51. Mazzoni, P., Bracewell, R. M., Barash, S. & Andersen, R. A. Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory. J. Neurophysiol. 76, 1439–1456 (1996).

    CAS  PubMed  Google Scholar 

  52. Jay, M. F. & Sparks, D. L. Auditory receptive fields in primate superior colliculus shift with changes in eye position. Nature 309, 345–347 (1984).This classic paper shows how auditory signals in the superior colliculus of monkeys are transformed into a representation that is appropriate for generating eye-movement commands.

    CAS  PubMed  Google Scholar 

  53. Hartline, P. H., Vimal, R. L., King, A. J., Kurylo, D. D. & Northmore, D. P. Effects of eye position on auditory localization and neural representation of space in superior colliculus of cats. Exp. Brain Res. 104, 402–408 (1995).

    CAS  PubMed  Google Scholar 

  54. Peck, C. K., Baro, J. A. & Warder, S. M. Effects of eye position on saccadic eye movements and on the neuronal responses to auditory and visual stimuli in cat superior colliculus. Exp. Brain Res. 103, 227–242 (1995).

    CAS  PubMed  Google Scholar 

  55. Galletti, C., Battaglini, P. P. & Fattori, P. Eye position influence on the parieto-occipital area PO (V6) of the macaque monkey. Eur. J. Neurosci. 7, 2486–2501 (1995).

    CAS  PubMed  Google Scholar 

  56. Duhamel, J. R., Bremmer, F., BenHamed, S. & Graf, W. Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389, 845–848 (1997).References 55 and 56 describe subsets of visual cells in areas PO and VIP that code locations in head-centred coordinates.

    CAS  PubMed  Google Scholar 

  57. Battaglia-Mayer, A. et al. Early coding of reaching in the parietooccipital cortex. J. Neurophysiol. 83, 2374–2391 (2000).

    CAS  PubMed  Google Scholar 

  58. Cohen, Y. E. & Andersen, R. A. The parietal reach region (PRR) encodes reaches to auditory targets in an eye-centered reference frame. Soc. Neurosci. Abstr. 24, 162 (1998).

    Google Scholar 

  59. Andersen, R. A., Essick, G. K. & Siegel, R. M. Encoding of spatial location by posterior parietal neurons. Science 230, 456–458 (1985).

    CAS  PubMed  Google Scholar 

  60. Zipser, D. & Andersen, R. A. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331, 679–684 (1988).References 59 and 60 are classic papers that describe neurophysiological studies of gain fields in the PPC, and a computational model of how these gain fields can accomplish coordinate transformations.

    CAS  PubMed  Google Scholar 

  61. Bremmer, F., Pouget, A. & Hoffmann, K. P. Eye position encoding in the macaque posterior parietal cortex. Eur. J. Neurosci. 10, 153–160 (1998).

    CAS  PubMed  Google Scholar 

  62. Pouget, A. & Sejnowski, T. J. Spatial transformations in the parietal cortex using basis functions. J. Cogn. Neurosci. 9, 222–237 (1997).

    CAS  PubMed  Google Scholar 

  63. Leinonen, L., Hyvarinen, J. & Sovijarvi, A. R. Functional properties of neurons in the temporo-parietal association cortex of awake monkey. Exp. Brain Res. 39, 203–215 (1980).

    CAS  PubMed  Google Scholar 

  64. Pandya, D. N. & Sanides, F. Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Z. Anat. Entwicklungsgesch. 139, 127–161 (1973).

    CAS  PubMed  Google Scholar 

  65. Lewis, J. W. & Van Essen, D. C. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000).

    CAS  PubMed  Google Scholar 

  66. Groh, J. M., Trause, A. S., Underhill, A. M., Clark, K. R. & Inati, S. Eye position influences auditory responses in primate inferior colliculus. Neuron 29, 509–518 (2001).This paper reports for the first time eye-position gain fields for auditory cells in the monkey inferior colliculus.

    CAS  PubMed  Google Scholar 

  67. Trause, A. S., Werner-Reiss, U., Underhill, A. M. & Groh, J. M. Effects of eye position on auditory signals in primate auditory cortex. Soc. Neurosci. Abstr. 26, 1977 (2000).

    Google Scholar 

  68. Wu, S.-M. & Andersen, R. A. The representation of auditory space in temporo-parietal cortex. Soc. Neurosci. Abstr. 27, 147 (2001).

    Google Scholar 

  69. Xing, J. & Andersen, R. A. Memory activity of LIP neurons for sequential eye movements simulated with neural networks. J. Neurophysiol. 84, 651–665 (2000).

    CAS  PubMed  Google Scholar 

  70. Xing, J. & Andersen, R. A. Models of the posterior parietal cortex which perform multimodal integration and represent space in several coordinate frames. J. Cogn. Neurosci. 12, 601–614 (2000).

    CAS  PubMed  Google Scholar 

  71. Deneve, S., Latham, P. E. & Pouget, A. Efficient computation and cue integration with noisy population codes. Nature Neurosci. 4, 826–831 (2001).References 70 and 71 are computational studies that show how intermediate representations can appear in the course of sensory integration and coordinate transformation.

    CAS  PubMed  Google Scholar 

  72. Soechting, J. F. & Flanders, M. Errors in pointing are due to approximations in sensorimotor transformations. J. Neurophysiol. 62, 595–608 (1989).

    CAS  PubMed  Google Scholar 

  73. Soechting, J. F. & Flanders, M. Sensorimotor representations for pointing to targets in three-dimensional space. J. Neurophysiol. 62, 582–594 (1989).

    CAS  PubMed  Google Scholar 

  74. Flanders, M., Tillery, S. I. H. & Soechting, J. F. Early stages in a sensorimotor transformation. Behav. Brain Sci. 15, 309–362 (1992).

    Google Scholar 

  75. Ghilardi, M. F., Gordon, J. & Ghez, C. Learning a visuomotor transformation in a local area of work space produces directional biases in other areas. J. Neurophysiol. 73, 2535–2539 (1995).

    CAS  PubMed  Google Scholar 

  76. Kalaska, J. F. & Crammond, D. J. Cerebral cortical mechanisms of reaching movements. Science 255, 1517–1523 (1992).

    CAS  PubMed  Google Scholar 

  77. Snyder, L. H. Coordinate transformations for eye and arm movements in the brain. Curr. Opin. Neurobiol. 10, 747–754 (2000).

    CAS  PubMed  Google Scholar 

  78. Sabes, P. N. & Jordan, M. I. Obstacle avoidance and a perturbation sensitivity model for motor planning. J. Neurosci. 17, 7119–7128 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bock, O. Contribution of retinal versus extraretinal signals towards visual localization in goal-directed movements. Exp. Brain Res. 64, 476–482 (1986).

    CAS  PubMed  Google Scholar 

  80. Enright, J. T. The non-visual impact of eye orientation on eye–hand coordination. Vision Res. 35, 1611–1618 (1995).

    CAS  PubMed  Google Scholar 

  81. Henriques, D. Y., Klier, E. M., Smith, M. A., Lowy, D. & Crawford, J. D. Gaze-centered remapping of remembered visual space in an open-loop pointing task. J. Neurosci. 18, 1583–1594 (1998).This human psychophysical study provides evidence that the remembered locations of visual targets for reaching are stored in an eye-coordinate representation, and that this representation compensates for intervening saccades.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pouget, A., Ducom, J. C., Torri, J. & Bavelier, D. Multisensory spatial representations in eye-centered coordinates for reaching. Cognition 83, B1–B11 (2002).

    PubMed  Google Scholar 

  83. Shams, L., Kamitani, Y. & Shimojo, S. What you see is what you hear. Nature 408, 788 (2000).

    CAS  PubMed  Google Scholar 

  84. Lewald, J. The effect of gaze eccentricity on perceived sound direction and its relation to visual localization. Hear. Res. 115, 206–216 (1998).

    CAS  PubMed  Google Scholar 

  85. Lewald, J. Eye-position effects in directional hearing. Behav. Brain Res. 87, 35–48 (1997).

    CAS  PubMed  Google Scholar 

  86. Lewald, J. & Ehrenstein, W. H. The effect of eye position on auditory lateralization. Exp. Brain Res. 108, 473–485 (1996).

    CAS  PubMed  Google Scholar 

  87. Knudsen, E. I. Mechanisms of experience-dependent plasticity in the auditory localization pathway of the barn owl. J. Comp. Physiol. A 185, 305–321 (1999).

    CAS  PubMed  Google Scholar 

  88. King, A. J., Schnupp, J. W. & Doubell, T. P. The shape of ears to come: dynamic coding of auditory space. Trends Cogn. Sci. 5, 261–270 (2001).

    PubMed  Google Scholar 

  89. Zwiers, M. P., Van Opstal, A. J. & Cruysberg, J. R. A spatial hearing deficit in early-blind humans. J. Neurosci. 21, RC142:1–5 (2001). | PubMed |

    CAS  Google Scholar 

  90. Jancke, L., Kleinschmidt, A., Mirzazde, S., Shah, N. J. & Freund, H. J. The role of the inferior parietal cortex in linking tactile perception and manual construction of object shapes. Cereb. Cortex 11, 114–121 (2001).

    CAS  PubMed  Google Scholar 

  91. DeSouza, J. F. X. et al. Eye position signal modulates a human parietal pointing region during memory-guided movements. J. Neurosci. 20, 5835–5840 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kawashima, R. et al. Topographic representation in human intraparietal sulcus of reaching and saccade. Neuroreport 7, 1253–1256 (1996).

    CAS  PubMed  Google Scholar 

  93. Luna, B. et al. Dorsal cortical regions subserving visually guided saccades in humans: an fMRI study. Cereb. Cortex 8, 40–47 (1998).

    CAS  PubMed  Google Scholar 

  94. Griffiths, T. D. et al. Right parietal cortex is involved in the perception of sound movement in humans. Nature Neurosci. 1, 74–79 (1998).

    CAS  PubMed  Google Scholar 

  95. Bushara, K. O. et al. Modality-specific frontal and parietal areas for auditory and visual spatial localization in humans. Nature Neurosci. 2, 759–766 (1999).

    CAS  PubMed  Google Scholar 

  96. Bremmer, F. et al. Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29, 287–296 (2001).

    CAS  PubMed  Google Scholar 

  97. Bonda, E., Petrides, M., Frey, S. & Evans, A. Neural correlates of mental transformations of the body-in-space. Proc. Natl Acad. Sci. USA 92, 11180–11184 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kertzman, C., Schwarz, U., Zeffiro, T. A. & Hallett, M. The role of posterior parietal cortex in visually guided reaching movements in humans. Exp. Brain Res. 114, 170–183 (1997).

    CAS  PubMed  Google Scholar 

  99. Vallar, G. et al. A fronto-parietal system for computing the egocentric spatial frame of reference in humans. Exp. Brain Res. 124, 281–286 (1999).

    CAS  PubMed  Google Scholar 

  100. Galati, G. et al. The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study. Exp. Brain Res. 133, 156–164 (2000).

    CAS  PubMed  Google Scholar 

  101. Sereno, M. I., Pitzalis, S. & Martinez, A. Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294, 1350–1354 (2001).

    CAS  PubMed  Google Scholar 

  102. Baker, J. T., Donoghue, J. P. & Sanes, J. N. Gaze direction modulates finger movement activation patterns in human cerebral cortex. J. Neurosci. 19, 10044–10052 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Buneo, C. A., Jarvis, M. R., Batista, A. P. & Andersen, R. A. Direct visuomotor transformations for reaching. Nature 416, 632–636 (2002).

    CAS  PubMed  Google Scholar 

  104. Chapin, J. K., Moxon, K. A., Markowitz, R. S. & Nicolelis, M. A. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nature Neurosci. 2, 664–670 (1999).

    CAS  PubMed  Google Scholar 

  105. Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R. & Donoghue, J. P. Brain–machine interface: instant neural control of a movement signal. Nature 416, 141–142 (2002).

    CAS  PubMed  Google Scholar 

  106. Wessberg, J. et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408, 361–365 (2000).

    CAS  PubMed  Google Scholar 

  107. Taylor, D. M. & Schwartz, A. B. in Proc. 6th Annu. IFESS Conf. 132–134 (IFESS, Cleveland, 2001).References 104–107 describe studies in rats and monkeys that show the feasibility of using neural signals from somatomotor cortical areas for neural prosthetic applications in humans.

    Google Scholar 

  108. Bracewell, R. M., Mazzoni, P., Barash, S. & Andersen, R. A. Motor intention activity in the macaque's lateral intraparietal area. II. Changes of motor plan. J. Neurophysiol. 76, 1457–1464 (1996).

    CAS  PubMed  Google Scholar 

  109. Snyder, L. H., Batista, A. P. & Andersen, R. A. Change in motor plan, without a change in the spatial locus of attention, modulates activity in posterior parietal cortex. J. Neurophysiol. 79, 2814–2819 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (NIH), the Defense Advanced Research Projects Agency (DARPA), the Sloan–Swartz Center for Theoretical Neurobiology, the Office of Naval Research and the James G. Boswell Neuroscience Professorship to R.A.A., and by grants from the Bantrell Fellowship, NIH and the Whitehall Foundation to Y.E.C.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Encyclopedia of Life Sciences

neural information processing

oculomotor system

MIT Encyclopedia of Cognitive Sciences

eye movements and visual attention

spatial perception

Glossary

SACCADIC EYE MOVEMENT

A very rapid, ballistic eye movement (with speeds of up to 800 degrees per second).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, Y., Andersen, R. A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci 3, 553–562 (2002). https://doi.org/10.1038/nrn873

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn873

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing