
L I N K  TO  O R I G I N A L  A RT I C L E
L I N K  TO  A U T H O R ’ S  R E P LY

Neural networks are increasingly seen to 
supersede neurons as fundamental units 
of complex brain function. In his Timeline 
article (From the neuron doctrine to neural 
networks. Nat. Rev. Neurosci. 16, 487–497 
(2015))1, Yuste provides a timely overview 
of this process, but does not clearly differ-
entiate between biological neural network 
models (broadly and imprecisely defined 
as empirically valid models of (embodied) 
neuronal or brain systems, which enable 
the emergence of complex brain function 
through distributed computation) and arti-
ficial neural network models (a relatively 
well-defined class of networks originally 
designed to model complex brain function2 
but now mainly viewed as a class of biologi-
cally inspired data-analysis algorithms useful 
in diverse scientific fields3).

A distinction between biological and arti-
ficial neural network models is important 
as the neuroscience network paradigm is 
mainly driven by the aim of uncovering bio-
logically valid mechanisms of neural com-
putation. Artificial neural networks were 
initially proposed as candidate models for 
such computation but, despite being enthu-
siastically researched at the end of the twen-
tieth century, they have largely not bridged 
the gap between elegant theory and neu-
roscientific observation4,5. In this context, 

Yuste’s emphasis on some classic artificial 
neural network models does not seem to be 
supported by the evidence of, or the promise 
for, the problem-solving capacity of these 
models in neuroscience6.

What could be an alternative promising 
approach to biologically valid neural network 
modelling? At present we can only specu-
late, but the ongoing development of high-
resolution high-throughput brain imaging 
technologies — including those being devel-
oped as part of the BRAIN Initiative7 — and 
the consequent availability of increasingly 
large structural8 and functional9 imaging 
data sets, make it appealing to initially search 
for patterns in such data in less theory-
bound and more data-driven ways10,11, and 
to subsequently construct theories a priori 
constrained on these discovered patterns12. A 
famous example of this approach in biology 
is the formulation of the theory of evolution 
by natural selection; this theory arose from 
an initial aim to catalogue all living biological 
organisms on earth, and from a subsequent 
careful analysis of the obtained diverse bio-
logical data13. Interestingly, artificial neural 
networks may yet prove to be important in 
this quest but in the role of powerful tools for 
analysing complex imaging data sets14, rather 
than as a theoretical foundation for how the 
brain computes.
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