Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A fronto–striato–subthalamic–pallidal network for goal-directed and habitual inhibition

Key Points

  • We propose that the fronto–striatal circuits play a part not only in goal-directed and habitual action but also in goal-directed and habitual (automatic) inhibitory control.

  • We propose that the fronto–striatal network mediates goal-directed and habitual inhibition across motor and non-motor domains.

  • We propose that some of the symptoms of Parkinson's disease, Tourette syndrome and obsessive–compulsive disorder represent an imbalance between goal-directed and habitual action and inhibition.

  • We review evidence from animal studies, functional imaging studies, investigations in Parkinson's disease, Tourette syndrome and obsessive–compulsive disorder and the surgical treatment of these disorders, in support of our proposal that the fronto–striatal network mediates goal-directed and habitual inhibition.

  • We highlight key questions that remain to be addressed in relation to the role of the fronto–striatal network in goal-directed and habitual inhibition.

Abstract

Classically, the basal ganglia have been considered to have a role in producing habitual and goal-directed behaviours. In this article, we review recent evidence that expands this role, indicating that the basal ganglia are also involved in neural and behavioural inhibition in the motor and non-motor domains. We then distinguish between goal-directed and habitual (also known as automatic) inhibition mediated by fronto–striato–subthalamic–pallido–thalamo–cortical networks. We also suggest that imbalance between goal-directed and habitual action and inhibition contributes to some manifestations of Parkinson's disease, Tourette syndrome and obsessive–compulsive disorder. Finally, we propose that basal ganglia surgery improves these disorders by restoring a functional balance between facilitation and inhibition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The main functional subdivisions in the sensorimotor, associative and limbic cortico–striatal circuits.
Figure 2: The hyperdirect, direct and indirect pathways and neural inhibition in the cortico–basal ganglia circuits.
Figure 3: The fronto–basal ganglia pathways mediating proactive and reactive inhibitory control.

Similar content being viewed by others

References

  1. Stephenson-Jones, M., Samuelsson, E., Ericsson, J., Robertson, B. & Grillner, S. Evolutionary conservation of the basal ganglia as a common vertebrate mechanism for action selection. Curr. Biol. 21, 1081–1091 (2011).

    CAS  PubMed  Google Scholar 

  2. Redgrave, P., Prescott, T. J. & Gurney, K. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89, 1009–1023 (1999).

    CAS  PubMed  Google Scholar 

  3. Mishkin, M., Malamut, B. & Bachevalier, J. in Neurobiology of Learning and Memory (eds Lynch, G. et al.) 65–67 (1984).

    Google Scholar 

  4. Yin, H. H. & Knowlton, B. J. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464–476 (2006).

    CAS  PubMed  Google Scholar 

  5. Marsden, C. D. The mysterious motor function of the basal ganglia: the Robert Wartenberg Lecture. Neurology 32, 514–539 (1982).

    CAS  PubMed  Google Scholar 

  6. Wilson, S. A. K. The Croonian Lectures on some disorders of motility and of muscle tone, with special reference to the corpus striatum. Lancet 206, 215–219 (1925).

    Google Scholar 

  7. DeLong, M. R. et al. Role of basal ganglia in limb movements. Hum. Neurobiol. 2, 235–244 (1984).

    CAS  PubMed  Google Scholar 

  8. Schultz, W. Dopamine neurons and their role in reward mechanisms. Curr. Opin. Neurobiol. 7, 191–197 (1997).

    CAS  PubMed  Google Scholar 

  9. Houk, J. C., Adams, J. L. & Barto, A. G. in Models of Information Processing in the Basal Ganglia (eds Houk, D. J. et al.) 249–270 (MIT Press, 1995).

    Google Scholar 

  10. Balleine, B. W. & O'Doherty, J. P. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35, 48–69 (2010).

    PubMed  Google Scholar 

  11. Mink, J. W. The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50, 381–425 (1996).

    CAS  PubMed  Google Scholar 

  12. Frank, M. J., Samanta, J., Moustafa, A. A. & Sherman, S. J. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318, 1309–1312 (2007). This influential paper describes how, when faced with decision conflict, patients with PD who have STN-DBS switched on acted impulsively and failed to show the slowing down observed in patients who had DBS switched off or had not been operated on.

    CAS  PubMed  Google Scholar 

  13. Mansfield, E. L., Karayanidis, F., Jamadar, S., Heathcote, A. & Forstmann, B. U. Adjustments of response threshold during task switching: a model-based functional magnetic resonance imaging study. J. Neurosci. 31, 14688–14692 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cavanagh, J. F. et al. Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nat. Neurosci. 14, 1462–1467 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Obeso, I. et al. The subthalamic nucleus and inhibitory control: impact of subthalamotomy in Parkinson's disease. Brain 137, 1470–1480 (2014). The only study to date to investigate the effect of surgical lesioning of the STN on inhibitory control on the conditional stop-signal task in PD, showing that right-sided subthalamotomy is associated with lower response thresholds and interferes with late-stage reactive inhibition and with proactive inhibition.

    PubMed  Google Scholar 

  16. McNab, F. & Klingberg, T. Prefrontal cortex and basal ganglia control access to working memory. Nat. Neurosci. 11, 103–107 (2008).

    CAS  PubMed  Google Scholar 

  17. O'Reilly, R. C. & Frank, M. J. Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput. 18, 283–328 (2006).

    PubMed  Google Scholar 

  18. Joel, D. & Weiner, I. The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 63, 363–379 (1994).

    CAS  PubMed  Google Scholar 

  19. Haynes, W. I. & Haber, S. N. The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation. J. Neurosci. 33, 4804–4814 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Graybiel, A. M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31, 359–387 (2008).

    CAS  PubMed  Google Scholar 

  21. Aron, A. R. From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biol. Psychiatry 69, e55–e68 (2011). A comprehensive review extending definitions of inhibitory control to proactive and selective control and outlining evidence from imaging and TMS studies for networks involved in different types of inhibitory control.

    PubMed  Google Scholar 

  22. Baunez, C., Nieoullon, A. & Amalric, M. In a rat model of parkinsonism, lesions of the subthalamic nucleus reverse increases of reaction time but induce a dramatic premature responding deficit. J. Neurosci. 15, 6531–6541 (1995). One of the first animal studies to report that lesioning of the STN speeds up reaction times but results in impulsivity, as evidenced by premature responding.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wiener, M., Magaro, C. M. & Matell, M. S. Accurate timing but increased impulsivity following excitotoxic lesions of the subthalamic nucleus. Neurosci. Lett. 440, 176–180 (2008).

    CAS  PubMed  Google Scholar 

  24. Eagle, D. M. et al. Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus. Cereb. Cortex 18, 178–188 (2008).

    PubMed  Google Scholar 

  25. Hikosaka, O., Takikawa, Y. & Kawagoe, R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev. 80, 953–978 (2000).

    CAS  PubMed  Google Scholar 

  26. Hikosaka, O. & Wurtz, R. H. Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J. Neurophysiol. 49, 1230–1253 (1983).

    CAS  PubMed  Google Scholar 

  27. Kori, A. et al. Eye movements in monkeys with local dopamine depletion in the caudate nucleus. II. Deficits in voluntary saccades. J. Neurosci. 15, 928–941 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Isoda, M. & Hikosaka, O. Switching from automatic to controlled action by monkey medial frontal cortex. Nat. Neurosci. 10, 240–248 (2007).

    CAS  PubMed  Google Scholar 

  29. Isoda, M. & Hikosaka, O. Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J. Neurosci. 28, 7209–7218 (2008). An elegant study in primates showing that the STN implements a switch signal from the pre-SMA to shift from automatic to controlled eye movements.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yoshida, A. & Tanaka, M. Enhanced modulation of neuronal activity during antisaccades in the primate globus pallidus. Cereb. Cortex 19, 206–217 (2009).

    PubMed  Google Scholar 

  31. Schmidt, R., Leventhal, D. K., Mallet, N., Chen, F. & Berke, J. D. Canceling actions involves a race between basal ganglia pathways. Nat. Neurosci. 16, 1118–1124 (2013). A study in rats demonstrating that whether or not an action is successfully stopped in a stop-signal task represents a race between the signals from the striatum (providing the go signal) and STN (providing the stop signal) to the SNr.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Vink, M. et al. Function of striatum beyond inhibition and execution of motor responses. Hum. Brain Mapp. 25, 336–344 (2005).

    PubMed  PubMed Central  Google Scholar 

  33. Zandbelt, B. B. & Vink, M. On the role of the striatum in response inhibition. PLoS ONE 5, e13848 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. Majid, D. S., Cai, W., Corey-Bloom, J. & Aron, A. R. Proactive selective response suppression is implemented via the basal ganglia. J. Neurosci. 33, 13259–13269 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. van Belle, J., Vink, M., Durston, S. & Zandbelt, B. B. Common and unique neural networks for proactive and reactive response inhibition revealed by independent component analysis of functional MRI data. Neuroimage 103, 65–74 (2014).

    PubMed  Google Scholar 

  36. Simmonds, D. J., Pekar, J. J. & Mostofsky, S. H. Meta-analysis of go/no-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia 46, 224–232 (2008).

    PubMed  Google Scholar 

  37. Schel, M. A., Ridderinkhof, K. R. & Crone, E. A. Choosing not to act: neural bases of the development of intentional inhibition. Dev. Cogn. Neurosci. 10, 93–103 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. Schel, M. A. et al. Neural correlates of intentional and stimulus-driven inhibition: a comparison. Front. Hum. Neurosci. 8, 27 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Aron, A. R. & Poldrack, R. A. Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus. J. Neurosci. 26, 2424–2433 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J. & Poldrack, R. A. Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. J. Neurosci. 27, 3743–3752 (2007). A study using tractography to show white-matter tracts between the inferior frontal cortex, pre-SMA and STN and an fMRI study to establish that these areas form a right-hemispheric network for inhibition that is engaged both during the temporary braking associated with conflict-induced slowing and during successful stopping on a conditional stop-signal task.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rae, C. L., Hughes, L. E., Anderson, M. C. & Rowe, J. B. The prefrontal cortex achieves inhibitory control by facilitating subcortical motor pathway connectivity. J. Neurosci. 35, 786–794 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zandbelt, B. B., Bloemendaal, M., Hoogendam, J. M., Kahn, R. S. & Vink, M. Transcranial magnetic stimulation and functional MRI reveal cortical and subcortical interactions during stop-signal response inhibition. J. Cogn. Neurosci. 25, 157–174 (2013).

    PubMed  Google Scholar 

  43. Li, C. S., Yan, P., Sinha, R. & Lee, T. W. Subcortical processes of motor response inhibition during a stop signal task. Neuroimage 41, 1352–1363 (2008).

    PubMed  Google Scholar 

  44. Jahfari, S. et al. How preparation changes the need for top-down control of the basal ganglia when inhibiting premature actions. J. Neurosci. 32, 10870–10878 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chikazoe, J. et al. Preparation to inhibit a response complements response inhibition during performance of a stop-signal task. J. Neurosci. 29, 15870–15877 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Smittenaar, P., Guitart-Masip, M., Lutti, A. & Dolan, R. J. Preparing for selective inhibition within frontostriatal loops. J. Neurosci. 33, 18087–18097 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jahfari, S., Stinear, C. M., Claffey, M., Verbruggen, F. & Aron, A. R. Responding with restraint: what are the neurocognitive mechanisms? J. Cogn. Neurosci. 22, 1479–1492 (2010).

    PubMed  PubMed Central  Google Scholar 

  48. Gauggel, S., Rieger, M. & Feghoff, T. A. Inhibition of ongoing responses in patients with Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 75, 539–544 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Obeso, I. et al. Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson's disease. Exp. Brain Res. 212, 371–384 (2011).

    PubMed  Google Scholar 

  50. Ye, Z. et al. Selective serotonin reuptake inhibition modulates response inhibition in Parkinson's disease. Brain 137, 1145–1155 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Vriend, C. et al. Failure of stop and go in de novo Parkinson's disease — a functional magnetic resonance imaging study. Neurobiol. Aging 36, 470–475 (2015).

    PubMed  Google Scholar 

  52. Beste, C., Willemssen, R., Saft, C. & Falkenstein, M. Response inhibition subprocesses and dopaminergic pathways: basal ganglia disease effects. Neuropsychologia 48, 366–373 (2009).

    PubMed  Google Scholar 

  53. Chan, F., Armstrong, I. T., Pari, G., Riopelle, R. J. & Munoz, D. P. Deficits in saccadic eye-movement control in Parkinson's disease. Neuropsychologia 43, 784–796 (2005).

    PubMed  Google Scholar 

  54. Praamstra, P. & Plat, F. M. Failed suppression of direct visuomotor activation in Parkinson's disease. J. Cogn. Neurosci. 13, 31–43 (2001).

    CAS  PubMed  Google Scholar 

  55. Favre, E., Ballanger, B., Thobois, S., Broussolle, E. & Boulinguez, P. Deep brain stimulation of the subthalamic nucleus, but not dopaminergic medication, improves proactive inhibitory control of movement initiation in Parkinson's disease. Neurotherapeutics 10, 154–167 (2013).

    CAS  PubMed  Google Scholar 

  56. Deuschl, G. et al. A randomized trial of deep-brain stimulation for Parkinson's disease. N. Engl. J. Med. 355, 896–908 (2006).

    CAS  PubMed  Google Scholar 

  57. Jahanshahi, M. Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in Parkinson's disease. Front. Syst. Neurosci. 7, 118 (2013). A critical review and analysis of evidence from behavioural, imaging and LFP studies on the role of the STN in inhibitory and executive control over prepotent responses in PD.

    PubMed  PubMed Central  Google Scholar 

  58. Jahanshahi, M., Obeso, I., Baunez, C., Alegre, M. & Krack, P. Parkinson's disease, the subthalamic nucleus, inhibition, and impulsivity. Mov. Disord. 30, 128–140 (2015).

    PubMed  Google Scholar 

  59. Hershey, T. et al. Stimulation of STN impairs aspects of cognitive control in PD. Neurology 62, 1110–1114 (2004).

    CAS  PubMed  Google Scholar 

  60. Ballanger, B. et al. Stimulation of the subthalamic nucleus and impulsivity: release your horses. Ann. Neurol. 66, 817–824 (2009).

    PubMed  PubMed Central  Google Scholar 

  61. Ray, N. J. et al. The role of the subthalamic nucleus in response inhibition: evidence from deep brain stimulation for Parkinson's disease. Neuropsychologia 47, 2828–2834 (2009).

    CAS  PubMed  Google Scholar 

  62. Obeso, I., Wilkinson, L., Rodríguez-Oroz, M. C., Obeso, J. A. & Jahanshahi, M. Bilateral stimulation of the subthalamic nucleus has differential effects on reactive and proactive inhibition and conflict-induced slowing in Parkinson's disease. Exp. Brain Res. 226, 451–462 (2013).

    PubMed  Google Scholar 

  63. van den Wildenberg, W. P. et al. Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson's disease. J. Cogn. Neurosci. 18, 626–636 (2006).

    PubMed  Google Scholar 

  64. Swann, N. et al. Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson's disease. J. Neurosci. 31, 5721–5729 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kühn, A. A. et al. Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain 127, 735–746 (2004).

    PubMed  Google Scholar 

  66. Ray, N. J. et al. The role of the subthalamic nucleus in response inhibition: evidence from local field potential recordings in the human subthalamic nucleus. Neuroimage 60, 271–278 (2012).

    PubMed  Google Scholar 

  67. Alegre, M. et al. The subthalamic nucleus is involved in successful inhibition in the stop-signal task: a local field potential study in Parkinson's disease. Exp. Neurol. 239, 1–12 (2013).

    PubMed  Google Scholar 

  68. Benis, D. et al. Subthalamic nucleus activity dissociates proactive and reactive inhibition in patients with Parkinson's disease. Neuroimage 91, 273–281 (2014).

    PubMed  Google Scholar 

  69. Rodriguez-Oroz, M. C. et al. Involvement of the subthalamic nucleus in impulse control disorders associated with Parkinson's disease. Brain 134, 36–49 (2011).

    PubMed  Google Scholar 

  70. Evenden, J. Impulsivity: a discussion of clinical and experimental findings. J. Psychopharmacol. 13, 180–192 (1999).

    CAS  PubMed  Google Scholar 

  71. Dalley, J. W., Everitt, B. J. & Robbins, T. W. Impulsivity, compulsivity, and top-down cognitive control. Neuron 69, 680–694 (2011).

    CAS  PubMed  Google Scholar 

  72. Winter, C. et al. High frequency stimulation of the subthalamic nucleus modulates neurotransmission in limbic brain regions of the rat. Exp. Brain Res. 185, 497–507 (2008).

    PubMed  Google Scholar 

  73. Cardinal, R. N., Robbins, T. W. & Everitt, B. J. The effects of d-amphetamine, chlordiazepoxide, α-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology (Berl.) 152, 362–375 (2000).

    CAS  Google Scholar 

  74. Christakou, A., Robbins, T. W. & Everitt, B. J. Prefrontal cortical–ventral striatal interactions involved in affective modulation of attentional performance: implications for corticostriatal circuit function. J. Neurosci. 24, 773–780 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sesia, T. et al. Deep brain stimulation of the nucleus accumbens core and shell: opposite effects on impulsive action. Exp. Neurol. 214, 135–139 (2008).

    PubMed  Google Scholar 

  76. Man, M. S., Clarke, H. F. & Roberts, A. C. The role of the orbitofrontal cortex and medial striatum in the regulation of prepotent responses to food rewards. Cereb. Cortex 19, 899–906 (2009).

    CAS  PubMed  Google Scholar 

  77. Stern, C. E. & Passingham, R. E. The nucleus accumbens in monkeys (Macaca fascicularis). III. Reversal learning. Exp. Brain Res. 106, 239–247 (1995).

    CAS  PubMed  Google Scholar 

  78. Kringelbach, M. L. & Rolls, E. T. Neural correlates of rapid reversal learning in a simple model of human social interaction. Neuroimage 20, 1371–1383 (2003).

    PubMed  Google Scholar 

  79. Cools, R., Lewis, S. J., Clark, L., Barker, R. A. & Robbins, T. W. l-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson's disease. Neuropsychopharmacology 32, 180–189 (2007).

    CAS  PubMed  Google Scholar 

  80. Brown, R. G., Soliveri, P. & Jahanshahi, M. Executive processes in Parkinson's disease — random number generation and response suppression. Neuropsychologia 36, 1355–1362 (1998).

    CAS  PubMed  Google Scholar 

  81. Dirnberger, G. & Jahanshahi, M. Executive dysfunction in Parkinson's disease: a review. J. Neuropsychol. 7, 193–224 (2013).

    PubMed  Google Scholar 

  82. O'Callaghan, C., Naismith, S. L., Hodges, J. R., Lewis, S. J. & Hornberger, M. Fronto-striatal atrophy correlates of inhibitory dysfunction in Parkinson's disease versus behavioural variant frontotemporal dementia. Cortex 49, 1833–1843 (2013).

    PubMed  Google Scholar 

  83. Weintraub, D., David, A. S., Evans, A. H., Grant, J. E. & Stacy, M. Clinical spectrum of impulse control disorders in Parkinson's disease. Mov. Disord. 30, 121–127 (2015).

    CAS  PubMed  Google Scholar 

  84. Voon, V. et al. Impulsive choice and response in dopamine agonist-related impulse control behaviors. Psychopharmacology (Berl.) 207, 645–659 (2010).

    CAS  Google Scholar 

  85. Joutsa, J. et al. Dopaminergic function and intertemporal choice. Transl Psychiatry 5, e491 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. van Eimeren, T. et al. Drug-induced deactivation of inhibitory networks predicts pathological gambling in PD. Neurology 75, 1711–1716 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Politis, M. et al. Neural response to visual sexual cues in dopamine treatment-linked hypersexuality in Parkinson's disease. Brain 136, 400–411 (2013).

    PubMed  Google Scholar 

  88. Biundo, R. et al. Patterns of cortical thickness associated with impulse control disorders in Parkinson's disease. Mov. Disord. 30, 688–695 (2015).

    PubMed  Google Scholar 

  89. Absher, J. R. et al. Hypersexuality and hemiballism due to subthalamic infarction. Neuropsychiatry Neuropsychol. Behav. Neurol. 13, 220–229 (2000).

    CAS  PubMed  Google Scholar 

  90. Barutca, S., Turgut, M., Meydan, N. & Ozsunar, Y. Subthalamic nucleus tumor causing hyperphagia — case report. Neurol. Med. Chir. (Tokyo) 43, 457–460 (2003).

    Google Scholar 

  91. Trillet, M., Vighetto, A., Croisile, B., Charles, N. & Aimard, G. Hemiballismus with logorrhea and thymo-affective disinhibition caused by hematoma of the left subthalamic nucleus. Rev. Neurol. (Paris) 151, 416–419 (1995) (in French).

    CAS  Google Scholar 

  92. Park, H. K., Kim, H. J., Kim, S. J., Kim, J. S. & Shin, H. W. From Jekyll to Hyde after limbic subthalamic nucleus infarction. Neurology 77, 82–84 (2011).

    CAS  PubMed  Google Scholar 

  93. Jahanshahi, M. et al. The impact of deep brain stimulation on executive function in Parkinson's disease. Brain 123, 1142–1154 (2000). The first study to provide evidence for STN-DBS-induced deficits in inhibitory control in humans by showing increased errors on the Stroop interference task in patients with PD.

    PubMed  Google Scholar 

  94. Thobois, S. et al. STN stimulation alters pallidal-frontal coupling during response selection under competition. J. Cereb. Blood Flow Metab. 27, 1173–1184 (2007).

    PubMed  Google Scholar 

  95. Wylie, S. A. et al. Subthalamic nucleus stimulation influences expression and suppression of impulsive behaviour in Parkinson's disease. Brain 133, 3611–3624 (2010).

    PubMed  PubMed Central  Google Scholar 

  96. Schroeder, U. et al. Subthalamic nucleus stimulation affects striato-anterior cingulate cortex circuit in a response conflict task: a PET study. Brain 125, 1995–2004 (2002).

    CAS  PubMed  Google Scholar 

  97. Krack, P. et al. Mirthful laughter induced by subthalamic nucleus stimulation. Mov. Disord. 16, 867–875 (2001).

    CAS  PubMed  Google Scholar 

  98. Bejjani, B. P. et al. Transient acute depression induced by high-frequency deep-brain stimulation. N. Engl. J. Med. 340, 1476–1480 (1999).

    CAS  PubMed  Google Scholar 

  99. Moum, S. J. et al. Effects of STN and GPi deep brain stimulation on impulse control disorders and dopamine dysregulation syndrome. PLoS ONE 7, e29768 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lim, S. Y. et al. Dopamine dysregulation syndrome, impulse control disorders and punding after deep brain stimulation surgery for Parkinson's disease. J. Clin. Neurosci. 16, 1148–1152 (2009).

    CAS  PubMed  Google Scholar 

  101. Schneider, F. et al. Deep brain stimulation of the subthalamic nucleus enhances emotional processing in Parkinson disease. Arch. Gen. Psychiatry 60, 296–302 (2003).

    PubMed  Google Scholar 

  102. Vicente, S. et al. Subthalamic nucleus stimulation affects subjective emotional experience in Parkinson's disease patients. Neuropsychologia 47, 1928–1937 (2009).

    PubMed  Google Scholar 

  103. Bickel, S. et al. Cognitive and neuropsychiatric effects of subthalamotomy for Parkinson's disease. Parkinsonism Relat. Disord. 16, 535–539 (2010).

    PubMed  Google Scholar 

  104. Alvarez, L. et al. Bilateral subthalamotomy in Parkinson's disease: initial and long-term response. Brain 128, 570–583 (2005).

    CAS  PubMed  Google Scholar 

  105. Brittain, J. S. et al. A role for the subthalamic nucleus in response inhibition during conflict. J. Neurosci. 32, 13396–13401 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zaghloul, K. A. et al. Neuronal activity in the human subthalamic nucleus encodes decision conflict during action selection. J. Neurosci. 32, 2453–2460 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Green, N. et al. Reduction of influence of task difficulty on perceptual decision making by STN deep brain stimulation. Curr. Biol. 23, 1681–1684 (2013).

    CAS  PubMed  Google Scholar 

  108. Jahanshahi, M. et al. Deep brain stimulation of the subthalamic nucleus is associated with lower response thresholds when patients with Parkinson's disease act under speed pressure. Mov. Disord. 30, S341–S342 (2015).

    Google Scholar 

  109. Rosa, M. et al. Pathological gambling in Parkinson's disease: subthalamic oscillations during economics decisions. Mov. Disord. 28, 1644–1652 (2013).

    PubMed  Google Scholar 

  110. Henson, R. N., Shallice, T., Josephs, O. & Dolan, R. J. Functional magnetic resonance imaging of proactive interference during spoken cued recall. Neuroimage 17, 543–558 (2002).

    CAS  PubMed  Google Scholar 

  111. Trepanier, L. L., Kumar, R., Lozano, A. M., Lang, A. E. & Saint-Cyr, J. A. Neuropsychological outcome of GPi pallidotomy and GPi or STN deep brain stimulation in Parkinson's disease. Brain Cogn. 42, 324–347 (2000).

    CAS  PubMed  Google Scholar 

  112. Lombardi, W. J. et al. Relationship of lesion location to cognitive outcome following microelectrode-guided pallidotomy for Parkinson's disease: support for the existence of cognitive circuits in the human pallidum. Brain 123, 746–758 (2000).

    PubMed  Google Scholar 

  113. Saint-Cyr, J. A., Trepanier, L. L., Kumar, R., Lozano, A. M. & Lang, A. E. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson's disease. Brain 123, 2091–2108 (2000).

    PubMed  Google Scholar 

  114. Jahanshahi, M. & Frith, C. D. Willed action and its impairments. Cogn. Neuropsychol. 15, 483–533 (1998).

    CAS  PubMed  Google Scholar 

  115. Jueptner, M. et al. Anatomy of motor learning. I. Frontal cortex and attention to action. J. Neurophysiol. 77, 1313–1324 (1997).

    CAS  PubMed  Google Scholar 

  116. Lehericy, S. et al. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc. Natl Acad. Sci. USA 102, 12566–12571 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Verbruggen, F. & Logan, G. D. Automatic and controlled response inhibition: associative learning in the go/no-go and stop-signal paradigms. J. Exp. Psychol. Gen. 137, 649–672 (2008).

    PubMed  PubMed Central  Google Scholar 

  118. Verbruggen, F., Best, M., Bowditch, W. A., Stevens, T. & McLaren, I. P. The inhibitory control reflex. Neuropsychologia 65, 263–278 (2014).

    PubMed  Google Scholar 

  119. Dolan, R. J. & Dayan, P. Goals and habits in the brain. Neuron 80, 312–325 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Stuss, D. T. & Alexander, M. P. Executive functions and the frontal lobes: a conceptual view. Psychol. Res. 63, 289–298 (2000).

    CAS  PubMed  Google Scholar 

  121. Redgrave, P. et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease. Nat. Rev. Neurosci. 11, 760–772 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Singer, H. S. Motor control, habits, complex motor stereotypies, and Tourette syndrome. Ann. NY Acad. Sci. 1304, 22–31 (2013).

    CAS  PubMed  Google Scholar 

  123. Gillan, C. M. & Robbins, T. W. Goal-directed learning and obsessive-compulsive disorder. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 369, 20130475 (2014).

    Google Scholar 

  124. Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    CAS  PubMed  Google Scholar 

  125. DeLong, M. R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285 (1990).

    CAS  PubMed  Google Scholar 

  126. Wichmann, T., DeLong, M. R., Guridi, J. & Obeso, J. A. Milestones in research on the pathophysiology of Parkinson's disease. Mov. Disord. 26, 1032–1041 (2011).

    PubMed  PubMed Central  Google Scholar 

  127. Obeso, J. A. et al. What can man do without basal ganglia motor output? The effect of combined unilateral subthalamotomy and pallidotomy in a patient with Parkinson's disease. Exp. Neurol. 220, 283–292 (2009).

    CAS  PubMed  Google Scholar 

  128. Mazzoni, P., Hristova, A. & Krakauer, J. W. Why don't we move faster? Parkinson's disease, movement vigor, and implicit motivation. J. Neurosci. 27, 7105–7116 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Obeso, J. A., Rodriguez-Oroz, M. C., Rodriguez, M., DeLong, M. R. & Olanow, C. W. Pathophysiology of levodopa-induced dyskinesias in Parkinson's disease: problems with the current model. Ann. Neurol. 47, S22–S32 (2000).

    CAS  PubMed  Google Scholar 

  130. Okai, D., Askey-Jones, S., Samuel, M., David, A. S. & Brown, R. G. Predictors of response to a cognitive behavioral intervention for impulse control behaviors in Parkinson's disease. Mov. Disord. 30, 736–739 (2015).

    CAS  PubMed  Google Scholar 

  131. Mink, J. W. Neurobiology of basal ganglia circuits in Tourette syndrome: faulty inhibition of unwanted motor patterns? Adv. Neurol. 85, 113–122 (2001).

    CAS  PubMed  Google Scholar 

  132. McNaught, K. S. & Mink, J. W. Advances in understanding and treatment of Tourette syndrome. Nat. Rev. Neurol. 7, 667–676 (2011).

    CAS  PubMed  Google Scholar 

  133. Kalanithi, P. S. et al. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc. Natl Acad. Sci. USA 102, 13307–13312 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Worbe, Y. et al. Altered structural connectivity of cortico–striato–pallido–thalamic networks in Gilles de la Tourette syndrome. Brain 138, 472–482 (2015).

    PubMed  Google Scholar 

  135. Welter, M. L. et al. Internal pallidal and thalamic stimulation in patients with Tourette syndrome. Arch. Neurol. 65, 952–957 (2008).

    PubMed  Google Scholar 

  136. Neuner, I., Podoll, K., Lenartz, D., Sturm, V. & Schneider, F. Deep brain stimulation in the nucleus accumbens for intractable Tourette's syndrome: follow-up report of 36 months. Biol. Psychiatry 65, e5–e6 (2009).

    PubMed  Google Scholar 

  137. Kefalopoulou, Z. et al. Bilateral globus pallidus stimulation for severe Tourette syndrome: a double-blind, randomized crossover trial. Lancet Neurol. 14, 595–605 (2015).

    PubMed  Google Scholar 

  138. Channon, S., Sinclair, E., Waller, D., Healey, L. & Robertson, M. M. Social cognition in Tourette's syndrome: intact theory of mind and impaired inhibitory functioning. J. Autism Dev. Disord. 34, 669–677 (2004).

    PubMed  Google Scholar 

  139. Wylie, S. A., Claassen, D. O., Kanoff, K. E., Ridderinkhof, K. R. & van den Wildenberg, W. P. Impaired inhibition of prepotent motor actions in patients with Tourette syndrome. J. Psychiatry Neurosci. 38, 349–356 (2013).

    PubMed  PubMed Central  Google Scholar 

  140. Roessner, V., Albrecht, B., Dechent, P., Baudewig, J. & Rothenberger, A. Normal response inhibition in boys with Tourette syndrome. Behav. Brain Funct. 4, 29 (2008).

    PubMed  PubMed Central  Google Scholar 

  141. Mueller, S. C., Jackson, G. M., Dhalla, R., Datsopoulos, S. & Hollis, C. P. Enhanced cognitive control in young people with Tourette's syndrome. Curr. Biol. 16, 570–573 (2006).

    CAS  PubMed  Google Scholar 

  142. Wang, Z. et al. The neural circuits that generate tics in Tourette's syndrome. Am. J. Psychiatry 168, 1326–1337 (2011).

    PubMed  PubMed Central  Google Scholar 

  143. Obeso, J. A., Rothwell, J. C. & Marsden, C. D. Simple tics in Gilles de la Tourette's syndrome are not prefaced by a normal premovement EEG potential. J. Neurol. Neurosurg. Psychiatry 44, 735–738 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Ganos, C. et al. The neural correlates of tic inhibition in Gilles de la Tourette syndrome. Neuropsychologia 65, 297–301 (2014).

    PubMed  Google Scholar 

  145. Peterson, B. S. et al. A functional magnetic resonance imaging study of tic suppression in Tourette syndrome. Arch. Gen. Psychiatry 55, 326–333 (1998).

    CAS  PubMed  Google Scholar 

  146. Mazzone, L. et al. An fMRI study of frontostriatal circuits during the inhibition of eye blinking in persons with Tourette syndrome. Am. J. Psychiatry 167, 341–349 (2010).

    PubMed  PubMed Central  Google Scholar 

  147. Milad, M. R. & Rauch, S. L. Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn. Sci. 16, 43–51 (2012).

    PubMed  Google Scholar 

  148. Chamberlain, S. R., Blackwell, A. D., Fineberg, N. A., Robbins, T. W. & Sahakian, B. J. The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci. Biobehav. Rev. 29, 399–419 (2005).

    CAS  PubMed  Google Scholar 

  149. Eng, G. K., Sim, K. & Chen, S. H. Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: An integrative review. Neurosci. Biobehav. Rev. 52, 233–257 (2015).

    PubMed  Google Scholar 

  150. Roth, R. M. et al. Event-related functional magnetic resonance imaging of response inhibition in obsessive-compulsive disorder. Biol. Psychiatry 62, 901–909 (2007).

    PubMed  Google Scholar 

  151. Mataix-Cols, D. et al. Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive-compulsive disorder. Arch. Gen. Psychiatry 61, 564–576 (2004).

    PubMed  Google Scholar 

  152. Banca, P. et al. Imbalance in habitual versus goal directed neural systems during symptom provocation in obsessive-compulsive disorder. Brain 138, 798–811 (2015).

    PubMed  PubMed Central  Google Scholar 

  153. Abramovitch, A., Abramowitz, J. S. & Mittelman, A. The neuropsychology of adult obsessive-compulsive disorder: a meta-analysis. Clin. Psychol. Rev. 33, 1163–1171 (2013).

    PubMed  Google Scholar 

  154. Gillan, C. M. et al. Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. Am. J. Psychiatry 168, 718–726 (2011).

    PubMed  PubMed Central  Google Scholar 

  155. Gillan, C. M. et al. Enhanced avoidance habits in obsessive-compulsive disorder. Biol. Psychiatry 75, 631–638 (2014).

    PubMed  PubMed Central  Google Scholar 

  156. Gremel, C. M. & Costa, R. M. Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat. Commun. 4, 2264 (2013). Describes a study taking simultaneous in vivo neuronal recordings from the OFC, the dorsolateral striatum and the dorsomedial striatum while mice performed a novel lever-pressing task. Establishes that the same neurons display different activities depending on whether presses are goal-directed or habitual, with the dorsomedial striatum and the OFC becoming more, and the dorsolateral striatum less, engaged during goal-directed actions.

    PubMed  Google Scholar 

  157. Greenberg, B. D. et al. Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience. Mol. Psychiatry 15, 64–79 (2010).

    CAS  PubMed  Google Scholar 

  158. Huff, W. et al. Unilateral deep brain stimulation of the nucleus accumbens in patients with treatment-resistant obsessive-compulsive disorder: outcomes after one year. Clin. Neurol. Neurosurg. 112, 137–143 (2010).

    PubMed  Google Scholar 

  159. Mallet, L. et al. Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N. Engl. J. Med. 359, 2121–2134 (2008).

    CAS  PubMed  Google Scholar 

  160. Guehl, D. et al. Neuronal correlates of obsessions in the caudate nucleus. Biol. Psychiatry 63, 557–562 (2008).

    PubMed  Google Scholar 

  161. Burbaud, P. et al. Neuronal activity correlated with checking behaviour in the subthalamic nucleus of patients with obsessive-compulsive disorder. Brain 136, 304–317 (2013).

    PubMed  Google Scholar 

  162. Rauch, S. L. et al. A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. J. Neurosurg. 104, 558–565 (2006).

    PubMed  Google Scholar 

  163. Obeso, I. et al. Stimulation of the pre-SMA influences cerebral blood flow in frontal areas involved with inhibitory control of action. Brain Stimul. 6, 769–776 (2013).

    CAS  PubMed  Google Scholar 

  164. Harnishfeger, K. K. Interference and Inhibition in Cognition (Academic Press, 1995).

    Google Scholar 

  165. Nigg, J. T. On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. Psychol. Bull. 126, 220–246 (2000).

    CAS  PubMed  Google Scholar 

  166. van Gaal, S., Ridderinkhof, K. R., Scholte, H. S. & Lamme, V. A. Unconscious activation of the prefrontal no-go network. J. Neurosci. 30, 4143–4150 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Brass, M. & Haggard, P. To do or not to do: the neural signature of self-control. J. Neurosci. 27, 9141–9145 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Friedman, N. P. & Miyake, A. The relations among inhibition and interference control functions: a latent-variable analysis. J. Exp. Psychol. Gen. 133, 101–135 (2004).

    PubMed  Google Scholar 

  169. Lappin, J. & Eriksen, C. Use of delayed signal to stop a visual reaction-time response. J. Exp. Psychol. 72, 805–811 (1966).

    Google Scholar 

  170. Logan, G. D. & Cowan, W. B. On the ability to inhibit thought and action: a theory of an act of control. Psychol. Rev. 91, 295–327 (1984).

    Google Scholar 

  171. Hallett, P. E. Primary and secondary saccades to goals defined by instructions. Vision Res. 18, 1279–1296 (1978).

    CAS  PubMed  Google Scholar 

  172. Eriksen, B. A. & Eriksen, C. W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception Psychophys. 16, 143–149 (1974).

    Google Scholar 

  173. Stroop, J. R. Studies of intererence in serial verbal reactions. J. Exp. Psychol. 18, 643–662 (1935).

    Google Scholar 

  174. Jahanshahi, M., Dirnberger, G., Fuller, R. & Frith, C. D. The role of the dorsolateral prefrontal cortex in random number generation: a study with positron emission tomography. Neuroimage 12, 713–725 (2000).

    CAS  PubMed  Google Scholar 

  175. Burgess, P. W. & Shallice, T. The Hayling and Brixton tests. Test manual (Thames Valley Test Company/Pearson Assessment, 1997).

    Google Scholar 

  176. Kuhn, S., Haggard, P. & Brass, M. Intentional inhibition: how the 'veto-area' exerts control. Hum. Brain Mapp. 30, 2834–2843 (2009).

    PubMed  Google Scholar 

  177. Bhatia, K. P. & Marsden, C. D. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 117, 859–876 (1994).

    PubMed  Google Scholar 

  178. Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking the basal ganglia and cortex. Ann. Rev. Neurosci. 9, 357–381 (1986).

    CAS  PubMed  Google Scholar 

  179. Middleton, F. A. & Strick, P. L. Basal-ganglia 'projections' to the prefrontal cortex of the primate. Cereb. Cortex 12, 926–935 (2002).

    PubMed  Google Scholar 

  180. Krout, K. E. & Loewy, A. D. Periaqueductal gray matter projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol. 424, 111–141 (2000).

    CAS  PubMed  Google Scholar 

  181. Krout, K. E., Loewy, A. D., Westby, G. W. & Redgrave, P. Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol. 431, 198–216 (2001).

    CAS  PubMed  Google Scholar 

  182. Erro, E., Lanciego, J. L. & Gimenez-Amaya, J. M. Relationships between thalamostriatal neurons and pedunculopontine projections to the thalamus: a neuroanatomical tract-tracing study in the rat. Exp. Brain Res. 127, 162–170 (1999).

    CAS  PubMed  Google Scholar 

  183. Lehericy, S. et al. Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann. Neurol. 55, 522–529 (2004).

    PubMed  Google Scholar 

  184. Draganski, B. et al. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J. Neurosci. 28, 7143–7152 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Lambert, C. et al. Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage 60, 83–94 (2012).

    PubMed  Google Scholar 

  186. Haber, S. N. The primate basal ganglia: parallel and integrative networks. J. Chem. Neuroanat. 26, 317–330 (2003).

    PubMed  Google Scholar 

  187. Alexander, G. E. & Crutcher, M. D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13, 266–271 (1990).

    CAS  PubMed  Google Scholar 

  188. Cui, G. et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Jin, X., Tecuapetla, F. & Costa, R. M. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17, 423–430 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Kitai, S. T. & Deniau, J. M. Cortical inputs to the subthalamus: intracellular analysis. Brain Res. 214, 411–415 (1981).

    CAS  PubMed  Google Scholar 

  191. Hartmann-von Monakow, K., Akert, K. & Kiinzle, H. Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp. Brain Res. 33, 395–403 (1978).

    Google Scholar 

  192. Nambu, A., Tokuno, H. & Takada, M. Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neurosci. Res. 43, 111–117 (2002).

    PubMed  Google Scholar 

  193. Wickens, J. R., Alexander, M. E. & Miller, R. Two dynamic modes of striatal function under dopaminergic-cholinergic control: simulation and analysis of a model. Synapse 8, 1–12 (1991).

    CAS  PubMed  Google Scholar 

  194. Plenz, D. When inhibition goes incognito: feedback interaction between spiny projection neurons in striatal function. Trends Neurosci. 26, 436–443 (2003).

    CAS  PubMed  Google Scholar 

  195. Tepper, J. M., Wilson, C. J. & Koos, T. Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons. Brain Res. Rev. 58, 272–281 (2008).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Jahanshahi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Habit

A learned behaviour that is performed regularly and automatically without much attention being required.

Levodopa-induced dyskinesias

(LIDs). Involuntary movements induced by levodopa medication.

Reversal learning

Learning to inhibit responses to a stimulus that is no longer rewarded and instead to respond to an alternative, new stimulus.

Cognitive reappraisal

'Reframing' how one thinks about a situation, which can be important for emotion regulation.

Prosody

The rhythm, stress and intonation of speech.

Hobbyism

Excessive devotion to hobbies.

Punding

Complex, prolonged, repetitive, purposeless and stereotyped behaviour.

Dopamine-dysregulation syndrome

An excessive and addiction-like overuse of dopaminergic medication.

Logorrhoea

A tendency towards excessive and often incoherent talkativeness or wordiness and repetitiveness of speech.

Simon effect

The finding that, in a task in which stimulus location is irrelevant to task performance, reaction times are usually faster and responses are more accurate when a stimulus occurs in the same relative location as the response than when the stimulus and response positions are incompatible.

Probabilistic decision making

Making decisions based on stimuli that indicate different probabilities of obtaining a reward.

Decision conflict

Difficulty in making decisions and selecting one option over another, for example, when the expected probability of the reward associated with two stimuli is equally high.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahanshahi, M., Obeso, I., Rothwell, J. et al. A fronto–striato–subthalamic–pallidal network for goal-directed and habitual inhibition. Nat Rev Neurosci 16, 719–732 (2015). https://doi.org/10.1038/nrn4038

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn4038

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing