Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of neuronal GABAB receptor functions by subunit composition

Key Points

  • GABAB receptors (GABABRs) are the G protein-coupled receptors for the inhibitory neurotransmitter GABA. Activation of these receptors is involved in pre- and postsynaptic inhibition, regulation of Ca2+ and K+ channels and rhythmic network activity.

  • GABABRs are composed of principal GABAB1a, GABAB1b and GABAB2 subunits, which form the core of the receptor, and auxiliary KCTD8, KCTD12, KCTD12b and KCTD16 subunits, which differentially modulate receptor properties. Principal subunits form functional GABAB(1a,2) and GABAB(1b,2) heterodimers that form higher-order oligomers and bind tetramers of KCTD proteins.

  • The principal subunits regulate the surface expression and the axonal versus dendritic distribution of GABABRs, whereas the auxiliary subunits determine agonist potency and the kinetics of the receptor response.

  • Phosphorylation of the principal subunits is a prime mechanism regulating GABABR endocytosis, recycling and degradation.

  • GABABRs engage in intracellular signalling crosstalk with metabotropic and NMDA-type glutamate receptors, allowing integration of inhibitory and excitatory signals at a cellular level.

  • GABABRs are implicated in a variety of neurological and psychiatric conditions. Drugs that target receptor subtypes, defined by the KCTD proteins present, may allow more-specific therapeutic interference of GABABR-mediated signalling.

Abstract

GABAB receptors (GABABRs) are G protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the CNS. In the past 5 years, notable advances have been made in our understanding of the molecular composition of these receptors. GABABRs are now known to comprise principal and auxiliary subunits that influence receptor properties in distinct ways. The principal subunits regulate the surface expression and the axonal versus dendritic distribution of these receptors, whereas the auxiliary subunits determine agonist potency and the kinetics of the receptor response. This Review summarizes current knowledge on how the subunit composition of GABABRs affects the distribution of these receptors, neuronal processes and higher brain functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GABAB receptor subunit composition.
Figure 2: GABAB receptor downstream effectors and their physiological roles.
Figure 3: Neuronal functions regulated by GABAB1 isoforms.
Figure 4: Phosphorylation of principal GABAB receptor subunits at serine residues regulates surface availability and effector coupling.
Figure 5: Intracellular signalling crosstalk between GABAB and glutamate receptors.

Similar content being viewed by others

References

  1. Bettler, B., Kaupmann, K., Mosbacher, J. & Gassmann, M. Molecular structure and physiological functions of GABAB receptors. Physiol. Rev. 84, 835–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Bowery, N. G. et al. International Union of Pharmacology. XXXIII. Mammalian γ-aminobutyric acidB receptors: structure and function. Pharmacol. Rev. 54, 247–264 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Chalifoux, J. R. & Carter, A. G. GABAB receptor modulation of synaptic function. Curr. Opin. Neurobiol. 21, 339–344 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Couve, A., Moss, S. J. & Pangalos, M. N. GABAB receptors: a new paradigm in G protein signaling. Mol. Cell. Neurosci. 16, 296–312 (2000).

    CAS  PubMed  Google Scholar 

  5. Kobayashi, M., Takei, H., Yamamoto, K., Hatanaka, H. & Koshikawa, N. Kinetics of GABAB autoreceptor-mediated suppression of GABA release in rat insular cortex. J. Neurophysiol. 107, 1431–1442 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Kohl, M. M. & Paulsen, O. The roles of GABAB receptors in cortical network activity. Adv. Pharmacol. 58, 205–229 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Scanziani, M. GABA spillover activates postsynaptic GABAB receptors to control rhythmic hippocampal activity. Neuron 25, 673–681 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Kulik, A. et al. Compartment-dependent colocalization of Kir3.2-containing K+ channels and GABAB receptors in hippocampal pyramidal cells. J. Neurosci. 26, 4289–4297 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Olah, S. et al. Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461, 1278–1281 (2009). This study shows that individual neurogliaform cells activate GABARs in the vast majority of nearby neurons by releasing high amounts of GABA in a paracrine manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Price, C. J., Scott, R., Rusakov, D. A. & Capogna, M. GABAB receptor modulation of feedforward inhibition through hippocampal neurogliaform cells. J. Neurosci. 28, 6974–6982 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Richter, M. A. et al. Evidence for cortical inhibitory and excitatory dysfunction in obsessive compulsive disorder. Neuropsychopharmacology 37, 1144–1151 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Crunelli, V., Emri, Z. & Leresche, N. Unravelling the brain targets of γ-hydroxybutyric acid. Curr. Opin. Pharmacol. 6, 44–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Cruz, H. G. et al. Bi-directional effects of GABAB receptor agonists on the mesolimbic dopamine system. Nature Neurosci. 7, 153–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Wetherington, J. P. & Lambert, N. A. GABAB receptor activation desensitizes postsynaptic GABAB and A1 adenosine responses in rat hippocampal neurones. J. Physiol. 544, 459–467 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chieng, B. & Christie, M. J. Hyperpolarization by GABAB receptor agonists in mid-brain periaqueductal gray neurones in vitro. Br. J. Pharmacol. 116, 1583–1588 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartoi, T. et al. GABAB receptor constituents revealed by tandem affinity purification from transgenic mice. J. Biol. Chem. 285, 20625–20633 (2010). This study identifies KCTD12 as a constituent of GABA B R complexes that are purified from mouse brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Metz, M., Gassmann, M., Fakler, B., Schaeren-Wiemers, N. & Bettler, B. Distribution of the auxiliary GABAB receptor subunits KCTD8, 12, 12b, and 16 in the mouse brain. J. Comp. Neurol. 519, 1435–1454 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Schwenk, J. et al. Native GABAB receptors are heteromultimers with a family of auxiliary subunits. Nature 465, 231–235 (2010). A study demonstating that KCTDs are auxiliary subunits of GABA B Rs that define moleculary and functionally distinct GABA B R subtypes in the brain.

    Article  CAS  PubMed  Google Scholar 

  19. Marshall, F. H., Jones, K. A., Kaupmann, K. & Bettler, B. GABAB receptors — the first 7TM heterodimers. Trends Pharmacol. Sci. 20, 396–399 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Sickmann, T. & Alzheimer, C. Short-term desensitization of G-protein-activated, inwardly rectifying K+ (GIRK) currents in pyramidal neurons of rat neocortex. J. Neurophysiol. 90, 2494–2503 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Sodickson, D. L. & Bean, B. P. GABAB receptor-activated inwardly rectifying potassium current in dissociated hippocampal CA3 neurons. J. Neurosci. 16, 6374–6385 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaupmann, K. et al. GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683–687 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Couve, A. et al. Cyclic AMP-dependent protein kinase phosphorylation facilitates GABAB receptor-effector coupling. Nature Neurosci. 5, 415–424 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Labouebe, G. et al. RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area. Nature Neurosci. 10, 1559–1568 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Mutneja, M., Berton, F., Suen, K. F., Luscher, C. & Slesinger, P. A. Endogenous RGS proteins enhance acute desensitization of GABAB receptor-activated GIRK currents in HEK-293T cells. Pflugers Arch. 450, 61–73 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Jackson, A. C. & Nicoll, R. A. The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron 70, 178–199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Archbold, J. K., Flanagan, J. U., Watkins, H. A., Gingell, J. J. & Hay, D. L. Structural insights into RAMP modification of secretin family G protein-coupled receptors: implications for drug development. Trends Pharmacol. Sci. 32, 591–600 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Dittman, J. S. & Kaplan, J. M. Behavioral impact of neurotransmitter-activated G-protein-coupled receptors: muscarinic and GABAB receptors regulate Caenorhabditis elegans locomotion. J. Neurosci. 28, 7104–7112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mezler, M., Muller, T. & Raming, K. Cloning and functional expression of GABAB receptors from Drosophila. Eur. J. Neurosci. 13, 477–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Schultheis, C., Brauner, M., Liewald, J. F. & Gottschalk, A. Optogenetic analysis of GABAB receptor signaling in Caenorhabditis elegans motor neurons. J. Neurophysiol. 106, 817–827 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vashlishan, A. B. et al. An RNAi screen identifies genes that regulate GABA synapses. Neuron 58, 346–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Wilson, R. I. & Laurent, G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J. Neurosci. 25, 9069–9079 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rondard, P., Goudet, C., Kniazeff, J., Pin, J. P. & Prezeau, L. The complexity of their activation mechanism opens new possibilities for the modulation of mGlu and GABAB class C G protein-coupled receptors. Neuropharmacology 60, 82–92 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Muller, C. S. et al. Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc. Natl Acad. Sci. USA 107, 14950–14957 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Laviv, T. et al. Compartmentalization of the GABAB receptor signaling complex is required for presynaptic inhibition at hippocampal synapses. J. Neurosci. 31, 12523–12532 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boyer, S. B. et al. Direct interaction of GABAB receptors with M2 muscarinic receptors enhances muscarinic signaling. J. Neurosci. 29, 15796–15809 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chang, W. et al. Complex formation with the Type B γ-aminobutyric acid receptor affects the expression and signal transduction of the extracellular calcium-sensing receptor. Studies with HEK-293 cells and neurons. J. Biol. Chem. 282, 25030–25040 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Krupnick, J. G. & Benovic, J. L. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol. 38, 289–319 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Raveh, A., Cooper, A., Guy-David, L. & Reuveny, E. Nonenzymatic rapid control of GIRK channel function by a G protein-coupled receptor kinase. Cell 143, 750–760 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Wells, C. A., Betke, K. M., Lindsley, C. W. & Hamm, H. E. Label-free detection of G protein-SNARE interactions and screening for small molecule modulators. ACS Chem. Neurosci. 3, 69–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Yoon, E. J., Gerachshenko, T., Spiegelberg, B. D., Alford, S. & Hamm, H. E. Gβγ interferes with Ca2+-dependent binding of synaptotagmin to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex. Mol. Pharmacol. 72, 1210–1219 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Gekel, I. & Neher, E. Application of an Epac activator enhances neurotransmitter release at excitatory central synapses. J. Neurosci. 28, 7991–8002 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rost, B. R. et al. Activation of metabotropic GABA receptors increases the energy barrier for vesicle fusion. J. Cell. Sci. 124, 3066–3073 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Sakaba, T. & Neher, E. Direct modulation of synaptic vesicle priming by GABAB receptor activation at a glutamatergic synapse. Nature 424, 775–778 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Leung, L. S. & Peloquin, P. GABAB receptors inhibit backpropagating dendritic spikes in hippocampal CA1 pyramidal cells in vivo. Hippocampus 16, 388–407 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Sondek, J. & Siderovski, D. P. Gγ-like (GGL) domains: new frontiers in G-protein signaling and β-propeller scaffolding. Biochem. Pharmacol. 61, 1329–1337 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Xie, K. et al. Gβ5 recruits R7 RGS proteins to GIRK channels to regulate the timing of neuronal inhibitory signaling. Nature Neurosci. 13, 661–663 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Jeong, S. W. & Ikeda, S. R. Differential regulation of G protein-gated inwardly rectifying K+ channel kinetics by distinct domains of RGS8. J. Physiol. 535, 335–347 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deng, P. Y. et al. GABAB receptor activation inhibits neuronal excitability and spatial learning in the entorhinal cortex by activating TREK-2 K+ channels. Neuron 63, 230–243 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chalifoux, J. R. & Carter, A. G. GABAB receptor modulation of voltage-sensitive calcium channels in spines and dendrites. J. Neurosci. 31, 4221–4232 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Perez-Garci, E., Gassmann, M., Bettler, B. & Larkum, M. E. The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron 50, 603–616 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Davies, C. H., Starkey, S. J., Pozza, M. F. & Collingridge, G. L. GABA autoreceptors regulate the induction of LTP. Nature 349, 609–611 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Shaban, H. et al. Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition. Nature Neurosci. 9, 1028–1035 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Vigot, R. et al. Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 50, 589–601 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chalifoux, J. R. & Carter, A. G. GABAB receptors modulate NMDA receptor calcium signals in dendritic spines. Neuron 66, 101–113 (2010). Using two-photon glutamate uncaging, it was shown that GABA B Rs selectively inhibit calcium flow through NMDARs via an intracellular signalling cascade that depends on PKA activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Isaacson, J. S. & Scanziani, M. How inhibition shapes cortical activity. Neuron 72, 231–243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mann, E. O., Kohl, M. M. & Paulsen, O. Distinct roles of GABAA and GABAB receptors in balancing and terminating persistent cortical activity. J. Neurosci. 29, 7513–7518 (2009). A study showing that activation of GABA B Rs contributes to the termination of up states during cortical network oscillations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Beenhakker, M. P. & Huguenard, J. R. Astrocytes as gatekeepers of GABAB receptor function. J. Neurosci. 30, 15262–15276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gassmann, M. et al. Redistribution of GABAB1 protein and atypical GABAB responses in GABAB2-deficient mice. J. Neurosci. 24, 6086–6097 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schuler, V. et al. Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABAB responses in mice lacking GABAB1 . Neuron 31, 47–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Prosser, H. M. et al. Epileptogenesis and enhanced prepulse inhibition in GABAB1-deficient mice. Mol. Cell. Neurosci. 17, 1059–1070 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Quéva, C. et al. Effects of GABA agonists on body temperature regulation in GABA B(1)−/− mice. Br. J. Pharmacol. 140, 315–322 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vienne, J., Bettler, B., Franken, P. & Tafti, M. Differential effects of GABAB receptor subtypes, γ-hydroxybutyric acid, and baclofen on EEG activity and sleep regulation. J. Neurosci. 30, 14194–14204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carter, L. P., Koek, W. & France, C. P. Behavioral analyses of GHB: receptor mechanisms. Pharmacol. Ther. 121, 100–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Kaupmann, K. et al. Specific γ-hydroxybutyrate-binding sites but loss of pharmacological effects of γ-hydroxybutyrate in GABAB1-deficient mice. Eur. J. Neurosci. 18, 2722–2730 (2003).

    Article  PubMed  Google Scholar 

  66. Malaspina, P., Picklo, M. J., Jakobs, C., Snead, O. C. & Gibson, K. M. Comparative genomics of aldehyde dehydrogenase 5a1 (succinate semialdehyde dehydrogenase) and accumulation of γ-hydroxybutyrate associated with its deficiency. Hum. Genomics 3, 106–120 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bischoff, S. et al. Spatial distribution of GABABR1 receptor mRNA and binding sites in the rat brain. J. Comp. Neurol. 412, 1–16 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Malitschek, B. et al. Developmental changes in agonist affinity at GABAB1 receptor variants in rat brain. Mol. Cell. Neurosci. 12, 56–64 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Steiger, J. L. Bandyopadhyay, S., Farb, D. H. & Russek, S. J. cAMP response element-binding protein, activating transcription factor-4, and upstream stimulatory factor differentially control hippocampal GABABR1a and GABABR1b subunit gene expression through alternative promoters. J. Neurosci. 24, 6115–6126 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guetg, N. et al. The GABAB1a isoform mediates heterosynaptic depression at hippocampal mossy fiber synapses. J. Neurosci. 29, 1414–1423 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ulrich, D., Besseyrias, V. & Bettler, B. Functional mapping of GABAB-receptor subtypes in the thalamus. J. Neurophys. 98, 3791–3795 (2007).

    Article  CAS  Google Scholar 

  72. Biermann, B. et al. The Sushi domains of GABAB receptors function as axonal targeting signals. J. Neurosci. 30, 1385–1394 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roos, J. & Kelly, R. B. Preassembly and transport of nerve terminals: a new concept of axonal transport. Nature Neurosci. 3, 415–417 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Tiao, J. Y. et al. The sushi domains of secreted GABAB1 isoforms selectively impair GABAB heteroreceptor function. J. Biol. Chem. 283, 31005–31011 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Blein, S. et al. Structural analysis of the complement control protein (CCP) modules of GABAB receptor 1a: only one of the two CCP modules is compactly folded. J. Biol. Chem. 279, 48292–48306 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Arora, D. et al. Acute cocaine exposure weakens GABAB receptor-dependent G-protein-gated inwardly rectifying K+ signaling in dopamine neurons of the ventral tegmental area. J. Neurosci. 31, 12251–12257 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chandler, K. E. et al. Plasticity of GABAB receptor-mediated heterosynaptic interactions at mossy fibers after status epilepticus. J. Neurosci. 23, 11382–11391 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vogt, K. E. & Nicoll, R. A. Glutamate and γ-aminobutyric acid mediate a heterosynaptic depression at mossy fiber synapses in the hippocampus. Proc. Natl Acad. Sci. USA 96, 1118–1122 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, X. et al. Association between the γ-aminobutyric acid type B receptor 1 and 2 gene polymorphisms and mesial temporal lobe epilepsy in a Han Chinese population. Epilepsy Res. 81, 198–203 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Boronat, A., Sabater, L., Saiz, A., Dalmau, J. & Graus, F. GABAB receptor antibodies in limbic encephalitis and anti-GAD-associated neurologic disorders. Neurology 76, 795–800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lancaster, E. et al. Antibodies to the GABAB receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol. 9, 67–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Maren, S. & Quirk, G. J. Neuronal signalling of fear memory. Nature Rev. Neurosci. 5, 844–852 (2004).

    Article  CAS  Google Scholar 

  83. Pan, B. X. et al. Selective gating of glutamatergic inputs to excitatory neurons of amygdala by presynaptic GABAB receptor. Neuron 61, 917–929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Spruston, N. Pyramidal neurons: dendritic structure and synaptic integration. Nature Rev. Neurosci. 9, 206–221 (2008).

    Article  CAS  Google Scholar 

  85. Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Murayama, M. et al. Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457, 1137–1141 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Sabatini, B. L. & Svoboda, K. Analysis of calcium channels in single spines using optical fluctuation analysis. Nature 408, 589–593 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Jacobson, L. H., Bettler, B., Kaupmann, K. & Cryan, J. F. GABAB1 receptor subunit isoforms exert a differential influence on baseline but not GABAB receptor agonist-induced changes in mice. J. Pharmacol. Exp. Ther. 319, 1317–1326 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Jacobson, L. H., Bettler, B., Kaupmann, K. & Cryan, J. F. Behavioral evaluation of mice deficient in GABAB1 receptor isoforms in tests of unconditioned anxiety. Psychopharmacology 190, 541–553 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Jacobson, L. H., Kelly, P. H., Bettler, B., Kaupmann, K. & Cryan, J. F. GABAB1 receptor isoforms differentially mediate the acquisition and extinction of aversive taste memories. J. Neurosci. 26, 8800–8803 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jacobson, L. H., Kelly, P. H., Bettler, B., Kaupmann, K. & Cryan, J. F. Specific roles of GABAB1 receptor isoforms in cognition. Behav. Brain. Res. 181, 158–162 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Comps-Agrar, L. et al. The oligomeric state sets GABAB receptor signalling efficacy. EMBO J. 30, 2336–2349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Maurel, D. et al. Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nature Methods 5, 561–567 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Resendes, B. L. et al. Isolation from cochlea of a novel human intronless gene with predominant fetal expression. J. Assoc. Res. Otolaryngol. 5, 185–202 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Guetg, N. et al. NMDA receptor-dependent GABAB receptor internalization via CaMKII phosphorylation of serine 867 in GABAB1 . Proc. Natl Acad. Sci. USA 107, 13924–13929 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maier, P. J., Marin, I., Grampp, T., Sommer, A. & Benke, D. Sustained glutamate receptor activation down-regulates GABAB receptors by shifting the balance from recycling to lysosomal degradation. J. Biol. Chem. 285, 35606–35614 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Terunuma, M. et al. Prolonged activation of NMDA receptors promotes dephosphorylation and alters postendocytic sorting of GABAB receptors. Proc. Natl Acad. Sci. USA 107, 13918–13923 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Padgett, C. L. et al. Methamphetamine-evoked depression of GABAB receptor signaling in GABA neurons of the VTA. Neuron 73, 978–989 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Taylor, R. W. et al. Asymmetric inhibition of Ulk2 causes left-right differences in habenular neuropil formation. J. Neurosci. 31, 9869–9878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hirono, M., Yoshioka, T. & Konishi, S. GABAB receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nature Neurosci. 4, 1207–1216 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Rives, M. L. et al. Crosstalk between GABAB and mGlu1a receptors reveals new insight into GPCR signal integration. EMBO J. 28, 2195–2208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nilsson, M., Eriksson, P. S., Ronnback, L. & Hansson, E. GABA induces Ca2+ transients in astrocytes. Neuroscience 54, 605–614 (1993).

    Article  CAS  PubMed  Google Scholar 

  103. Mizuta, K. et al. Gi-coupled γ-aminobutyric acid-B receptors cross-regulate phospholipase C and calcium in airway smooth muscle. Am. J. Respir. Cell. Mol. Biol. 45, 1232–1238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tu, H. et al. GABAB receptor activation protects neurons from apoptosis via IGF-1 receptor transactivation. J. Neurosci. 30, 749–759 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Karbon, E. W. & Enna, S. J. Characterization of the relationship between γ-aminobutyric acid B agonists and transmitter-coupled cyclic nucleotide-generating systems in rat brain. Mol. Pharmacol. 27, 53–59 (1985).

    CAS  PubMed  Google Scholar 

  106. Robichon, A., Tinette, S., Courtial, C. & Pelletier, F. Simultaneous stimulation of GABA and beta adrenergic receptors stabilizes isotypes of activated adenylyl cyclase heterocomplex. BMC Cell Biol. 5, 25 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Simonds, W. F. G protein regulation of adenylate cyclase. Trends Pharmacol. Sci. 20, 66–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Morrisett, R. A., Mott, D. D., Lewis, D. V., Swartzwelder, H. S. & Wilson, W. A. GABAB-receptor-mediated inhibition of the N-methyl-D-aspartate component of synaptic transmission in the rat hippocampus. J. Neurosci. 11, 203–209 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Otmakhova, N. A. & Lisman, J. E. Contribution of Ih and GABAB to synaptically induced afterhyperpolarizations in CA1: a brake on the NMDA response. J. Neurophysiol. 92, 2027–2039 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Lee, M. T. et al. Genome-wide association study of bipolar I disorder in the Han Chinese population. Mol. Psychiatry 16, 548–556 (2011). This study identifies KCTD12 together with the β2 subunit of VGCCs as susceptibility genes for bipolar 1 disorder, thereby implicating GABA B R-mediated inhibition of VGCCs in the disease pathway.

    Article  CAS  PubMed  Google Scholar 

  111. Sibille, E. et al. A molecular signature of depression in the amygdala. Am. J. Psychiatry 166, 1011–1024 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Surget, A. et al. Corticolimbic transcriptome changes are state-dependent and region-specific in a rodent model of depression and of antidepressant reversal. Neuropsychopharmacology 34, 1363–1380 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Benes, F. M. Amygdalocortical circuitry in schizophrenia: from circuits to molecules. Neuropsychopharmacology 35, 239–257 (2010).

    Article  PubMed  Google Scholar 

  114. Angelicheva, D. et al. Partial epilepsy syndrome in a Gypsy family linked to 5q31.3-q32. Epilepsia 50, 1679–1688 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Kikuta, K. et al. Pfetin as a prognostic biomarker in gastrointestinal stromal tumor: novel monoclonal antibody and external validation study in multiple clinical facilities. Jpn J. Clin. Oncol. 40, 60–72 (2010).

    Article  PubMed  Google Scholar 

  116. Cauchi, S. et al. Analysis of novel risk loci for type 2 diabetes in a general French population: the D.E.S.I.R. study. J. Mol. Med. 86, 341–348 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, Y., Neubauer, F. B., Luscher, H. R. & Thurley, K. GABAB receptor-dependent modulation of network activity in the rat prefrontal cortex in vitro. Eur. J. Neurosci. 31, 1582–1594 (2010).

    PubMed  Google Scholar 

  118. Wu, Y. et al. GABAB receptor-mediated tonic inhibition of noradrenergic A7 neurons in the rat. J. Neurophysiol. 105, 2715–2728 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Duthey, B. et al. A single subunit (GB2) is required for G-protein activation by the heterodimeric GABAB receptor. J. Biol. Chem. 277, 3236–3241 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Dupuis, D. S., Relkovic, D., Lhuillier, L., Mosbacher, J. & Kaupmann, K. Point mutations in the transmembrane region of GABAB2 facilitate activation by the positive modulator N,N'-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) in the absence of the GABAB1 subunit. Mol. Pharmacol. 70, 2027–2036 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Koch, U. & Magnusson, A. K. Unconventional GABA release: mechanisms and function. Curr. Opin. Neurobiol. 19, 305–310 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Fukui, M. et al. Modulation of cellular proliferation and differentiation through GABAB receptors expressed by undifferentiated neural progenitor cells isolated from fetal mouse brain. J. Cell. Physiol. 216, 507–519 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Schwirtlich, M. et al. GABAA and GABAB receptors of distinct properties affect oppositely the proliferation of mouse embryonic stem cells through synergistic elevation of intracellular Ca2+. FASEB J. 24, 1218–1228 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Mombereau, C. et al. Genetic and pharmacological evidence of a role for GABAB receptors in the modulation of anxiety- and antidepressant-like behavior. Neuropsychopharmacology 29, 1050–1062 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Mombereau, C. et al. Altered anxiety and depression-related behaviour in mice lacking GABAB2 receptor subunits. Neuroreport 16, 307–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Mombereau, C., Kaupmann, K., van der Putten, H. & Cryan, J. F. Altered response to benzodiazepine anxiolytics in mice lacking GABAB1 receptors. Eur. J. Pharmacol. 497, 119–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Magnaghi, V. et al. Altered peripheral myelination in mice lacking GABAB receptors. Mol. Cell. Neurosci. 37, 599–609 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Matsuki, T. et al. Selective loss of GABAB receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. Proc. Natl Acad. Sci. USA 106, 4459–4464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gangadharan, V. et al. Conditional gene deletion reveals functional redundancy of GABAB receptors in peripheral nociceptors in vivo. Mol. Pain 5, 68 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H.-R. Brenner and K. Kaupmann for critical comments on this manuscript. We gratefully acknowledge the support of the Swiss Science Foundation (31003A-133124 and CRSII3_136210), the National Center of Competences in Research (NCCR) 'Synapsy, Synaptic Bases of Mental Diseases' and the European Community's seventh Framework Program (FP7/2007-2013) under Grant Agreement 201714.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Gassmann or Bernhard Bettler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

G protein-coupled receptors

(GPCRs). Seven transmembrane domain proteins that respond to various extracellular ligands and sensory stimuli by activation of heterotrimeric G proteins.

Venus fly-trap domain

(VFTD). Large extracellular ligand-binding domain of family C G protein-coupled receptors that is formed of two lobes and a flexible hinge. Ligand binding favours the closed state and leads to receptor activation.

Desensitization

A decrease in the cellular response subsequent to continuous or repetitive receptor stimulation by agonist.

Regulator of G protein signalling proteins

(RGS proteins). Diverse family of cytosolic proteins binding to the activated form of Gα and increasing its GTPase activity.

Allosteric interaction

An interaction that regulates the function of a protein through induction of a conformational change.

Silent synapses

Glutamatergic synapses that contain postsynaptic NMDA-type receptors but no AMPA-type receptors (AMPARs). Silent synapses can incorporate AMPARs and become functional during synaptic plasticity processes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gassmann, M., Bettler, B. Regulation of neuronal GABAB receptor functions by subunit composition. Nat Rev Neurosci 13, 380–394 (2012). https://doi.org/10.1038/nrn3249

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3249

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing