Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Separated at birth? The functional and molecular divergence of OLIG1 and OLIG2

Key Points

  • The basic helix–loop–helix transcription factors oligodendrocyte transcription factor 1 (OLIG1) and OLIG2 are structurally related within their DNA targeting domains and, to a first approximation, are coordinately expressed during development.

  • Notwithstanding similarities in their protein structure and expression pattern, OLIG1 and OLIG2 have non-overlapping functions during development and in the postnatal brain.

  • Olig2-null mice have a striking developmental phenotype involving total loss of motor neurons and near-complete loss of oligodendrocyte progenitors.

  • The developmental phenotype of Olig1-null mice is more nuanced and largely confined to the oligodendrocyte lineage. However, OLIG1 cooperates with OLIG2 in spinal cord patterning.

  • A broadening body of literature links OLIG2 to human gliomas, and pathobiological functions of OLIG1 are suggested in the repair of demyelinating injuries.

  • The divergent biological and pathobiological functions of OLIG1 and OLIG2 reflect the non-overlapping genetic targets, co-regulator proteins and post-translational modification of these proteins.

Abstract

The basic helix–loop–helix transcription factors oligodendrocyte transcription factor 1 (OLIG1) and OLIG2 are structurally similar and, to a first approximation, coordinately expressed in the developing CNS and postnatal brain. Despite these similarities, it was apparent from early on after their discovery that OLIG1 and OLIG2 have non-overlapping developmental functions in patterning, neuron subtype specification and the formation of oligodendrocytes. Here, we summarize more recent insights into the separate roles of these transcription factors in the postnatal brain during repair processes and in neurological disease states, including multiple sclerosis and malignant glioma. We discuss how the unique functions of OLIG1 and OLIG2 may reflect their distinct genetic targets, co-regulator proteins and/or post-translational modifications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The developmental roles of OLIG1 and OLIG2.
Figure 2: OLIG1 and OLIG2 localization.
Figure 3: Downstream gene targets of OLIG1 and OLIG2.
Figure 4: Post-translational modification motifs in OLIG1 and OLIG2.

Similar content being viewed by others

References

  1. Charcot, J. M. Histologie de la sclérose en plaques. Gazette des hopitaux 41, 554–555 (1868) (in French).

    Google Scholar 

  2. Marburg, O. Die sogenannte akute multiple Sklerose. Jahrb. Psychiatrie 27, 211–312 (1906) (in German).

    Google Scholar 

  3. Prineas, J. W. & Connell, F. Remyelination in multiple sclerosis. Ann. Neurol. 5, 22–31 (1979).

    Article  CAS  PubMed  Google Scholar 

  4. Lucchinetti, C. et al. A quantitative analysis of oligodendrocytes in multiple sclerosis lesions. A study of 113 cases. Brain 122, 2279–2295 (1999).

    Article  PubMed  Google Scholar 

  5. Warf, B. C., Fok-Seang, J. & Miller, R. H. Evidence for the ventral origin of oligodendrocyte precursors in the rat spinal cord. J. Neurosci. 11, 2477–2488 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pringle, N. P. & Richardson, W. D. A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development 117, 525–533 (1993).

    CAS  PubMed  Google Scholar 

  7. Yu, W. P., Collarini, E. J., Pringle, N. P. & Richardson, W. D. Embryonic expression of myelin genes: evidence for a focal source of oligodendrocyte precursors in the ventricular zone of the neural tube. Neuron 12, 1353–1362 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Timsit, S. et al. Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J. Neurosci. 15, 1012–1024 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cameron-Curry, P. & Le Douarin, N. M. Oligodendrocyte precursors originate from both the dorsal and the ventral parts of the spinal cord. Neuron 15, 1299–1310 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Raff, M. C., Miller, R. H. & Noble, M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303, 390–396 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Rao, M. S., Noble, M. & Mayer-Proschel, M. A tripotential glial precursor cell is present in the developing spinal cord. Proc. Natl Acad. Sci. USA 95, 3996–4001 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee, J. C., Mayer-Proschel, M. & Rao, M. S. Gliogenesis in the central nervous system. Glia 30, 105–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Rev. Genet. 1, 20–29 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Lu, Q. R. et al. Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25, 317–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, Q., Wang, S. & Anderson, D. J. Identification of a novel family of oligodendrocyte lineage-specific basic helix–loop–helix transcription factors. Neuron 25, 331–343 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Takebayashi, H. et al. Dynamic expression of basic helix–loop–helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech. Dev. 99, 143–148 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Lu, Q. R. et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, Q. & Anderson, D. J. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61–73 (2002). References 16–18 collectively show that OLIG1 and OLIG2 regulate the formation of oligodendrocytes and certain neurons (notably motor neurons) and have no apparent role in the specification of astrocytes.

    Article  CAS  PubMed  Google Scholar 

  19. Cai, J. et al. Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 45, 41–53 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Vallstedt, A., Klos, J. M. & Ericson, J. Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45, 55–67 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Fogarty, M., Richardson, W. D. & Kessaris, N. A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132, 1951–1959 (2005). References 19–21 collectively identify multiple origins of oligodendrocyte formation in the developing CNS.

    Article  CAS  PubMed  Google Scholar 

  22. Menn, B. et al. Origin of oligodendrocytes in the subventricular zone of the adult brain. J. Neurosci. 26, 7907–7918 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fancy, S. P., Zhao, C. & Franklin, R. J. Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol. Cell Neurosci. 27, 247–254 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Buffo, A. et al. Expression pattern of the transcription factor Olig2 in response to brain injuries: implications for neuronal repair. Proc. Natl Acad. Sci. USA 102, 18183–18188 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Arnett, H. A. et al. bHLH transcription factor Olig1 is required to repair demyelinated lesions in the CNS. Science 306, 2111–2115 (2004). This study defines myelin repair functions of OLIG1 in mouse models of MS.

    Article  CAS  PubMed  Google Scholar 

  26. Georgieva, L. et al. Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. Proc. Natl Acad. Sci. USA 103, 12469–12474 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sims, R. et al. Evidence that variation in the oligodendrocyte lineage transcription factor 2 (OLIG2) gene is associated with psychosis in Alzheimer's disease. Neurosci. Lett. 461, 54–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Huang, K. et al. Positive association between OLIG2 and schizophrenia in the Chinese Han population. Hum. Genet. 122, 659–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Chakrabarti, L. et al. Olig1 and Olig2 triplication causes developmental brain defects in Down syndrome. Nature Neurosci. 13, 927–934 (2010). This study shows that OLIG1 and OLIG2 are linked to the brain-specific aspects of Down syndrome.

    Article  CAS  PubMed  Google Scholar 

  30. Bouvier, C. et al. Shared oligodendrocyte lineage gene expression in gliomas and oligodendrocyte progenitor cells. J. Neurosurg. 99, 344–350 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Ligon, K. L. et al. The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J. Neuropathol. Exp. Neurol. 63, 499–509 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Lu, Q. R. et al. Oligodendrocyte lineage genes (OLIG) as molecular markers for human glial brain tumors. Proc. Natl Acad. Sci. USA 98, 10851–10856 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marie, Y. et al. OLIG2 as a specific marker of oligodendroglial tumour cells. Lancet 358, 298–300 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Ohnishi, A. et al. Expression of the oligodendroglial lineage-associated markers Olig1 and Olig2 in different types of human gliomas. J. Neuropathol. Exp. Neurol. 62, 1052–1059 (2003). References 31–34 show that expression of genes from the OLIG family is a common feature of human gliomas.

    Article  CAS  PubMed  Google Scholar 

  35. Ledent, V., Paquet, O. & Vervoort, M. Phylogenetic analysis of the human basic helix–loop–helix proteins. Genome Biol. 3, research0030–research0030.18 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gray, P. A. et al. Mouse brain organization revealed through direct genome-scale TF expression analysis. Science 306, 2255–2257 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Malatesta, P. et al. Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37, 751–764 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Tsai, H. H. et al. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337, 358–362 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ligon, K. L. et al. Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron 53, 503–517 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, J. A. et al. Mir-17-3p controls spinal neural progenitor patterning by regulating Olig2/Irx3 cross-repressive loop. Neuron 69, 721–735 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takebayashi, H. et al. Non-overlapping expression of Olig3 and Olig2 in the embryonic neural tube. Mech. Dev. 113, 169–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, Z. et al. Control of precerebellar neuron development by Olig3 bHLH transcription factor. J. Neurosci. 28, 10124–10133 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, S. K., Lee, B., Ruiz, E. C. & Pfaff, S. L. Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. Genes Dev. 19, 282–294 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, H., de Faria, J. P., Andrew, P., Nitarska, J. & Richardson, W. D. Phosphorylation regulates OLIG2 cofactor choice and the motor neuron-oligodendrocyte fate switch. Neuron 69, 918–929 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Furusho, M. et al. Involvement of the Olig2 transcription factor in cholinergic neuron development of the basal forebrain. Dev. Biol. 293, 348–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Xin, M. et al. Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. J. Neurosci. 25, 1354–1365 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marshall, C. A., Novitch, B. G. & Goldman, J. E. Olig2 directs astrocyte and oligodendrocyte formation in postnatal subventricular zone cells. J. Neurosci. 25, 7289–7298 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, Y. et al. The basic helix–loop–helix transcription factor Olig2 is critical for reactive astrocyte proliferation after cortical injury. J. Neurosci. 28, 10983–10989 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kageyama, R. & Nakanishi, S. Helix–loop–helix factors in growth and differentiation of the vertebrate nervous system. Curr. Opin. Genet. Dev. 7, 659–665 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Lee, J. E. Basic helix–loop–helix genes in neural development. Curr. Opin. Neurobiol. 7, 13–20 (1997).

    Article  PubMed  Google Scholar 

  52. Parras, C. M. et al. Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J. 23, 4495–4505 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Bao, S. et al. Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res. 68, 6043–6048 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barrett, L. E. et al. Self-renewal does not predict tumor growth potential in mouse models of high-grade glioma. Cancer Cell 21, 11–24 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Appolloni, I. et al. Antagonistic modulation of gliomagenesis by Pax6 and Olig2 in PDGF-induced oligodendroglioma. Int. J. Cancer 131, e1078–e1087 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Mehta, S. et al. The central nervous system-restricted transcription factor Olig2 opposes p53 responses to genotoxic damage in neural progenitors and malignant glioma. Cancer Cell 19, 359–371 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kitada, M. & Rowitch, D. H. Transcription factor co-expression patterns indicate heterogeneity of oligodendroglial subpopulations in adult spinal cord. Glia 54, 35–46 (2006).

    Article  PubMed  Google Scholar 

  59. Chang, A., Tourtellotte, W. W., Rudick, R. & Trapp, B. D. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N. Engl. J. Med. 346, 165–173 (2002).

    Article  PubMed  Google Scholar 

  60. Kuhlmann, T. et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 131, 1749–1758 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Billiards, S. S. et al. Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia. Brain Pathol. 18, 153–163 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Verney, C. et al. Microglial reaction in axonal crossroads is a hallmark of noncystic periventricular white matter injury in very preterm infants. J. Neuropathol. Exp. Neurol. 71, 251–264 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Fancy, S. P. et al. Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nature Neurosci. 14, 1009–1016 (2011). References 59–63 and 127 collectively suggest that defects in myelin repair in MS and periventricular leukomalacia reflect a failure of oligodendrocyte maturation rather than a lack of oligodendrocyte progenitors.

    Article  CAS  PubMed  Google Scholar 

  64. Pekny, M. & Nilsson, M. Astrocyte activation and reactive gliosis. Glia 50, 427–434 (2005).

    Article  PubMed  Google Scholar 

  65. Gabay, L., Lowell, S., Rubin, L. L. & Anderson, D. J. Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40, 485–499 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Setoguchi, T. & Kondo, T. Nuclear export of OLIG2 in neural stem cells is essential for ciliary neurotrophic factor-induced astrocyte differentiation. J. Cell Biol. 166, 963–968 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Muroyama, Y., Fujiwara, Y., Orkin, S. H. & Rowitch, D. H. Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube. Nature 438, 360–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Dimou, L., Simon, C., Kirchhoff, F., Takebayashi, H. & Gotz, M. Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J. Neurosci. 28, 10434–10442 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Komitova, M., Serwanski, D. R., Lu, Q. R. & Nishiyama, A. NG2 cells are not a major source of reactive astrocytes after neocortical stab wound injury. Glia 59, 800–809 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zawadzka, M. et al. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6, 578–590 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Tripathi, R. B., Rivers, L. E., Young, K. M., Jamen, F. & Richardson, W. D. NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease. J. Neurosci. 30, 16383–16390 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Buffo, A. et al. Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc. Natl Acad. Sci. USA 105, 3581–3586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Magnus, T. et al. Evidence that nucleocytoplasmic Olig2 translocation mediates brain-injury-induced differentiation of glial precursors to astrocytes. J. Neurosci. Res. 85, 2126–2137 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Zhao, J. W., Raha-Chowdhury, R., Fawcett, J. W. & Watts, C. Astrocytes and oligodendrocytes can be generated from NG2+ progenitors after acute brain injury: intracellular localization of oligodendrocyte transcription factor 2 is associated with their fate choice. Eur. J. Neurosci. 29, 1853–1869 (2009).

    Article  PubMed  Google Scholar 

  75. Cassiani-Ingoni, R. et al. Cytoplasmic translocation of Olig2 in adult glial progenitors marks the generation of reactive astrocytes following autoimmune inflammation. Exp. Neurol. 201, 349–358 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Fernandez, F. & Garner, C. C. Over-inhibition: a model for developmental intellectual disability. Trends Neurosci. 30, 497–503 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Belichenko, P. V. et al. Synaptic structural abnormalities in the Ts65Dn mouse model of Down syndrome. J. Comp. Neurol. 480, 281–298 (2004).

    Article  PubMed  Google Scholar 

  78. Haydar, T. F. & Reeves, R. H. Trisomy 21 and early brain development. Trends Neurosciences 35, 81–91 (2012).

    Article  CAS  Google Scholar 

  79. Lu, J. et al. OLIG2 over-expression impairs proliferation of human Down syndrome neural progenitors. Hum. Mol. Genet. 21, 2330–2340 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, S. Z. et al. An oligodendrocyte-specific zinc-finger transcription regulator cooperates with Olig2 to promote oligodendrocyte differentiation. Development 133, 3389–3398 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Massari, M. E. & Murre, C. Helix–loop–helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20, 429–440 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhou, Q., Choi, G. & Anderson, D. J. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31, 791–807 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Novitch, B. G., Chen, A. I. & Jessell, T. M. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31, 773–789 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Mizuguchi, R. et al. Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 31, 757–771 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Kuspert, M., Hammer, A., Bosl, M. R. & Wegner, M. Olig2 regulates Sox10 expression in oligodendrocyte precursors through an evolutionary conserved distal enhancer. Nucleic Acids Res. 39, 1280–1293 (2011).

    Article  PubMed  CAS  Google Scholar 

  86. Mazzoni, E. O. et al. Embryonic stem cell-based mapping of developmental transcriptional programs. Nature Methods 8, 1056–1058 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Weng, Q. et al. Dual-mode modulation of smad signaling by smad-interacting protein sip1 is required for myelination in the central nervous system. Neuron 73, 713–728 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guo, X. et al. Delayed onset of experimental autoimmune encephalomyelitis in Olig1 deficient mice. PLoS ONE 5, e13083 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Chen, Y. et al. The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nature Neurosci. 12, 1398–1406 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Li, H., Lu, Y., Smith, H. K. & Richardson, W. D. Olig1 and Sox10 interact synergistically to drive myelin basic protein transcription in oligodendrocytes. J. Neurosci. 27, 14375–14382 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Beckett, D. Regulated assembly of transcription factors and control of transcription initiation. J. Mol. Biol. 314, 335–352 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Featherstone, M. Coactivators in transcription initiation: here are your orders. Curr. Opin. Genet. Dev. 12, 149–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Torchia, J., Glass, C. & Rosenfeld, M. G. Co-activators and co-repressors in the integration of transcriptional responses. Curr. Opin. Cell Biol. 10, 373–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Ravasi, T. et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140, 744–752 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Samanta, J. & Kessler, J. A. Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development 131, 4131–4142 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Benezra, R., Davis, R. L., Lockshon, D., Turner, D. L. & Weintraub, H. The protein Id: a negative regulator of helix–loop–helix DNA binding proteins. Cell 61, 49–59 (1990).

    Article  CAS  PubMed  Google Scholar 

  97. Poulin, G., Lebel, M., Chamberland, M., Paradis, F. W. & Drouin, J. Specific protein–protein interaction between basic helix–loop–helix transcription factors and homeoproteins of the Pitx family. Mol. Cell. Biol. 20, 4826–4837 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Babu, D. A., Chakrabarti, S. K., Garmey, J. C. & Mirmira, R. G. Pdx1 and BETA2/NeuroD1 participate in a transcriptional complex that mediates short-range DNA looping at the insulin gene. J. Biol. Chem. 283, 8164–8172 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Makarenkova, H. P., Gonzalez, K. N., Kiosses, W. B. & Meech, R. Barx2 controls myoblast fusion and promotes MyoD-mediated activation of the smooth muscle α-actin gene. J. Biol. Chem. 284, 14866–14874 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sun, T. et al. Olig bHLH proteins interact with homeodomain proteins to regulate cell fate acquisition in progenitors of the ventral neural tube. Curr. Biol. 11, 1413–1420 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Fukuda, S., Kondo, T., Takebayashi, H. & Taga, T. Negative regulatory effect of an oligodendrocytic bHLH factor OLIG2 on the astrocytic differentiation pathway. Cell Death Differ. 11, 196–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Ikushima, H. et al. An Id-like molecule, HHM, is a synexpression group-restricted regulator of TGF-β signalling. EMBO J. 27, 2955–2965 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Huillard, E. et al. Disruption of CK2β in embryonic neural stem cells compromises proliferation and oligodendrogenesis in the mouse telencephalon. Mol. Cell. Biol. 30, 2737–2749 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sun, Y. et al. Phosphorylation state of Olig2 regulates proliferation of neural progenitors. Neuron 69, 906–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sun, T. et al. Cross-repressive interaction of the Olig2 and Nkx2.2 transcription factors in developing neural tube associated with formation of a specific physical complex. J. Neurosci. 23, 9547–9556 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Niu, J. et al. Phosphorylated olig1 localizes to the cytosol of oligodendrocytes and promotes membrane expansion and maturation. Glia 60, 1427–1436 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Gill, G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 18, 2046–2059 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Hay, R. T. SUMO: a history of modification. Mol. Cell 18, 1–12 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Johnson, E. S. Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Verger, A., Perdomo, J. & Crossley, M. Modification with SUMO. A role in transcriptional regulation. EMBO Rep. 4, 137–142 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H. & Miyamoto, S. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF- κB activation by genotoxic stress. Cell 115, 565–576 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Hay, R. T. Modifying NEMO. Nature Cell Biol. 6, 89–91 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Imoto, S. et al. Sumoylation of Smad3 stimulates its nuclear export during PIASy-mediated suppression of TGF-β signaling. Biochem. Biophys. Res. Commun. 370, 359–365 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Martin, S., Wilkinson, K. A., Nishimune, A. & Henley, J. M. Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction. Nature Rev. Neurosci. 8, 948–959 (2007).

    Article  CAS  Google Scholar 

  116. Zhou, F., Xue, Y., Lu, H., Chen, G. & Yao, X. A genome-wide analysis of sumoylation-related biological processes and functions in human nucleus. FEBS Lett. 579, 3369–3375 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Frazer, K. A. et al. Evolutionarily conserved sequences on human chromosome 21. Genome Res. 11, 1651–1659 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Muskal, S. M., Holbrook, S. R. & Kim, S. H. Prediction of the disulfide-bonding state of cysteine in proteins. Protein Eng. 3, 667–672 (1990).

    Article  CAS  PubMed  Google Scholar 

  119. Smith, E. & Shilatifard, A. The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes. Mol. Cell 40, 689–701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. el-Husseini Ael, D. & Bredt, D. S. Protein palmitoylation: a regulator of neuronal development and function. Nature Rev. Neurosci. 3, 791–802 (2002).

    Article  CAS  Google Scholar 

  121. Rowitch, D. H., Lu, Q. R., Kessaris, N. & Richardson, W. D. An. 'oligarchy' rules neural development. Trends Neurosci. 25, 417–422 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Muller, T. et al. The bHLH factor Olig3 coordinates the specification of dorsal neurons in the spinal cord. Genes Dev. 19, 733–743 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Ligon, K. L. et al. Development of NG2 neural progenitor cells requires Olig gene function. Proc. Natl Acad. Sci. USA 103, 7853–7858 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Miyoshi, G., Butt, S. J., Takebayashi, H. & Fishell, G. Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J. Neurosci. 27, 7786–7798 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Plenge, R. M. et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nature Genet. 39, 1477–1482 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Thomson, W. et al. Rheumatoid arthritis association at 6q23. Nature Genet. 39, 1431–1433 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Buser, J. R. et al. Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann. Neurol. 71, 93–109 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Hack, M. A. et al. Neuronal fate determinants of adult olfactory bulb neurogenesis. Nature Neurosci. 8, 865–872 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge helpful conversations with W. Richardson (University College London, UK), R. Miller (Case Western Reserve University, USA) and Y. Sun (Dana–Farber Cancer Institute, USA). Work from the authors' laboratories that is cited here was supported by grants from the National Institutes of Health (NS047572 and NS057727 to C.D.S. and NS040511 to D.H.R.) and from the Pediatric Low-Grade Astrocytoma Foundation (grant awarded to C.D.S.). D.H.R. is supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Charles D. Stiles or David H. Rowitch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

NCBI Gene expression omnibus database

Glossary

Cre-lox fate-mapping

This recombination procedure installs a stable marker protein (usually colorimetric, such as LacZ) into a genetically defined cell type and all of its daughter cells.

Tumour-initiating cells

In tumours with a heterogeneous cell population (such as glioblastoma), these undifferentiated stem-like cells are thought to be responsible for propagating the tumours in serial animal transplantation protocols.

Severe combined immunodeficiency

(SCID). SCID mice are used as a host animal for transplantation experiments with human tumours.

Transit-amplifying cells

Also known as type C cells, these are rapidly dividing neural progenitor cells in the subventricular zone of postnatal brain. They are also the immediate progeny of the more slowly replicating multipotent adult neural stem cells.

Single nucleotide polymorphisms

(SNPs). SNPs are DNA sequence variations that differ among individual members of a biological species or between paired chromosomes in a single individual.

Expression profiling

This procedure identifies the gene types that are expressed in a particular cell type by processing mRNA into cDNA and then annealing the cDNA to gene sequences arrayed onto a solid surface.

SUMOylation

This post-translational modification event involves the covalent ligation of small ubiquitin-like modifier (SUMO) proteins to regulate various cellular processes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meijer, D., Kane, M., Mehta, S. et al. Separated at birth? The functional and molecular divergence of OLIG1 and OLIG2. Nat Rev Neurosci 13, 819–831 (2012). https://doi.org/10.1038/nrn3386

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3386

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing