Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease

Key Points

  • The basal ganglia are one of the fundamental processing units of the mammalian brain. Progressive degeneration of one of their major components, the ascending dopamine projection to the striatum, is a central pathological feature of Parkinson's disease.

  • Imaging and post-mortem investigations reveal that degeneration of the dopamine projection is uneven in most cases, with input to caudolateral sectors of the putamen most severely affected.

  • In the animal learning literature an important distinction has been forged between goal-directed and habitual control of behaviour. When behaviour is goal-directed, action selection is determined by the relative utility of predicted outcomes, whereas habits are under stimulus control and largely independent of outcome value.

  • A seminal series of investigations in rodents by Balleine and colleagues established that the dorsomedial associative territories of the striatum are crucial for goal-directed control, whereas laterally located sensorimotor territories are essential for habits. Formal behavioural tests (for example, outcome devaluation) were used to determine whether an observed behaviour (for example, pressing a lever) was under goal-directed or habitual control.

  • Recent neuroimaging studies using the same formal tests suggest that a similar spatial segregation of goal-directed and habitual control is present within the human striatum. As the loss of dopamine in Parkinson's disease is predominantly from the caudolateral sensorimotor territories, we would expect patients to experience major deficits in their production of habits.

  • Because the same behavioural output can be directed by processing in spatially segregated regions of the basal ganglia, it must be assumed that the efferent projections of goal-directed and habitual control circuits must at some point converge on the 'final common motor path'.

  • Given that the loss of dopamine in the basal ganglia is associated with enhanced oscillatory and inhibitory outputs, we suggest that for goal-directed control to be expressed, the distorting inhibitory signals from the habit system must be overcome at the point where the goal-directed and habitual control circuits converge.

  • We conclude by reviewing evidence suggesting that many of the behavioural difficulties experienced by patients with Parkinson's disease can be interpreted in terms of an impaired automatic control of normal habits, coupled with distorting inhibitory influences imposed on the expression of residual goal-directed behaviours.

  • In the light of this analysis, future work will need to establish how far the reported cognitive deficits in Parkinson's disease are due to the primary disease state (additional loss of dopamine from goal-directed circuits) or are a result of goal-directed control being overwhelmed by the absence of automatic control routines that are normally provided by the stimulus–response habit systems.

Abstract

Progressive loss of the ascending dopaminergic projection in the basal ganglia is a fundamental pathological feature of Parkinson's disease. Studies in animals and humans have identified spatially segregated functional territories in the basal ganglia for the control of goal-directed and habitual actions. In patients with Parkinson's disease the loss of dopamine is predominantly in the posterior putamen, a region of the basal ganglia associated with the control of habitual behaviour. These patients may therefore be forced into a progressive reliance on the goal-directed mode of action control that is mediated by comparatively preserved processing in the rostromedial striatum. Thus, many of their behavioural difficulties may reflect a loss of normal automatic control owing to distorting output signals from habitual control circuits, which impede the expression of goal-directed action.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organization of intrinsic connections within the basal ganglia.
Figure 2: Corticobasal ganglia–cortical loops in animals and humans.
Figure 3: Striatal determinants of goal-directed and habitual action in rodents and humans.
Figure 4: Striatal dopamine innervation assessed by 18fluorodopa positron emission tomography (PET).
Figure 5: Functional and dysfunctional loops through the basal ganglia in the parkinsonian state.

Similar content being viewed by others

References

  1. Ferrier, D. The Functions of the Brain (Putnam's Sons, New York, 1876).

    Book  Google Scholar 

  2. Penney, J. B. Jr & Young, A. B. Striatal inhomogeneities and basal ganglia function. Mov. Disord. 1, 3–15 (1986).

    Article  PubMed  Google Scholar 

  3. Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Chevalier, G. & Deniau, J. M. Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci. 13, 277–281 (1990). This review introduced a conceptual development in suggesting that a pause in neuronal firing in basal ganglia output nuclei disinhibits efferent targets and is the major physiological mechanism by which the basal ganglia exert their effects on behaviour.

    Article  CAS  PubMed  Google Scholar 

  5. Gerfen, C. R. & Wilson, C. J. in Handbook of Chemical Neuroanatomy Vol 12 (eds Swanson, L. W., Bjorklund, A. & Hokfelt, T.) 371–468 (Elsevier, Amsterdam, 1996).

    Google Scholar 

  6. DeLong, M. R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285 (1990). A classic review of the basal ganglia pathophyisiological model and the concepts on which it is based.

    Article  CAS  PubMed  Google Scholar 

  7. Gerfen, C. R. et al. D1 and D2 dopamine receptor regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1431 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Crossman, A. R. Primate models of dyskinesia: the experimental approach to the study of basal ganglia-related involuntary movement disorders. Neuroscience 21, 1–40 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Bevan, M. D., Bolam, J. P. & Crossman, A. R. Convergent synaptic input from the neostriatum and the subthalamus onto identified nigrothalamic neurons in the rat. Eur. J. Neurosci. 6, 320–334 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Redgrave, P. Basal ganglia. Scholarpedia 2, 1825 (2007).

    Article  Google Scholar 

  11. Wu, Y., Richard, S. & Parent, A. The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat. Neurosci. Res. 38, 49–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Matamales, M. et al. Striatal medium-sized spiny neurons: identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLoS ONE 4, e4770 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Hartmann-von Monakow, K. H., Akert, K. & Kunzle, H. Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp. Brain Res. 33, 395–403 (1978).

    Google Scholar 

  14. Nambu, A., Tokuno, H. & Takada, M. Functional significance of the cortico–subthalamo–pallidal 'hyperdirect' pathway. Neurosci. Res. 43, 111–117 (2002).

    Article  PubMed  Google Scholar 

  15. Lanciego, J. L. et al. Thalamic innervation of striatal and subthalamic neurons projecting to the rat entopeduncular nucleus. Eur. J. Neurosci. 19, 1267–1277 (2004).

    Article  PubMed  Google Scholar 

  16. Feger, J., Bevan, M. & Crossman, A. R. The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations — a comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labelling study. Neuroscience 60, 125–132 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Coizet, V. et al. Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci. 29, 5701–5709 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mena-Segovia, J., Bolam, J. P. & Magill, P. J. Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci. 27, 585–588 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Smith, Y., Bevan, M. D., Shink, E. & Bolam, J. P. Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86, 353–387 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Miwa, H., Fuwa, T., Nishi, K. & Kondo, T. Subthalamo-pallido-striatal axis: a feedback system in the basal ganglia. Neuroreport 12, 3795–3798 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Shink, E., Bevan, M. D., Bolam, J. P. & Smith, Y. The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience 73, 335–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Kita, H. in Gaba And The Basal Ganglia: From Molecules To Systems (eds Tepper, J., Absercrombie, E. & Bolam, J. P.) 111–133 (Elsevier, Amsterdam, 2007).

    Book  Google Scholar 

  23. Bevan, M. D., Booth, P. A. C., Eaton, S. A. & Bolam, J. P. Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. J. Neurosci. 18, 9438–9452 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kita, H., Tokuno, H. & Nambu, A. Monkey globus pallidus external segment neurons projecting to the neostriatum. Neuroreport 10, 1467–1472 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. McGeorge, A. J. & Faull, R. L. M. The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29, 503–537 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Romanelli, P., Esposito, V., Schaal, D. W. & Heit, G. Somatotopy in the basal ganglia: experimental and clinical evidence for segregated sensorimotor channels. Brain Res. Rev. 48, 112–128 (2005).

    Article  PubMed  Google Scholar 

  27. Wiesendanger, E., Clarke, S., Kraftsik, R. & Tardif, E. Topography of cortico-striatal connections in man: anatomical evidence for parallel organization. Eur. J. Neurosci. 20, 1915–1922 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Nakano, K., Kayahara, T., Tsutsumi, T. & Ushiro, H. Neural circuits and functional organization of the striatum. J. Neurol. 247, V1–V15 (2000).

    Article  PubMed  Google Scholar 

  29. Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann. Rev. Neurosci. 9, 357–381 (1986). The classic and first description of the re-entrant looped architecture by which the basal ganglia interact with external structures.

    Article  CAS  PubMed  Google Scholar 

  30. McHaffie, J. G., Stanford, T. R., Stein, B. E., Coizet, V. & Redgrave, P. Subcortical loops through the basal ganglia. Trends Neurosci. 28, 401–407 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Bolam, J. P. & Bennett, B. D. in Molecular and Cellular Mechanims of Neostriatal Function (eds Ariano, M. A. & Surmeier, D. J.) 1–19 (R. G. Landes Co., Texas, 1995).

    Google Scholar 

  32. Gillies, A. & Willshaw, D. Models of the subthalamic nucleus: the importance of intranuclear connectivity. Med. Eng. Phys. 26, 723–732 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Benarroch, E. E. Subthalamic nucleus and its connections: anatomic substrate for the network effects of deep brain stimulation. Neurology 70, 1991–1995 (2008).

    Article  PubMed  Google Scholar 

  34. Parent, M. & Parent, A. The microcircuitry of primate subthalamic nucleus. Parkinsonism Relat. Disord. 13, S292–S295 (2007).

    Article  PubMed  Google Scholar 

  35. Nakano, K. Neural circuits and topographic organization of the basal ganglia and related regions. Brain Dev. 22, S5–S16 (2000).

    Article  PubMed  Google Scholar 

  36. Voorn, P., Vanderschuren, L. J., Groenewegen, H. J., Robbins, T. W. & Pennartz, C. M. Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci. 27, 468–474 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Draganski, B. et al. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J. Neurosci. 28, 7143–7152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lehericy, S. et al. 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. Cereb. Cortex 14, 1302–1309 (2004).

    Article  PubMed  Google Scholar 

  39. Doron, O. & Goelman, G. Evidence for asymmetric intra substantia nigra functional connectivity-application to basal ganglia processing. Neuroimage 49, 2940–2946 (2010).

    Article  PubMed  Google Scholar 

  40. Krout, K. E., Belzer, R. E. & Loewy, A. D. Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol. 448, 53–101 (2002).

    Article  PubMed  Google Scholar 

  41. Krout, K. E., Loewy, A. D., Westby, G. W. M. & Redgrave, P. Superior colliculus projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol. 431, 198–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Krout, K. E. & Loewy, A. D. Periaqueductal gray matter projections to midline and intralaminar thalamic nuclei of the rat. J. Comp. Neurol. 424, 111–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Erro, E., Lanciego, J. L. & Gimenez-Amaya, J. M. Relationships between thalamostriatal neurons and pedunculopontine projections to the thalamus: a neuroanatomical tract-tracing study in the rat. Exp. Brain Res. 127, 162–170 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Bjorklund, A. & Dunnett, S. B. Dopamine neuron systems in the brain: an update. Trends Neurosci. 30, 194–202 (2007).

    Article  PubMed  CAS  Google Scholar 

  45. Matsuda, W. et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 29, 444–453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith, Y., Lavoie, B., Dumas, J. & Parent, A. Evidence for a distinct nigropallidal dopaminergic projection in the squirrel monkey. Brain Res. 482, 381–386 (1989).

    Article  CAS  PubMed  Google Scholar 

  47. Cragg, S. J., Baufreton, J., Xue, Y., Bolam, J. P. & Bevan, M. D. Synaptic release of dopamine in the subthalamic nucleus. Eur. J. Neurosci. 20, 1788–1802 (2004).

    Article  PubMed  Google Scholar 

  48. Grace, A. A. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41, 1–24 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Redgrave, P., Prescott, T. & Gurney, K. N. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89, 1009–1023 (1999). A general description of the mechanisms and computational requirements of selection performed by the basal ganglia.

    Article  CAS  PubMed  Google Scholar 

  50. Mink, J. W. The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50, 381–425 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Hikosaka, O., Takikawa, Y. & Kawagoe, R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev. 80, 953–978 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Redgrave, P. & Gurney, K. The short-latency dopamine signal: a role in discovering novel actions? Nature Rev. Neurosci. 7, 967–975 (2006).

    Article  CAS  Google Scholar 

  53. Redgrave, P., Gurney, K. & Reynolds, J. What is reinforced by phasic dopamine signals? Brain Res. Rev. 58, 322–339 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Schultz, W. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol. 57, 87–115 (2006).

    Article  PubMed  Google Scholar 

  55. Alexander, G. E. & DeLong, M. R. Microstimulation of the primate neurostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. J. Neurophysiol. 53, 1417–1430 (1985).

    Article  CAS  PubMed  Google Scholar 

  56. Kimura, M. Behaviorally contingent property of movement-related activity of the primate putamen. J. Neurophysiol. 63, 1277–1296 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Flaherty, A. W. & Graybiel, A. M. Two input systems for body representation in the primate striatal matrix: experimental evidence in the squirrel monkey. J. Neurosci. 13, 1120–1137 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hikosaka, O., Sakamoto, M. & Usui, S. Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J. Neurophysiol. 61, 780–798 (1989).

    Article  CAS  PubMed  Google Scholar 

  59. Hikosaka, O., Sakamoto, M. & Usui, S. Functional properties of monkey caudate neurons II. Visual and auditory responses. J. Neurophysiol. 61, 799–813 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Tremblay, L., Hollerman, J. R. & Schultz, W. Modifications of reward expectation-related neuronal activity during learning in primate striatum. J. Neurophysiol. 80, 964–977 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Scholz, V. H. et al. Laterality, somatotopy and reproducibility of the basal ganglia and motor cortex during motor tasks. Brain Res. 879, 204–215 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Gerardin, E. et al. Foot, hand, face and eye representation in the human striatum. Cereb. Cortex 13, 162–169 (2003).

    Article  PubMed  Google Scholar 

  63. Dickinson, A. The 28th Bartlett Memorial Lecture Causal learning: an associative analysis. Q. J. Exp. Psychol. B. 54, 3–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Balleine, B. W., Lijeholm, M. & Ostlund, S. B. The integrative function of the basal ganglia in instrumental conditioning. Behav. Brain Res. 199, 43–52 (2009).

    Article  PubMed  Google Scholar 

  65. Balleine, B. W. & O'Doherty, J. P. Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35, 48–69 (2009). This paper provides well-written and clearly explained views about the role of the basal ganglia in the control of human and rodent behaviour.

    Article  PubMed Central  Google Scholar 

  66. Yin, H. H. & Knowlton, B. J. The role of the basal ganglia in habit formation. Nature Rev. Neurosci. 7, 464–476 (2006). An excellent review of the role of the basal ganglia in habitual and goal-directed control.

    Article  CAS  Google Scholar 

  67. Thorndike, E. L. Animal Intelligence. (Macmillan, New York, 1911).

    Google Scholar 

  68. Spence, K. W. Behavior Theory and Conditioning (Yale Univ. Press, New Haven, 1956).

    Book  Google Scholar 

  69. Dickinson, A. & Balleine, B. Motivational control of goal-directed action. Anim. Learn. Behav. 22, 1–18 (1994).

    Article  Google Scholar 

  70. Adams, C. D. & Dickinson, A. Instrumental responding following reinforcer devaluation. Q. J. Exp. Psychol. 33, 109–121 (1981).

    Article  Google Scholar 

  71. Hammond, L. J. The effect of contingency upon the appetitive conditioning of free-operant behavior. J. Exp. Anal. Behav. 34, 297–304 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Balleine, B. W. & Dickinson, A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37, 407–419 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Horvitz, J. C. Stimulus-response and response-outcome learning mechanisms in the striatum. Behav. Brain Res. 199, 129–140 (2009).

    Article  PubMed  Google Scholar 

  74. Schwabe, L., Wolf, O. T. & Oitzl, M. S. Memory formation under stress: quantity and quality. Neurosci. Biobehav. Rev. 34, 584–591 (2010).

    Article  PubMed  Google Scholar 

  75. Hikosaka, O. & Isoda, M. Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends Cogn. Sci. 14, 154–161 (2010). An important recent analysis of the neural mechanisms responsible for switching between automatic and controlled behaviour.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Monsell, S. Task switching. Trends Cogn. Sci. 7, 134–140 (2003).

    Article  PubMed  Google Scholar 

  77. Dickinson, A., Nicholas, D. J. & Adams, C. D. The effect of the instrumental training contingency on susceptibility to reinforcer devaluation. Q. J. Exp. Psychol. 35, 35–51 (1983).

    Article  Google Scholar 

  78. Heuer, H., Spijkers, W., Kiesswetter, E. & Schmidtke, V. Effects of sleep loss, time of day, and extended mental work on implicit and explicit learning of sequences. J. Exp. Psychol. Appl. 4, 139–162 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Dias-Ferreira, E. et al. Chronic stress causes frontostriatal reorganization and affects decision-making. Science 325, 621–625 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Mazzoni, P. & Wexler, N. S. Parallel explicit and implicit control of reaching. PLoS ONE 4, e7557 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Balleine, B. W. & Ostlund, S. B. Still at the choice-point: action selection and initiation in istrumental conditioning. encoding. Ann. NY Acad. Sci. 1104, 147–171 (2007).

    Article  PubMed  Google Scholar 

  82. Daw, N. D., Niv, Y. & Dayan, P. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neurosci. 8, 1704–1711 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Schneider, W. & Chein, J. M. Controlled & automatic processing: behavior, theory, and biological mechanisms. Cogn. Sci. 27, 525–559 (2003). An excellent review of the differences between controlled and automatic processing in humans.

    Article  Google Scholar 

  84. Yin, H. H., Knowlton, B. J. & Balleine, B. W. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur. J. Neurosci. 19, 181–189 (2004).

    Article  PubMed  Google Scholar 

  85. Yin, H. H., Knowlton, B. J. & Balleine, B. W. Blockade of NMDA receptors in the dorsomedial striatum prevents action–outcome learning in instrumental conditioning. Eur. J. Neurosci. 22, 505–512 (2005).

    Article  PubMed  Google Scholar 

  86. Yin, H. H., Ostlund, S. B., Knowlton, B. J. & Balleine, B. W. The role of the dorsomedial striatum in instrumental conditioning. Eur. J. Neurosci. 22, 513–523 (2005).

    Article  PubMed  Google Scholar 

  87. Yin, H. H., Knowlton, B. J. & Balleine, B. W. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action–outcome contingency in instrumental conditioning. Behav. Brain Res. 166, 189–196 (2006).

    Article  PubMed  Google Scholar 

  88. Miyachi, S., Hikosaka, O., Miyashita, K., Karadi, Z. & Rand, M. K. Differential roles of monkey striatum in learning of sequential hand movement. Exp. Brain Res. 115, 1–5 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Miyachi, S., Hikosaka, O. & Lu, X. F. Differential activation of monkey striatal neurons in the early and late stages of procedural learning. Exp. Brain Res. 146, 122–126 (2002).

    Article  PubMed  Google Scholar 

  90. Monchi, O., Petrides, M., Petre, V., Worsley, K. & Dagher, A. Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J. Neurosci. 21, 7733–7741 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J. & Doyon, J. Functional role of the basal ganglia in the planning and execution of actions. Ann. Neurol. 59, 257–264 (2006).

    Article  PubMed  Google Scholar 

  92. Lewis, S. J. G., Dove, A., Robbins, T. W., Barker, R. A. & Owen, A. M. Striatal contributions to working memory: a functional magnetic resonance imaging study in humans. Eur. J. Neurosci. 19, 755–760 (2004).

    Article  PubMed  Google Scholar 

  93. Jueptner, M., Frith, C. D., Brooks, D. J., Frackowiak, R. S. & Passingham, R. E. Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J. Neurophysiol. 77, 1325–1337 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Lehericy, S. et al. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc. Natl Acad. Sci.USA 102, 12566–12571 (2005). An early study in humans indicating that different striatal regions become engaged during different phases of motor learning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tanaka, S. C., Balleine, B. W. & O'Doherty, J. P. Calculating consequences: brain systems that encode the causal effects of actions. J. Neurosci. 28, 6750–6755 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tricomi, E., Balleine, B. W. & O'Doherty, J. P. A specific role for posterior dorsolateral striatum in human habit learning. Eur. J. Neurosci. 29, 2225–2232 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gurney, K., Prescott, T. J. & Redgrave, P. A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol. Cybern. 84, 401–410 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Gurney, K., Prescott, T. J. & Redgrave, P. A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol. Cybern. 84, 411–423 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Humphries, M. D., Stewart, R. D. & Gurney, K. N. A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J. Neurosci. 26, 12921–12942 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Prescott, T. J., Gonzalez, F. M. M., Gurney, K., Humphries, M. D. & Redgrave, P. A robot model of the basal ganglia: behavior and intrinsic processing. Neural Netw. 19, 31–61 (2006).

    Article  PubMed  Google Scholar 

  101. Singh, S. P., Barto, A. G. & Chentanez, N. in Advances in Neural Information Processing Systems (eds Saul, L. K., Weiss, H. & Bottou, L.) 1281–1288 (MIT Press, Cambridge, Massachusetts, 2005).

    Google Scholar 

  102. Doubell, T. P., Skaliora, I., Baron, J. & King, A. J. Functional connectivity between the superficial and deeper layers of the superior colliculus: an anatomical substrate for sensorimotor integration. J. Neurosci. 23, 6596–6607 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sommer, M. A. & Wurtz, R. H. Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. J. Neurophysiol. 83, 1979–2001 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. McHaffie, J. G., Thomson, C. M. & Stein, B. E. Corticotectal and corticostriatal projections from the frontal eye fields of the cat: an anatomical examination using WGA-HRP. Somatosens Mot. Res. 18, 117–130 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Gitelman, D. R., Parrish, T. B., Friston, K. J. & Mesulam, M. M. Functional anatomy of visual search: regional segregations within the frontal eye fields and effective connectivity of the superior colliculus. Neuroimage 15, 970–982 (2002).

    Article  PubMed  Google Scholar 

  106. Takakusaki, K. & Okumura, T. Neurobiological basis of controlling posture and locomotion. Adv. Robot. 22, 1629–1663 (2008).

    Article  Google Scholar 

  107. Pavese, N. & Brooks, D. J. Imaging neurodegeneration in Parkinson's disease. Biochim. Biophys. Acta 1792, 722–729 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Morrish, P. K., Sawle, G. V. & Brooks, D. J. Clinical and [18F] dopa PET findings in early Parkinson's disease. J. Neurol. Neurosurg. Psychiatr. 59, 597–600 (1995).

    Article  CAS  Google Scholar 

  109. Kish, S. J., Shannak, K. & Hornykiewicz, O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. N. Engl. J. Med. 318, 876–880 (1988). A key paper indicating a differential loss of dopamine from the sensorimotor territories of the caudal putamen in patients with Parkinson's disease.

    Article  CAS  PubMed  Google Scholar 

  110. Fearnley, J. M. & Lees, A. J. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114, 2283–2301 (1991).

    Article  PubMed  Google Scholar 

  111. Marsden, C. D. The mysterious motor function of the basal ganglia: the Robert Wartenberg Lecture. Neurology 32, 514–539 (1982). Classic, fundamental appraisal of the origin of movement disorders in early Parkinson's disease.

    Article  CAS  PubMed  Google Scholar 

  112. Rodriguez-Oroz, M. C. et al. Initial clinical manifestations of Parkinson's disease: features and pathophysiological mechanisms. Lancet Neurol. 8, 1128–1139 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Schwab, R. S., Chafetz, M. E. & Walker, S. Control of two simultaneous voluntary motor acts in normals and in parkinsonism. AMA Arch. Neurol. Psychiatry 72, 591–598 (1954).

    Article  CAS  PubMed  Google Scholar 

  114. Hoshiyama, M., Kaneoke, Y., Koike, Y., Takahashi, A. & Watanabe, S. Hypokinesia of associated movement in Parkinson's disease: a symptom in early stages of the disease. J. Neurol. 241, 517–521 (1994).

    Article  CAS  PubMed  Google Scholar 

  115. Knowlton, B. J., Mangels, J. A. & Squire, L. R. A neostriatal habit learning system in humans. Science 273, 1399–1402 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. Hallett, M. The intrinsic and extrinsic aspects of freezing of gait. Mov. Disord. 23, S439–S443 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wu, T., Chan, P. & Hallett, M. Effective connectivity of neural networks in automatic movements in Parkinson's disease. Neuroimage 49, 2581–2587 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Moody, T. D., Chang, G. Y., Vanek, Z. F. & Knowlton, B. J. Concurrent discrimination learning in Parkinson's disease. Behav. Neurosci. 124, 1–8 (2010).

    Article  PubMed  Google Scholar 

  119. Faure, A., Haberland, U., Conde, F. & El Massioui, N. Lesion to the nigrostriatal dopamine system disrupts stimulus- response habit formation. J. Neurosci. 25, 2771–2780 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Benecke, R., Rothwell, J. C., Dick, J. P., Day, B. L. & Marsden, C. D. Performance of simultaneous movements in patients with Parkinson's disease. Brain 109, 739–757 (1986).

    Article  PubMed  Google Scholar 

  121. Nieuwboer, A., Rochester, L., Muncks, L. & Swinnen, S. P. Motor learning in Parkinson's disease: limitations and potential for rehabilitation. Parkinsonism Relat. Disord. 15, S53–S58 (2009).

    Article  PubMed  Google Scholar 

  122. Okuma, Y. & Yanagisawa, N. The clinical spectrum of freezing of gait in Parkinson's disease. Mov. Disord. 23, S426–S430 (2008).

    Article  PubMed  Google Scholar 

  123. Benecke, R., Rothwell, J. C., Dick, J. P., Day, B. L. & Marsden, C. D. Disturbance of sequential movements in patients with Parkinson's disease. Brain 110, 361–379 (1987).

    Article  PubMed  Google Scholar 

  124. Stelmach, G. E., Worringham, C. J. & Strand, E. A. Movement preparation in Parkinson's disease. The use of advance information. Brain 109, 1179–1194 (1986).

    Article  PubMed  Google Scholar 

  125. Doyon, J. Motor sequence learning and movement disorders. Curr. Opin. Neurol. 21, 478–483 (2008).

    Article  PubMed  Google Scholar 

  126. Nandhagopal, R. et al. Longitudinal progression of sporadic Parkinson's disease: a multi-tracer positron emission tomography study. Brain 132, 2970–2979 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Rogers, M. A., Phillips, J. G., Bradshaw, J. L., Iansek, R. & Jones, D. Provision of external cues and movement sequencing in Parkinson's disease. Motor Control 2, 125–132 (1998).

    Article  CAS  PubMed  Google Scholar 

  128. Jahanshahi, M., Brown, R. G. & Marsden, C. D. Simple and choice reaction time and the use of advance information for motor preparation in Parkinson's disease. Brain 115, 539–564 (1992).

    Article  PubMed  Google Scholar 

  129. Mesulam, M. M. From sensation to cognition. Brain 121, 1013–1052 (1998).

    Article  PubMed  Google Scholar 

  130. Lozza, A., Pepin, J. L., Rapisarda, G., Moglia, A. & Delwaide, P. J. Functional changes of brainstem reflexes in Parkinson's disease. Conditioning of the blink reflex R2 component by paired and index finger stimulation. J. Neural Transm. 104, 679–687 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Fanselow, M. S. & Poulos, A. M. The neuroscience of mammalian associative learning. Annu. Rev. Psychol. 56, 207–234 (2005).

    Article  PubMed  Google Scholar 

  132. Cardinal, R. N., Parkinson, J. A., Hall, J. & Everitt, B. J. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26, 321–352 (2002).

    Article  PubMed  Google Scholar 

  133. DeLong, M. R. & Wichmann, T. Circuits and circuit disorders of the basal ganglia. Arch. Neurol. 64, 20–24 (2007).

    Article  PubMed  Google Scholar 

  134. Obeso, J. A. et al. The basal ganglia in Parkinson's disease: current concepts and unexplained observations. Ann. Neurol. 64, S30–S46 (2008).

    Article  PubMed  Google Scholar 

  135. Filion, M. & Tremblay, L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res. 547, 142–151 (1991).

    CAS  PubMed  Google Scholar 

  136. Rodriguez-Oroz, M. C. et al. The subthalamic nucleus in Parkinson's disease: somatotopic organization and physiological characteristics. Brain 124, 1777–1790 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Levy, R., Hutchison, W. D., Lozano, A. M. & Dostrovsky, J. O. Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity. J. Neurosci. 22, 2855–2861 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wichmann, T. & Soares, J. Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. J. Neurophysiol. 95, 2120–2133 (2006).

    Article  PubMed  CAS  Google Scholar 

  139. Lopez-Azcarate, J. et al. Coupling between β and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson's disease. J. Neurosci. 30, 6667–6677 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Brown, P. & Marsden, C. D. What do the basal ganglia do? Lancet 351, 1801–1804 (1998).

    Article  CAS  PubMed  Google Scholar 

  141. Hallett, M. & Khoshbin, S. A physiological mechanism of bradykinesia. Brain 103, 301–314 (1980).

    Article  CAS  PubMed  Google Scholar 

  142. Marsden, C. D. & Obeso, J. A. The function of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease. Brain 117, 877–897 (1994). A classic approach to the enigma of how the basal ganglia output can be destroyed without deteriorating the movement further in patients with Parkinson's disease.

    Article  PubMed  Google Scholar 

  143. Rivlin-Etzion, M. et al. Low-pass filter properties of basal ganglia-cortical-muscle loops in the normal and MPTP primate model of parkinsonism. J. Neurosci. 28, 633–649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Brown, P. & Eusebio, A. Paradoxes of functional neurosurgery: clues from basal ganglia recordings. Mov. Disord. 23, 12–20 (2008).

    Article  PubMed  Google Scholar 

  145. Vitek, J. L. et al. Microelectrode-guided pallidotomy: technical approach and its application in medically intractable Parkinson's disease. J. Neurosurg. 88, 1027–1043 (1998).

    Article  CAS  PubMed  Google Scholar 

  146. Vijayaraghavan, L., Krishnamoorthy, E. S., Brown, R. G. & Trimble, M. R. Abulia: a delphi survey of British neurologists and psychiatrists. Mov. Disord. 17, 1052–1057 (2002).

    Article  PubMed  Google Scholar 

  147. Habib, M. Athymhormia and disorders of motivation in Basal Ganglia disease. J. Neuropsychiatry Clin. Neurosci. 16, 509–524 (2004).

    Article  PubMed  Google Scholar 

  148. Pedersen, K. F., Alves, G., Aarsland, D. & Larsen, J. P. Occurrence and risk factors for apathy in Parkinson disease: a 4-year prospective longitudinal study. J. Neurol. Neurosurg. Psychiatr. 80, 1279–1282 (2009).

    Article  CAS  Google Scholar 

  149. Voon, V. et al. Chronic dopaminergic stimulation in Parkinson's disease: from dyskinesias to impulse control disorders. Lancet Neurol. 8, 1140–1149 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Niv, Y., Daw, N. D., Joel, D. & Dayan, P. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology (Berlin) 191, 507–520 (2007).

    Article  CAS  Google Scholar 

  151. Tepper, J. M. & Bolam, J. P. Functional diversity and specificity of neostriatal interneurons. Curr. Opin. Neurobiol. 14, 685–692 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Bergman, H., Wichmann, T., Karmon, B. & DeLong, M. R. in The Basal Ganglia IV: New Ideas and Data on Structure and Function (eds Percheron, G., McKenzie, J. S. & Feger, J.) 317–325 (Plenum Press, New York, 1994).

    Book  Google Scholar 

  153. Darvas, M. & Palmiter, R. D. Restriction of dopamine signaling to the dorsolateral striatum is sufficient for many cognitive behaviors. Proc. Natl Acad. Sci. USA 106, 14664–14669 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jubault, T., Monetta, L., Strafella, A. P., Lafontaine, A. L. & Monchi, O. L-dopa medication in Parkinson's disease restores activity in the motor cortico-striatal loop but does not modify the cognitive network. PLoS ONE 4, e6154 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Obeso, J. A. et al. What can man do without basal ganglia motor output? The effect of combined unilateral subthalamotomy and pallidotomy in a patient with Parkinson's disease. Exp. Neurol. 220, 283–292 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. de Wit, S., Barker, R. A., Dickinson, A. D. & Cools, R. Habitual versus goal-directed action control in Parkinson disease. J. Cogn. Neurosci. 30 Apr 2010 (doi: 10.1162/jocn.2010.21514).

    Article  PubMed  Google Scholar 

  157. Graybiel, A. M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31, 359–387 (2008). An excellent review of habitual behaviour.

    Article  CAS  PubMed  Google Scholar 

  158. DeLong, M. & Wichmann, T. Changing views of basal ganglia circuits and circuit disorders. Clin. EEG Neurosci. 41, 61–67 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Draganski, B. & Bhatia, K. P. Brain structure in movement disorders: a neuroimaging perspective. Curr. Opin. Neurol. 23, 413–419 (2010).

    Article  PubMed  Google Scholar 

  160. Wilson, S. A. K. Progressive lenticular degeneratio. A familial nervous disease associated with cirrhosis of the liver. Brain 34, 295–507 (1912).

    Article  Google Scholar 

  161. Wilson, S. A. K. Disorders of motility and tone. Lancet Neurol. 1, 1–103 (1925).

    Google Scholar 

  162. Purdon Martin, J. Hemichorea resulting from a local lesion of the brain. (The syndrome of the body of Luys). Brain 50, 637–651 (1927).

    Article  Google Scholar 

  163. Purdon Martin, J. & Alcock, N. S. Hemichorea associated with a lesion of the corput Luysii. Brain 57, 504–516 (1934).

    Article  Google Scholar 

  164. Denny-Brown, D. The Basal Ganglia (Oxford Univ. Press, Oxford, 1962).

    Google Scholar 

  165. Carpenter, M. B., Whittier, J. R. & Mettler, F. A. Analysis of choreoid hyperkinesia in the Rhesus monkey; surgical and pharmacological analysis of hyperkinesia resulting from lesions in the subthalamic nucleus of Luys. J. Comp. Neurol. 92, 293–331 (1950).

    Article  CAS  PubMed  Google Scholar 

  166. Martin, J. P. & McCaul, I. R. Acute hemiballismus treated by ventrolateral thalamolysis. Brain 82, 104–108 (1959).

    Article  CAS  PubMed  Google Scholar 

  167. Ehringer, H. & Hornykiewicz, O. Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Klin. Wochenschr. 38, 1236–1239 (1960).

    Article  CAS  PubMed  Google Scholar 

  168. Birkmayer, W. & Hornykiewicz, O. The L-3,4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia. Wien Klin. Wochenschr. 73, 787–788 (1961).

    CAS  PubMed  Google Scholar 

  169. Cotzias, G. C., Papavasiliou, P. S. & Gellene, R. L-dopa in Parkinson's syndrome. N. Engl. J. Med. 281, 272 (1969).

    CAS  PubMed  Google Scholar 

  170. Fahn, S. The history of dopamine and levodopa in the treatment of Parkinson's disease. Mov. Disord. 23, S497–S508 (2008).

    Article  PubMed  Google Scholar 

  171. Denny-Brown, D. & Yanagisawa, N. in The Basal Ganglia (ed. Yahr, M. D.) 145 (Raven Press, New York, 1976).

    Google Scholar 

  172. Hassler, R. Striatal control of locomotion, intentional actions and of integrating and perceptive activity. J. Neurol. Sci. 36, 187–224 (1978).

    Article  CAS  PubMed  Google Scholar 

  173. Haber, S. N. The primate basal ganglia: parallel and integrative networks. J. Chem. Neuroanat. 26, 317–330 (2003).

    Article  PubMed  Google Scholar 

  174. Alexander, G. E. in Handbook of Brain Theory and Neural Networks (ed. Arbib, M. A.) 139–144 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

Download references

Acknowledgements

This article arose as a result of a meeting ('From movement to behaviour and emotions: role of the basal ganglia') held in December 2008 at the Centro Internacional de Restauracion Neurologica (CIREN) in Havana, Cuba. The meeting was organized by the CIREN and the Neuroscience Department, CIMA, University of Navarra, Pamplona, Spain, and sponsored by private donations. Authors are grateful to J. Alvarez, President of CIREN, and D. Frontera and family for their support and contribution to the project's success. P.R. was supported by a European Framework 7 grant and the Wellcome Trust, and J.A.O. by the University of Navarra–Union Temporal de Empresas (UTE) agreement during the preparation of this article. We thank B. Balleine for providing us with a high resolution copy of figure 3, and C. Juri and J. Arbizu for the PET images in figure 4.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Redgrave or Jose A. Obeso.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Peter Redgrave's homepage

Jose A. Obeso's homepage

Glossary

Basal ganglia

One of the fundamental processing units of the vertebrate brain. In mammals they comprise the striatum, globus pallidus, substantia nigra and subthalamic nucleus.

Striatum

The principal input nucleus of the basal ganglia consisting of the caudate nucleus and putamen.

Parkinsonian state

A state characterized by akinesia, bradykinesia and tremor associated in the initial stages with a differential loss of dopamine from the sensorimotor territories of the striatum.

Dyskinetic state

A state characterized by involuntary, repetitive body movements.

Hemiballismus

A movement disorder that is characterized by large-amplitude involuntary flinging motions of the extremities.

Instrumental learning

Learning in which a reinforcing outcome is contingent on the performance (or withholding) of a particular behaviour. Thus, the subject's response is 'instrumental' in producing an outcome (typically a food reward).

Associative learning

Any learning process in which a new response becomes associated with a particular stimulus. In animal behaviour it generally denotes learning that occurs through classical and instrumental conditioning.

Fixed ratio schedules

(Often abbreviated to FR schedules.) Situations in which there is a fixed relationship between responses and outcomes. For example, in an FR3 schedule, every third response is reinforced.

Interval schedules

Reinforcement is delivered with the first response following a fixed or variable interval, making the association between response and outcome much weaker.

Set shifting

The ability to modify ongoing behaviour in response to changing goals or environmental experiences.

6-hydroxydopamine lesion model of Parkinson's disease

A neurotoxin that, when administered to the substantia nigra of rodents, causes degeneration of the ascending nigrostriatal dopaminergic pathway, thereby mimicking the loss of dopaminergic innervation in Parkinson's disease.

Oscillations

(Referring here to oscillations in Parkinson's disease.) Resting tremor that is thought to be related to the increased levels of synchronous neuronal activity observed within the basal ganglia of patients with Parkinson's disease and in animal models of the disease.

Abulia

A condition characterized by a reduction in goal-directed verbal, motor, cognitive and emotional behaviours and that is associated with focal lesions of the basal ganglia.

Poverty of thought

A form of 'psychic akinesia' in which patients are generally apathetic and exhibit a profound lack of 'will'.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redgrave, P., Rodriguez, M., Smith, Y. et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease. Nat Rev Neurosci 11, 760–772 (2010). https://doi.org/10.1038/nrn2915

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2915

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing