Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Impaired mitochondrial function in psychiatric disorders

Key Points

  • Major psychiatric illnesses such as mood disorders and schizophrenia are common, chronic, recurrent mental illnesses that affect the lives and functioning of millions of individuals worldwide.

  • It is now clear that these illnesses are associated with impairments of synaptic plasticity and cellular resilience.

  • Most patients with these disorders do not have classic mitochondrial disorders, but there is a growing body of evidence to suggest that impaired mitochondrial function might have a major role in neural plasticity and cellular resilience, reducing synaptic functioning and producing long-term atrophic changes that underlie the deteriorating long-term course of these illnesses.

  • Evidence from animal models, in vitro studies, brain-imaging and post-mortem studies and genetics supports a role for mitochondria in mood disorders and schizophrenia.

  • Mood and psychotic symptoms are associated with both the rare disorders caused by mutations that directly affect mitochondrial function and the more common neurological disorders in which there is strong evidence for mitochondrial involvement.

  • Enhancing mitochondrial function may represent an important avenue for the development of novel therapeutics and also presents an opportunity for more efficient drug development.

Abstract

Major psychiatric illnesses such as mood disorders and schizophrenia are chronic, recurrent mental illnesses that affect the lives of millions of individuals. Although these disorders have traditionally been viewed as 'neurochemical diseases', it is now clear that they are associated with impairments of synaptic plasticity and cellular resilience. Although most patients with these disorders do not have classic mitochondrial disorders, there is a growing body of evidence to suggest that impaired mitochondrial function may affect key cellular processes, thereby altering synaptic functioning and contributing to the atrophic changes that underlie the deteriorating long-term course of these illnesses. Enhancing mitochondrial function could represent an important avenue for the development of novel therapeutics and also presents an opportunity for a potentially more efficient drug-development process.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitochondrial function is at the nexus of several pathways that regulate synaptic plasticity and cellular resilience.
Figure 2: Calcium regulation by mitochondria.
Figure 3: mtDNA neuroplasticity hypothesis.
Figure 4: Investigative, pharmaceutical and nutritional compounds that target various aspects of mitochondrial function.

Similar content being viewed by others

References

  1. Murray, C. J. & Lopez, A. D. Evidence-based health policy—lessons from the Global Burden of Disease Study. Science 274, 740–743 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Schloesser, R. J., Manji, H. K. & Martinowich, K. Suppression of adult neurogenesis leads to an increased hypothalamo-pituitary-adrenal axis response. Neuroreport 20, 553–557 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mattson, M. P., Gleichmann, M. & Cheng, A. Mitochondria in neuroplasticity and neurological disorders. Neuron 60, 748–766 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gleichmann, M. & Mattson, M. P. Neuronal calcium homeostasis and dysregulation. Antioxid. Redox. Signal. 14, 1261–1273 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. MacAskill, A. F., Atkin, T. A. & Kittler, J. T. Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses. Eur. J. Neurosci. 32, 231–240 (2010).

    Article  PubMed  Google Scholar 

  6. Jonas, E. BCL-xL regulates synaptic plasticity. Mol. Interv. 6, 208–222 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Jonas, E. A. Molecular participants in mitochondrial cell death channel formation during neuronal ischemia. Exp. Neurol. 218, 203–212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, G., Henter, I. D. & Manji, H. K. Translational research in bipolar disorder: emerging insights from genetically based models. Mol. Psychiatry 15, 883–895 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kato, T. Role of mitochondrial DNA in calcium signaling abnormality in bipolar disorder. Cell Calcium 44, 92–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Quiroz, J. A., Gray, N. A., Kato, T. & Manji, H. K. Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 33, 2551–2565 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Patergnani, S. et al. Calcium signaling around Mitochondria Associated Membranes (MAMs). Cell Commun. Signal. 9, 19 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Massaad, C. A. & Klann, E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid. Redox. Signal. 14, 2013–2054 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Youle, R. J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nature Rev. Mol. Cell Biol. 9, 47–59 (2008).

    Article  CAS  Google Scholar 

  14. Shoshan-Barmatz, V. & Ben-Hail, D. VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion 12, 24–34 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Ma, D. K. et al. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nature Neurosci. 13, 1338–1344 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Deng, W., Aimone, J. B. & Gage, F. H. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nature Rev. Neurosci. 11, 339–350 (2010).

    Article  CAS  Google Scholar 

  17. Hunsberger, J., Austin, D. R., Henter, I. D. & Chen, G. The neurotrophic and neuroprotective effects of psychotropic agents. Dialogues Clin. Neurosci. 11, 333–348 (2009).

    PubMed  PubMed Central  Google Scholar 

  18. Shaltiel, G., Chen, G. & Manji, H. K. Neurotrophic signaling cascades in the pathophysiology and treatment of bipolar disorder. Curr. Opin. Pharmacol. 7, 22–26 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Culmsee, C. & Mattson, M. P. p53 in neuronal apoptosis. Biochem. Biophys. Res. Commun. 331, 761–777 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Mattson, M. P., Keller, J. N. & Begley, J. G. Evidence for synaptic apoptosis. Exp. Neurol. 153, 35–48 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Glazner, G. W., Chan, S. L., Lu, C. & Mattson, M. P. Caspase-mediated degradation of AMPA receptor subunits: a mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J. Neurosci. 20, 3641–3649 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Palmer, C. S., Osellame, L. D., Stojanovski, D. & Ryan, M. T. The regulation of mitochondrial morphology: Intricate mechanisms and dynamic machinery. Cell Signal. 23, 1534–1545 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Hu, D., Serrano, F., Oury, T. D. & Klann, E. Aging-dependent alterations in synaptic plasticity and memory in mice that overexpress extracellular superoxide dismutase. J. Neurosci. 26, 3933–3941 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thiels, E. et al. Impairment of long-term potentiation and associative memory in mice that overexpress extracellular superoxide dismutase. J. Neurosci. 20, 7631–7639 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, Z. et al. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141, 859–871 (2010). This paper provides evidence of the underlying molecular mechanism linking apoptosis and synaptic depression through the mitochondrial pathway of caspase activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiao, S. & Li, Z. Nonapoptotic function of BAD and BAX in long-term depression of synaptic transmission. Neuron 70, 758–772 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Creson, T. K., Yuan, P., Manji, H. K. & Chen, G. Evidence for involvement of ERK, PI3K, and RSK in induction of Bcl-2 by valproate. J. Mol. Neurosci. 37, 123–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Murphy, A. N., Bredesen, D. E., Cortopassi, G., Wang, E. & Fiskum, G. Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria. Proc. Natl Acad. Sci. USA 93, 9893–9898 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, G. et al. The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J. Neurochem. 72, 879–882 (1999). This paper presents the novel findings of mood-stabilizing-agent-induced increases in CNS BCL-2 levels, which may have implications for the long-term treatment of various neurodegenerative disorders.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou, R. et al. The anti-apoptotic, glucocorticoid receptor cochaperone protein BAG-1 is a long-term target for the actions of mood stabilizers. J. Neurosci. 25, 4493–4502 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goodwin, F. K. & Jamison, K. R. Manic-Depressive Illness: Bipolar Disorders and Recurrent Depression 2nd edn (Oxford Univ. Press, 2007).

    Google Scholar 

  32. Maeng, S. et al. BAG1 plays a critical role in regulating recovery from both manic-like and depression-like behavioral impairments. Proc. Natl Acad. Sci. USA 105, 8766–8771 (2008). The authors present data to suggest that the level of neuronal expression of BAG1 , a common biochemical target for mood stabilizers, has a clinically relevant role in regulating recovery from stressors that can lead to the behavioural impairments associated with mood disorders. The authors suggest that therapies designed to enhance BAG1 function may lead to treatments for both the manic and depressive phases of bipolar disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Demaurex, N. & Distelhorst, C. Cell biology. Apoptosis—the calcium connection. Science 300, 65–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Malkesman, O. et al. Targeting the BH3-interacting domain death agonist to develop mechanistically unique antidepressants. Mol. Psychiatry 5 Jul 2011 (doi:10.1038/mp.2011.77).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hunsberger, J. G. et al. Bax inhibitor 1, a modulator of calcium homeostasis, confers affective resilience. Brain Res. 1403, 19–27 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McMahon, F. J., Stine, O. C., Meyers, D. A., Simpson, S. G. & DePaulo, J. R. Patterns of maternal transmission in bipolar affective disorder. Am. J. Hum. Genet. 56, 1277–1286 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kirk, R. et al. Mitochondrial genetic analyses suggest selection against maternal lineages in bipolar affective disorder. Am. J. Hum. Genet. 65, 508–518 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McMahon, F. J. et al. Mitochondrial DNA sequence diversity in bipolar affective disorder. Am. J. Psychiatry 157, 1058–1064 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Kato, T. et al. Parent-of-origin effect in transmission of bipolar disorder. Am. J. Med. Genet. 67, 546–550 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Munakata, K. et al. Mitochondrial DNA 3644T→C mutation associated with bipolar disorder. Genomics 84, 1041–1050 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Kong, Q. P. et al. Updating the East Asian mtDNA phylogeny: a prerequisite for the identification of pathogenic mutations. Hum. Mol. Genet. 15, 2076–2086 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Rollins, B. et al. Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS ONE 4, e4913 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kato, T., Stine, O. C., McMahon, F. J. & Crowe, R. R. Increased levels of a mitochondrial DNA deletion in the brain of patients with bipolar disorder. Biol. Psychiatry 42, 871–875 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Shao, L. et al. Mitochondrial involvement in psychiatric disorders. Ann. Med. 40, 281–295 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Sabunciyan, S. et al. Quantification of total mitochondrial DNA and mitochondrial common deletion in the frontal cortex of patients with schizophrenia and bipolar disorder. J. Neural Transm. 114, 665–674 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Kakiuchi, C. et al. Quantitative analysis of mitochondrial DNA deletions in the brains of patients with bipolar disorder and schizophrenia. Int. J. Neuropsychopharmacol. 8, 515–522 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Fuke, S., Kametani, M. & Kato, T. Quantitative analysis of the 4977-bp common deletion of mitochondrial DNA in postmortem frontal cortex from patients with bipolar disorder and schizophrenia. Neurosci. Lett. 439, 173–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Siciliano, G. et al. Autosomal dominant external ophthalmoplegia and bipolar affective disorder associated with a mutation in the ANT1 gene. Neuromuscul. Disord. 13, 162–165 (2003). This paper presents very compelling evidence for the role of deletions of mtDNA in BPD.

    Article  CAS  PubMed  Google Scholar 

  49. Suomalainen, A. et al. Multiple deletions of mitochondrial DNA in several tissues of a patient with severe retarded depression and familial progressive external ophthalmoplegia. J. Clin. Invest. 90, 61–66 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boles, R. G. et al. A high predisposition to depression and anxiety in mothers and other matrilineal relatives of children with presumed maternally inherited mitochondrial disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 137B, 20–24 (2005).

    Article  PubMed  Google Scholar 

  51. Bergemann, E. R. & Boles, R. G. Maternal inheritance in recurrent early-onset depression. Psychiatr. Genet. 20, 31–34 (2011).

    Article  Google Scholar 

  52. Kim, M. Y., Lee, J. W., Kang, H. C., Kim, E. & Lee, D. C. Leukocyte mitochondrial DNA (mtDNA) content is associated with depression in old women. Arch. Gerontol. Geriatr. 53, e218–e221 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Kato, T., Kunugi, H., Nanko, S. & Kato, N. Mitochondrial DNA polymorphisms in bipolar disorder. J. Affect. Disord. 62, 151–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Washizuka, S. et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder in Japanese and the National Institute of Mental Health pedigrees. Biol. Psychiatry 56, 483–489 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Verge, B. et al. Mitochondrial DNA (mtDNA) and schizophrenia. Eur. Psychiatry 26, 45–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Warsh, J. J., Andreopoulos, S. & Li, P. P. Role of intracellular calcium signaling in the pathophysiology and pharmacotherapy of bipolar disorder: current status. Clin. Neurosci. Res. 4, 201–213 (2004).

    Article  CAS  Google Scholar 

  57. Kato, T. et al. Mechanisms of altered Ca2+ signalling in transformed lymphoblastoid cells from patients with bipolar disorder. Int. J. Neuropsychopharmacol. 6, 379–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Kazuno, A. A. et al. Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics. PLoS Genet. 2, e128 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Naydenov, A. V., MacDonald, M. L., Ongur, D. & Konradi, C. Differences in lymphocyte electron transport gene expression levels between subjects with bipolar disorder and normal controls in response to glucose deprivation stress. Arch. Gen. Psychiatry 64, 555–564 (2007).

    Article  PubMed  Google Scholar 

  60. Cataldo, A. M. et al. Abnormalities in mitochondrial structure in cells from patients with bipolar disorder. Am. J. Pathol. 177, 575–585 (2010). This paper reports the first evidence to suggest that there is structural alteration of mitochondria in patients with bipolar disorder.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gardner, A. et al. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J. Affect. Disord. 76, 55–68 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Machado-Vieira, R. et al. The Bcl-2 gene polymorphism rs956572AA increases inositol 1,4,5-trisphosphate receptor-mediated endoplasmic reticulum calcium release in subjects with bipolar disorder. Biol. Psychiatry 69, 344–352 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Vawter, M. P. et al. Mitochondrial-related gene expression changes are sensitive to agonal-pH state: implications for brain disorders. Mol. Psychiatry 11, 615, 663–679 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Iwamoto, K., Bundo, M. & Kato, T. Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum. Mol. Genet. 14, 241–253 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Sun, X., Wang, J. F., Tseng, M. & Young, L. T. Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J. Psychiatry Neurosci. 31, 189–196 (2006).

    PubMed  PubMed Central  Google Scholar 

  66. MacDonald, M. L., Naydenov, A., Chu, M., Matzilevich, D. & Konradi, C. Decrease in creatine kinase messenger RNA expression in the hippocampus and dorsolateral prefrontal cortex in bipolar disorder. Bipolar Disord. 8, 255–264 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Munakata, K., Iwamoto, K., Bundo, M. & Kato, T. Mitochondrial DNA 3243A>G mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorder and schizophrenia. Biol. Psychiatry 57, 525–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Andreazza, A. C., Shao, L., Wang, J. F. & Young, L. T. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch. Gen. Psychiatry 67, 360–368 (2010). The results described in this post-mortem brain study suggest that impairment of mitochondrial electron-transport-chain complex I might be associated with increased protein oxidation and nitration in the prefrontal cortex of patients with BPD, but not schizophrenia. These data add to the growing evidence that mitochondrial impairment contributes to the pathogenesis of BPD.

    Article  CAS  PubMed  Google Scholar 

  69. Kim, H. W., Rapoport, S. I. & Rao, J. S. Altered expression of apoptotic factors and synaptic markers in postmortem brain from bipolar disorder patients. Neurobiol. Dis. 37, 596–603 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Kato, T. et al. Decreased brain intracellular pH measured by 31P-MRS in bipolar disorder: a confirmation in drug-free patients and correlation with white matter hyperintensity. Eur. Arch. Psychiatry Clin. Neurosci. 248, 301–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Kato, T. & Kato, N. Mitochondrial dysfunction in bipolar disorder. Bipolar Disord. 2, 180–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Jensen, J. E. et al. Triacetyluridine (TAU) decreases depressive symptoms and increases brain pH in bipolar patients. Exp. Clin. Psychopharmacol. 16, 199–206 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Moore, C. M., Christensen, J. D., Lafer, B., Fava, M. & Renshaw, P. F. Lower levels of nucleoside triphosphate in the basal ganglia of depressed subjects: a phosphorous-31 magnetic resonance spectroscopy study. Am. J. Psychiatry 154, 116–118 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Stork, C. & Renshaw, P. F. Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol. Psychiatry 10, 900–919 (2005). This review proposes a hypothesis of mitochondrial dysfunction in BPD that involves impaired oxidative phosphorylation, a resultant shift towards glycolytic energy production, a decrease in total energy production and/or substrate availability, and altered phospholipid metabolism.

    Article  CAS  PubMed  Google Scholar 

  75. Bates, T. E. et al. Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. Neuroreport 7, 1397–1400 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Bora, E., Fornito, A., Yucel, M. & Pantelis, C. Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biol. Psychiatry 67, 1097–1105 (2011).

    Article  Google Scholar 

  77. Chen, G., Huang, L. D., Jiang, Y. M. & Manji, H. K. The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. J. Neurochem. 72, 1327–1330 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Lyoo, I. K. et al. Lithium-induced gray matter volume increase as a neural correlate of treatment response in bipolar disorder: a longitudinal brain imaging study. Neuropsychopharmacology 35, 1743–1750 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rezin, G. T. et al. Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem. Int. 53, 395–400 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Lucca, G. et al. Increased oxidative stress in submitochondrial particles into the brain of rats submitted to the chronic mild stress paradigm. J. Psychiatr. Res. 43, 864–869 (2009).

    Article  PubMed  Google Scholar 

  81. Gong, Y., Chai, Y., Ding, J. H., Sun, X. L. & Hu, G. Chronic mild stress damages mitochondrial ultrastructure and function in mouse brain. Neurosci. Lett. 488, 76–80 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Streck, E. L. et al. Brain creatine kinase activity in an animal model of mania. Life Sci. 82, 424–429 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Valvassori, S. S. et al. Effects of mood stabilizers on mitochondrial respiratory chain activity in brain of rats treated with d-amphetamine. J. Psychiatr. Res. 44, 903–909 (2010).

    Article  PubMed  Google Scholar 

  84. Frey, B. N. et al. Increased oxidative stress in submitochondrial particles after chronic amphetamine exposure. Brain Res. 1097, 224–229 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Freitas, T. P. et al. Evaluation of brain creatine kinase activity in an animal model of mania induced by ouabain. J. Neural Transm. 117, 149–153 (2010).

    Article  PubMed  Google Scholar 

  86. Kasahara, T. et al. Mice with neuron-specific accumulation of mitochondrial DNA mutations show mood disorder-like phenotypes. Mol. Psychiatry 11, 577–593, 523 (2006). These authors report that transgenic mice with neuron-specific accumulation of mtDNA show periodic alteration in wheel-running activity. This is the first animal model of a cyclic-activity phenotype resembling BPD.

    Article  CAS  PubMed  Google Scholar 

  87. Kasahara, T., Kubota, M., Miyauchi, T., Ishiwata, M. & Kato, T. A marked effect of electroconvulsive stimulation on behavioral aberration of mice with neuron-specific mitochondrial DNA defects. PLoS ONE 3, e1877 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kubota, M. et al. Abnormal Ca2+ dynamics in transgenic mice with neuron-specific mitochondrial DNA defects. J. Neurosci. 26, 12314–12324 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kubota, M. et al. Therapeutic implications of down-regulation of cyclophilin D in bipolar disorder. Int. J. Neuropsychopharmacol. 13, 1355–1368 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Kato, T. Molecular neurobiology of bipolar disorder: a disease of 'mood-stabilizing neurons'? Trends Neurosci. 31, 495–503 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Rossignol, D. A. & Frye, R. E. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol. Psychiatry 17, 290–314 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Jurata, L. W. et al. Altered expression of hippocampal dentate granule neuron genes in a mouse model of human 22q11 deletion syndrome. Schizophr. Res. 88, 251–259 (2006).

    Article  PubMed  Google Scholar 

  93. Ben-Shachar, D., Nadri, C., Karry, R. & Agam, G. Mitochondrial complex I subunits are altered in rats with neonatal ventral hippocampal damage but not in rats exposed to oxygen restriction at neonatal age. J. Mol. Neurosci. 38, 143–151 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Jarskog, L. F., Selinger, E. S., Lieberman, J. A. & Gilmore, J. H. Apoptotic proteins in the temporal cortex in schizophrenia: high Bax/Bcl-2 ratio without caspase-3 activation. Am. J. Psychiatry 161, 109–115 (2004).

    Article  PubMed  Google Scholar 

  95. Jarskog, L. F., Gilmore, J. H., Selinger, E. S. & Lieberman, J. A. Cortical Bcl-2 protein expression and apoptotic regulation in schizophrenia. Biol. Psychiatry 48, 641–650 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Lindholm, E. et al. Mitochondrial sequence variants in patients with schizophrenia. Eur. J. Hum. Genet. 5, 406–412 (1997).

    CAS  PubMed  Google Scholar 

  97. Martorell, L. et al. New variants in the mitochondrial genomes of schizophrenic patients. Eur. J. Hum. Genet. 14, 520–528 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Bandelt, H. J. et al. 'Distorted' mitochondrial DNA sequences in schizophrenic patients. Eur. J. Hum. Genet. 15, 400–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Ueno, H. et al. Analysis of mitochondrial DNA variants in Japanese patients with schizophrenia. Mitochondrion 9, 385–393 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Odawara, M. et al. Absence of association between a mitochondrial DNA mutation at nucleotide position 3243 and schizophrenia in Japanese. Hum. Genet. 102, 708–709 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Cavelier, L. et al. Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics. Genomics 29, 217–224 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Muller, D. J., Zai, C. C., Shinkai, T., Strauss, J. & Kennedy, J. L. Association between the DAOA/G72 gene and bipolar disorder and meta-analyses in bipolar disorder and schizophrenia. Bipolar Disord. 13, 198–207 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Kvajo, M., Dhilla, A., Swor, D. E., Karayiorgou, M. & Gogos, J. A. Evidence implicating the candidate schizophrenia/bipolar disorder susceptibility gene G72 in mitochondrial function. Mol. Psychiatry 13, 685–696 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Park, Y. U. et al. Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin. Proc. Natl Acad. Sci. USA 107, 17785–17790 (2010). The authors provide evidence that links DISC1 with regulation of key mitochondrial functions through interactions with mitofilin, a mitochondrial inner-membrane protein. The findings offer a possible underlying molecular mechanism to link DISC1 and mitofilin to mitochondrial function, the subsequent deregulation of which may be implicated in the pathogenesis of schizophrenia and related mood disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ben-Shachar, D. et al. Cerebral glucose utilization and platelet mitochondrial complex I activity in schizophrenia: a FDG-PET study. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 807–813 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Ben-Shachar, D. et al. Increased mitochondrial complex I activity in platelets of schizophrenic patients. Int. J. Neuropsychopharmacol. 2, 245–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Uranova, N. et al. The ultrastructure of lymphocytes in schizophrenia. World J. Biol. Psychiatry 8, 30–37 (2007).

    Article  PubMed  Google Scholar 

  108. Rosenfeld, M., Brenner-Lavie, H., Ari, S. G., Kavushansky, A. & Ben-Shachar, D. Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia. Biol. Psychiatry 69, 980–988 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Kung, L. & Roberts, R. C. Mitochondrial pathology in human schizophrenic striatum: a postmortem ultrastructural study. Synapse 31, 67–75 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Kolomeets, N. S. & Uranova, N. A. Synaptic contacts in schizophrenia: studies using immunocytochemical identification of dopaminergic neurons. Neurosci. Behav. Physiol. 29, 217–221 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Karry, R., Klein, E. & Ben Shachar, D. Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol. Psychiatry 55, 676–684 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Ben-Shachar, D. & Karry, R. Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS ONE 3, e3676 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Burkhardt, C., Kelly, J. P., Lim, Y. H., Filley, C. M. & Parker, W. D. Jr. Neuroleptic medications inhibit complex I of the electron transport chain. Ann. Neurol. 33, 512–517 (1993).

    Article  CAS  PubMed  Google Scholar 

  114. Pettegrew, J. W. et al. Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Arch. Gen. Psychiatry 48, 563–568 (1991).

    Article  CAS  PubMed  Google Scholar 

  115. Fujimoto, T. et al. Study of chronic schizophrenics using 31P magnetic resonance chemical shift imaging. Acta Psychiatr. Scand. 86, 455–462 (1992).

    Article  CAS  PubMed  Google Scholar 

  116. Fukuzako, H. Neurochemical investigation of the schizophrenic brain by in vivo phosphorus magnetic resonance spectroscopy. World J. Biol. Psychiatry 2, 70–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Honea, R., Crow, T. J., Passingham, D. & Mackay, C. E. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am. J. Psychiatry 162, 2233–2245 (2005).

    Article  PubMed  Google Scholar 

  118. Steen, R. G., Mull, C., McClure, R., Hamer, R. M. & Lieberman, J. A. Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br. J. Psychiatry 188, 510–518 (2006).

    Article  PubMed  Google Scholar 

  119. Selemon, L. D. & Rajkowska, G. Cellular pathology in the dorsolateral prefrontal cortex distinguishes schizophrenia from bipolar disorder. Curr. Mol. Med. 3, 427–436 (2003). The findings presented in this post-mortem brain study indicate that the cellular pathology in the dorsolateral prefrontal cortex differs in distinctive ways between patients with schizophrenia and those with BPD. The authors propose that the differences detected in the cellular pathology of these two disorders might account for the greater cognitive-task deficits seen in schizophrenia.

    Article  CAS  PubMed  Google Scholar 

  120. Hulshoff Pol, H. E. & Kahn, R. S. What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophr. Bull. 34, 354–366 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Burchell, V. S. et al. Targeting mitochondrial dysfunction in neurodegenerative disease: Part II. Expert Opin. Ther. Targets. 14, 497–511 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Serviddio, G. et al. Principles and therapeutic relevance for targeting mitochondria in aging and neurodegenerative diseases. Curr. Pharm. Des. 17, 2036–2055 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Camara, A. K., Lesnefsky, E. J. & Stowe, D. F. Potential therapeutic benefits of strategies directed to mitochondria. Antioxid. Redox. Signal. 13, 279–347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Khanzode, S. D., Dakhale, G. N., Khanzode, S. S., Saoji, A. & Palasodkar, R. Oxidative damage and major depression: the potentialantioxidant action of selective serotonin re-uptake inhibitors. Redox Rep. 8, 365–370 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Bakare, A., Shao, L., Cui, J., Young, L. T. & Wang, J. F. Moodstabilizing drugs lamotrigine and olanzapine increase expression and activity of glutathione S-transferase in primary cultured rat cerebral cortical cells. Neurosci. Lett. 455, 70–73 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Cui, J., Shao, L., Young, L. T. & Wang, J. F. Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate. Neuroscience 144, 1447–1453 (2007)

    Article  CAS  PubMed  Google Scholar 

  127. Shao, L., Cui, J., Young, L. T. & Wang, J. F. The effect of mood stabilizer lithium on expression and activity of glutathione s-transferase isoenzymes. Neuroscience 151, 518–524 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Berk, M. et al. N-acetyl cysteine for depressive symptoms in bipolar disorder—a double-blind randomized placebo-controlled trial. Biol. Psychiatry 64, 468–475 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Pieper, A. A. et al. Discovery of a proneurogenic, neuroprotective chemical. Cell 142, 39–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Stavrovskaya, I. G. et al. Clinically approved heterocyclics act on a mitochondrial target and reduce stroke-induced pathology. J. Exp. Med. 200, 211–222 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Galeotti, N., Bartolini, A. & Ghelardini, C. Blockade of intracellular calcium release induces an antidepressant-like effect in the mouse forced swimming test. Neuropharmacology 50, 309–316 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Galeotti, N., Vivoli, E., Norcini, M., Bartolini, A. & Ghelardini, C. An antidepressant behaviour in mice carrying a gene-specific InsP3R1, InsP3R2 and InsP3R3 protein knockdown. Neuropharmacology 55, 1156–1164 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Taragano, F. E., Allegri, R., Vicario, A., Bagnatti, P. & Lyketsos, C. G. A double blind, randomized clinical trial assessing the efficacy and safety of augmenting standard antidepressant therapy with nimodipine in the treatment of 'vascular depression'. Int. J. Geriatr. Psychiatry 16, 254–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Brunet, G. et al. Open trial of a calcium antagonist, nimodipine, in acute mania. Clin. Neuropharmacol. 13, 224–228 (1990).

    Article  CAS  PubMed  Google Scholar 

  135. Pazzaglia, P. J., Post, R. M., Ketter, T. A., George, M. S. & Marangell, L. B. Preliminary controlled trial of nimodipine in ultra-rapid cycling affective dysregulation. Psychiatry Res. 49, 257–272 (1993).

    Article  CAS  PubMed  Google Scholar 

  136. Mogilnicka, E., Czyrak, A. & Maj, J. BAY K 8644 enhances immobility in the mouse behavioral despair test, an effect blocked by nifedipine. Eur. J. Pharmacol. 151, 307–311 (1988).

    Article  CAS  PubMed  Google Scholar 

  137. Henchcliffe, C. & Beal, M. F. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nature Clin. Pract. Neurol. 4, 600–609 (2008).

    Article  CAS  Google Scholar 

  138. Turner, C. & Schapira, A. H. Mitochondrial matters of the brain: the role in Huntington's disease. J. Bioenerg. Biomembr. 42, 193–198 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Galindo, M. F., Ikuta, I., Zhu, X., Casadesus, G. & Jordan, J. Mitochondrial biology in Alzheimer's disease pathogenesis. J. Neurochem. 114, 933–945 (2010).

    CAS  PubMed  Google Scholar 

  140. Woolley, J. D., Khan, B. K., Murthy, N. K., Miller, B. L. & Rankin, K. P. The diagnostic challenge of psychiatric symptoms in neurodegenerative disease: rates of and risk factors for prior psychiatric diagnosis in patients with early neurodegenerative disease. J. Clin. Psychiatry 72, 126–133 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Reijnders, J. S., Ehrt, U., Weber, W. E., Aarsland, D. & Leentjens, A. F. A systematic review of prevalence studies of depression in Parkinson's disease. Mov. Disord. 23, 183–189 (2008).

    Article  PubMed  Google Scholar 

  142. Ishihara, L. & Brayne, C. A systematic review of depression and mental illness preceding Parkinson's disease. Acta Neurol. Scand. 113, 211–220 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Steinlechner, S. et al. Co-occurrence of affective and schizophrenia spectrum disorders with PINK1 mutations. J. Neurol. Neurosurg. Psychiatry 78, 532–535 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Berrios, G. E. et al. Psychiatric symptoms in neurologically asymptomatic Huntington's disease gene carriers: a comparison with gene negative at risk subjects. Acta Psychiatr. Scand. 105, 224–230 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Kirkwood, S. C. et al. Longitudinal personality changes among presymptomatic Huntington disease gene carriers. Neuropsychiatry Neuropsychol. Behav. Neurol. 15, 192–197 (2002).

    PubMed  Google Scholar 

  146. Duff, K., Paulsen, J. S., Beglinger, L. J., Langbehn, D. R. & Stout, J. C. Psychiatric symptoms in Huntington's disease before diagnosis: the predict-HD study. Biol. Psychiatry 62, 1341–1346 (2007).

    Article  PubMed  Google Scholar 

  147. Paulsen, J. S., Ready, R. E., Hamilton, J. M., Mega, M. S. & Cummings, J. L. Neuropsychiatric aspects of Huntington's disease. J. Neurol. Neurosurg. Psychiatry 71, 310–314 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fiedorowicz, J. G., Mills, J. A., Ruggle, A., Langbehn, D. & Paulsen, J. S. Suicidal behavior in prodromal Huntington disease. Neurodegener. Dis. 8, 483–490 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Di Maio, L. et al. Suicide risk in Huntington's disease. J. Med. Genet. 30, 293–295 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lyketsos, C. G. et al. Mental and behavioral disturbances in dementia: findings from the Cache County Study on Memory in Aging. Am. J. Psychiatry 157, 708–714 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Lyketsos, C. G. et al. Neuropsychiatric disturbance in Alzheimer's disease clusters into three groups: the Cache County study. Int. J. Geriatr. Psychiatry 16, 1043–1053 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Bassiony, M. M. et al. The relationship between delusions and depression in Alzheimer's disease. Int. J. Geriatr. Psychiatry 17, 549–556 (2002).

    Article  PubMed  Google Scholar 

  153. Zubenko, G. S. et al. A collaborative study of the emergence and clinical features of the major depressive syndrome of Alzheimer's disease. Am. J. Psychiatry 160, 857–866 (2003).

    Article  PubMed  Google Scholar 

  154. Craig, D., Mirakhur, A., Hart, D. J., McIlroy, S. P. & Passmore, A. P. A cross-sectional study of neuropsychiatric symptoms in 435 patients with Alzheimer's disease. Am. J. Geriatr. Psychiatry 13, 460–468 (2005).

    Article  PubMed  Google Scholar 

  155. Green, R. C. et al. Depression as a risk factor for Alzheimer disease: the MIRAGE Study. Arch. Neurol. 60, 753–759 (2003).

    Article  PubMed  Google Scholar 

  156. Aznar, S. & Knudsen, G. M. Depression and Alzheimer's disease: is stress the initiating factor in a common neuropathological cascade? J. Alzheimers Dis. 23, 177–193 (2011).

    Article  PubMed  Google Scholar 

  157. Barnes, D. E. & Yaffe, K. The projected effect of risk factor reduction on Alzheimer's disease prevalence. Lancet Neurol. 10, 819–828 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Goosens, K. A. & Sapolsky, R. M. Stress and Glucocorticoid Contributions to Normal and Pathological Aging in Brain Aging: Models, Methods, and Mechanisms (ed. Riddle, D. R.) Ch.13 (CRC Press, Boca Raton, 2007).

    Google Scholar 

  159. Fernandez, M., Gobartt, A. L. & Balana, M. Behavioural symptoms in patients with Alzheimer's disease and their association with cognitive impairment. BMC Neurol. 10, 87 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Swerdlow, R. H., Burns, J. M. & Khan, S. M. The Alzheimer's disease mitochondrial cascade hypothesis. J. Alzheimers Dis. 20 (Suppl. 2), 265–279 (2010).

    Article  CAS  PubMed Central  Google Scholar 

  161. Du, H. et al. Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model. Proc. Natl Acad. Sci. USA 107, 18670–18675 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. DeKosky, S. T. & Scheff, S. W. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Ann. Neurol. 27, 457–464 (1990).

    Article  CAS  PubMed  Google Scholar 

  163. Li, Z., Okamoto, K., Hayashi, Y. & Sheng, M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873–887 (2004). This paper reveals the dynamic nature of dendritic mitochondria during synaptic activity and spine formation in living hippocampal neurons, and the essential and reciprocal relationship that exists in this mitochondrial–synaptic interplay. The data support a role for mitochondrial dysfunction in the characteristic synapse loss associated with neurodegenerative disorders.

    Article  CAS  PubMed  Google Scholar 

  164. Baloyannis, S. J. Mitochondria are related to synaptic pathology in Alzheimer's disease. Int. J. Alzheimers Dis. 2011, 305395 (2011).

    PubMed  PubMed Central  Google Scholar 

  165. Calkins, M. J. & Reddy, P. H. Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer's disease neurons. Biochim. Biophys. Acta 1812, 507–513 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Sydow, A. et al. Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic Tau mutant. J. Neurosci. 31, 2511–2525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Orth, M. & Schapira, A. H. Mitochondria and degenerative disorders. Am. J. Med. Genet. 106, 27–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  168. Kato, T. The other, forgotten genome: mitochondrial DNA and mental disorders. Mol. Psychiatry 6, 625–633 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Fattal, O., Link, J., Quinn, K., Cohen, B. H. & Franco, K. Psychiatric comorbidity in 36 adults with mitochondrial cytopathies. CNS Spectr. 12, 429–438 (2007).

    Article  PubMed  Google Scholar 

  170. Schapira, A. H. Mitochondrial disease. Lancet 368, 70–82 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Grover, S. et al. Mania as a first presentation in mitochondrial myopathy. Psychiatry Clin. Neurosci. 60, 774–775 (2006).

    Article  PubMed  Google Scholar 

  172. Prayson, R. A. & Wang, N. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS) syndrome: an autopsy report. Arch. Pathol. Lab. Med. 122, 978–981 (1998).

    CAS  PubMed  Google Scholar 

  173. Oexle, K. & Zwirner, A. Advanced telomere shortening in respiratory chain disorders. Hum. Mol. Genet. 6, 905–908 (1997).

    Article  CAS  PubMed  Google Scholar 

  174. Smits, B. W. et al. Disease impact in chronic progressive external ophthalmoplegia: more than meets the eye. Neuromuscul. Disord. 21, 272–278 (2011).

    Article  PubMed  Google Scholar 

  175. Schmidt, H. D., Shelton, R. C. & Duman, R. S. Functional biomarkers of depression: diagnosis, treatment, and pathophysiology. Neuropsychopharmacology 36, 2375–2394 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Du, J. et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc. Natl Acad. Sci. USA 106, 3543–3548 (2009). This is the first study to demonstrate the biphasic effects that glucocorticoids have on neuronal mitochondrial dynamics. The data also indicate the role that glucocorticoids and chronic stress might have in cellular plasticity and resilience.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Capuron, L. & Miller, A. H. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol. Ther. 130, 226–238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kato, T. Mitochondrial dysfunction as the molecular basis of bipolar disorder: therapeutic implications. CNS Drugs 21, 1–11 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S. Shirke (SIRO Clinpharm Pvt. Ltd., India) and W. P. Battisti (Janssen Research & Development, LLC, USA) provided editorial support for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husseini Manji.

Ethics declarations

Competing interests

H. Manji, N. A. Di Prospero, S. Ness, M. Krams and G. Chen are employees of Janssen Research & Development, LLC, in Raritan, New Jersey, USA. T. Kato is an employee of the RIKEN Brain Science Institute in Tokyo, Japan, and M. F. Beal is an employee of Weill Medical College of Cornell University, New York, USA. All authors meet International Council of Medical Journal Editors criteria. All authors have contributed to the development of this Review and have approved the submission.

AOP: http://www.nature.com/nrn/journal/vaop/ncurrent/box/nrn3229_audecl.html

Print: http://www.nature.com/nrn/journal/v13/n5/box/nrn3229_audecl.html

Related links

Related links

DATABASES

ClinicalTrials.gov

NCT00322764

NCT01390389

NCT00719706

FURTHER INFORMATION

Tadafumi Kato's homepage

Press Release — Repligen reports positive Phase 2a clinical trial results of RG2417 for symptoms of bipolar disorder

Glossary

Mitochondrial permeability transition pore

(mPTP). A protein complex that crosses the outer and inner mitochondrial membranes. The permeability transition describes an increase in the permeability of the mitochondrial membranes to molecules of a molecular weight of less than 1,500 Daltons.

Valproate

A drug with multiple actions that is used for the treatment of seizures, bipolar disorder and migraine prophylaxis.

Learned helplessness test

A test used to measure the effects of antidepressant drugs. It is based on the phenomenon that animals cease to attempt to avoid aversive stimuli as a result of prior exposure to unavoidable stressors.

Behavioural sensitization test

A test that measures the progressive enhancement of behavioural responses to psychostimulants that is also considered to be an experimental model of the escalating increases in the severity of mania that occur over several episodes.

Tail suspension test

A test used to measure the behavioural effects of antidepressant drugs in which mice are suspended by the tip of their tail. Most mice eventually develop an immobile posture, which is thought to indicate behavioural despair. Various antidepressants and lithium reduce immobility in this test.

Forced swim test

A test used to measure the behavioural effects of antidepressant drugs in which mice are placed in a water tank. Most mice eventually develop an immobile posture, which is thought to indicate behavioural despair. Various antidepressants and lithium reduce immobility in this test.

mtDNA haplogroups

Haplogroups defined by differences in human mtDNA. Haplogroups are used to represent the major branch points on the mitochondrial phylogenetic tree.

Chronic progressive external ophthalmoplegia

(CPEO). A type of eye-movement disorder caused by mitochondrial myopathy.

Heteroplasmic

Describes a cell in which more than one type of mtDNA, including wild-type mtDNA, is present. The amount of mutant mtDNA usually correlates with the severity of mitochondrial disease.

Transmitochondrial cybrids

Hybrids of a cell line that contains no mtDNA, and platelets that contain mtDNA but no nuclear DNA. Such cybrids allow the study of mtDNA variations at the cellular level by excluding the influence of mutations in nuclear DNA.

Agonal state

State associated with agony, especially death.

Creatine kinase

An enzyme that is present in mitochondria and that catalyses the phosphorylation of creatine to creatine phosphate.

Protein carbonylation

An irreversible change resulting from oxidative damage that often leads to a loss of protein function. It is considered to be a widespread indicator of severe oxidative damage and disease-derived protein dysfunction.

Polymerase gamma

(POLG1). The catalytic subunit of mitochondrial DNA polymerase.

Adjunctive study

Study used together with the primary study. Its purpose is to assist the primary study.

Monoamine depletion

Reduction in the levels of serotonin, noradrenaline and/or dopamine in the CNS by inhibitors of key biosynthetic enzymes. The reductions are associated with anhedonia-like deficits that are insensitive to antidepressants but can be alleviated by treatment with ketamine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manji, H., Kato, T., Di Prospero, N. et al. Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci 13, 293–307 (2012). https://doi.org/10.1038/nrn3229

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3229

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing