Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Working memory in primate sensory systems

An Erratum to this article was published on 01 March 2005

Key Points

  • Psychophysical, physiological and imaging studies of sensory working memory support the idea that elemental sensory dimensions are represented by distinct memory systems that are likely to include the same cortical areas as those involved in encoding stimulus features.

  • In visual psychophysics, this idea is supported by the differences in the length of time for which specific stimulus features are retained, and by studies that use a 'memory masking' approach in which an interaction between an interference stimulus during the memory delay and the preceding stimulus reveals the nature of the remembered stimulus. Memory masking is most effective early in the delay and its effect is specific to the stimulus attributes that are retained. Studies of memory for motion show that the remembered stimuli are spatially localized, indicating the involvement of areas with fairly precise retinotopy, and also show that the spatial scale of the mechanism that underlies performance matches the receptive field size of cortical area MT. Other studies also indicate a separate representation in memory of simple stimulus dimensions such as spatial frequency, orientation and speed.

  • Single-cell recordings in monkeys and imaging studies in humans also reveal memory-related activity in regions of visual cortex that are known to process various attributes of visual stimuli (for example, areas IT, V4 and MT). Lesions of areas MT/MST in monkeys and of analogous regions in humans also produce memory-related deficits in motion discrimination. The involvement of visual cortical areas in retention of visual information is also supported by microstimulation experiments in monkeys and transcranial magnetic stimulation (TMS) in humans.

  • Psychophysical studies of tactile working memory show robust and selective retention of tactile signals, implicating the involvement of the regions that process these signals. Physiological recordings reveal memory-related delay activity at the earliest stages of processing of tactile information in S1 for texture and in S2 for vibration discrimination. Imaging studies also show activation of somatosensory regions in cortex during working memory tasks, and TMS applied to S1 during the delay in the vibration discrimination task disrupted performance.

  • Psychophysical studies of auditory working memory indicate that elementary dimensions, such as frequency, intensity and sound location, are stored by separate modules. Single-cell recordings in primary auditory cortex during the memory delay show activity that carries information about the remembered tone frequency. The involvement of auditory cortex in working memory for sound is also supported by magnetoencephalography, imaging and lesion studies in humans.

  • This review provides evidence for participation of sensory cortical areas in the circuitry that temporarily stores sensory information. However, the precise nature of this participation is still unclear. The use of quantitative sensory psychophysics in conjunction with recording and imaging studies will bring us closer to an understanding of how the brain deals with sensory storage.

Abstract

Sensory working memory consists of the short-term storage of sensory stimuli to guide behaviour. There is increasing evidence that elemental sensory dimensions — such as object motion in the visual system or the frequency of a sound in the auditory system — are stored by segregated feature-selective systems that include not only the prefrontal and parietal cortex, but also areas of sensory cortex that carry out relatively early stages of processing. These circuits seem to have a dual function: precise sensory encoding and short-term storage of this information. New results provide insights into how activity in these circuits represents the remembered sensory stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visual working memory for selected stimulus attributes.
Figure 2: Visual working memory for stimulus direction.
Figure 3: Directional signals in area MT during the memory delay.
Figure 4: Effect of MT/MST lesions on discrimination and memory of the direction of complex motion.
Figure 5: Sensory working memory in patients with focal brain lesions.
Figure 6: Effect of electrical microstimulation of area MT on memory for motion.

Similar content being viewed by others

References

  1. Baddeley, A. Working Memory (Oxford Univ. Press, Oxford, 1986).

    Google Scholar 

  2. Regan, D. Storage of spatial-frequency information and spatial frequency discrimination. J. Opt. Soc. Am. A. 2, 619–621 (1985).

    Article  Google Scholar 

  3. Pasternak, T., Bisley, J. W. & Calkins, D. in Biological Psychology (eds Gallagher, M. & Nelson, R. J.) 130–185 (John Wiley & Sons Inc. New York, 2003). A comprehensive review of the organization of and processing in the visual system of primates.

    Google Scholar 

  4. Magnussen, S. Low-level memory processes in vision. Trends Neurosci. 23, 247–251 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Magnussen, S., Greenlee, M. W., Asplund, R. & Dyrnes, S. Stimulus specific mechanisms of visual short-term memory. Vision Res. 31, 1213–1219 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Magnussen, S. & Greenlee, M. W. Retention and disruption of motion information in visual short-term memory. J. Exp. Psychol. Learn. Mem. Cogn. 18, 151–156 (1992). This study introduces a memory masking paradigm, in which an interfering distractor stimulus is presented during the memory period of a delayed match-to-sample task.

    Article  CAS  PubMed  Google Scholar 

  7. Magnussen, S., Greenlee, M. W. & Thomas, J. P. Parallel processing in visual short-term memory. J. Exp. Psychol. Hum. Percept. Perform. 22, 202–212 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. McIntosh, A. R. et al. Recruitment of unique neural systems to support visual memory in normal aging. Curr. Biol. 9, 1275–1278 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Magnussen, S., Idas, E. & Myhre, S. H. Representation of orientation and spatial frequency in perception and memory: a choice reaction-time analysis. J. Exp. Psychol. Hum. Percept. Perform. 24, 707–718 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Vogels, R. & Orban, G. A. Decision processes in visual discrimination of line orientation. J. Exp. Psychol. Hum. Percept. Perform. 12, 115–132 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Korsnes, M. S. & Magnussen, S. Age comparisons of serial position effects in short-term memory. Acta Psychol. (Amst.) 94, 133–143 (1996).

    Article  CAS  Google Scholar 

  12. Lee, B. & Harris, J. Contrast transfer characteristics of visual short-term memory. Vision Res. 36, 2159–2166 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Harvey, L. O. in Human Memory and Cognitive Capabilities (eds Clix, F. & Hagendorf, H.) 173–187 (Elsevier, Amsterdam, 1986).

    Google Scholar 

  14. Fahle, M. & Harris, J. P. Visual memory for vernier offsets. Vision Res. 32, 1033–1042 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Bisley, J. W. & Pasternak, T. The multiple roles of visual cortical areas MT/MST in remembering the direction of visual motion. Cereb. Cortex 10, 1053–1065 (2000). A lesion study showing that the effects of MT/MST lesions on memory for motion depends on the nature of the stimuli and of the task. With complex motion stimuli, the lesion affected both processing and retention of directional information. However, with coherently moving stimuli, the lesions affected only the comparison component of the task without affecting working memory.

    Article  CAS  PubMed  Google Scholar 

  16. Magnussen, S. & Greenlee, M. W. The psychophysics of perceptual memory. Psychol. Res. 62, 81–92 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Lalonde, J. & Chaudhuri, A. Task-dependent transfer of perceptual to memory representations during delayed spatial frequency discrimination. Vision Res. 42, 1759–1769 (2002).

    Article  PubMed  Google Scholar 

  18. Blake, R., Cepeda, N. J. & Hiris, E. Memory for visual motion. J. Exp. Psychol. Hum. Percept. Perform. 23, 353–369 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Bisley, J. W., Zaksas, D. & Pasternak, T. Microstimulation of cortical area MT affects performance on a visual working memory task. J. Neurophysiol. 85, 187–196 (2001). Electrical stimulation of area MT during the presentation of the sample caused monkeys to report motion in the direction preferred by the stimulated neurons. The same stimulation delivered during the memory delay disrupted performance but did not produce such a bias. This result indicates that MT is part of, or is connected to, the circuitry that underlies working memory for motion.

    Article  CAS  PubMed  Google Scholar 

  20. Zaksas, D., Bisley, J. W. & Pasternak, T. Motion information is spatially localized in a visual working-memory task. J. Neurophysiol. 86, 912–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Kahana, M. J. & Sekuler, R. Recognizing spatial patterns: a noisy exemplar approach. Vision Res. 42, 2177–2192 (2002).

    Article  PubMed  Google Scholar 

  22. Zhou, Y. D. & Fuster, J. M. Mnemonic neuronal activity in somatosensory cortex. Proc. Natl Acad. Sci. USA 93, 10533–10537 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gegenfurtner, K. Cortical mechanisms of colour vision. Nature Rev. Neurosci. 4, 563–572 (2003).

    Article  CAS  Google Scholar 

  24. Nilsson, T. H. & Nelson, T. M. Delayed monochromatic hue matches indicate characteristics of visual memory. J. Exp. Psychol. Hum. Percept. Perform. 7, 141–150 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. Vuontela, V., Rama, P., Raninen, A., Aronen, H. J. & Carlson, S. Selective interference reveals dissociation between memory for location and colour. Neuroreport 10, 2235–2240 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Ungerleider, L. & Pasternak, T. in Visual Neurosciences (eds Chalupa, L. M. & Werner, J. S.) 541–563 (MIT Press, Cambridge, Massachusetts, 2004).

    Google Scholar 

  27. Fuster, J. M. Inferotemporal units in selective visual attention and short-term memory. J. Neurophysiol. 64, 681–697 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Miller, E. K., Li, L. & Desimone, R. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J. Neurophysiol. 13, 1460–1478 (1993).

    CAS  Google Scholar 

  29. Miyashita, Y. & Chang, H. S. Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature 331, 68–70 (1988). A study showing that visual working memory is reflected in the sustained activity of individual IT neurons.

    Article  CAS  PubMed  Google Scholar 

  30. Chelazzi, L., Duncan, J., Miller, E. K. & Desimone, R. Responses of neurons in inferior temporal cortex during memory-guided visual search. J. Neurophysiol. 80, 2918–2940 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Ferrera, V. P., Rudolph, K. K. & Maunsell, J. H. Responses of neurons in the parietal and temporal visual pathways during a motion task. J. Neurophysiol. 14, 6171–6186 (1994).

    CAS  Google Scholar 

  32. Motter, B. C. Neural correlates of feature selective memory and pop-out in extrastriate area V4. J. Neurosci. 14, 2190–2199 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Constantinidis, C. & Steinmetz, M. A. Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task. J. Neurophysiol. 76, 1352–1355 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Bisley, J. W., Zaksas, D., Droll, J. & Pasternak, T. Activity of neurons in cortical area MT during a memory for motion task. J. Neurophysiol. 91, 286–300 (2004). A recording study showing that MT neurons are active not only during the presentation of visual motion stimuli but also during the memory delay. This activity carries signals that reflect the direction of the remembered stimulus.

    Article  PubMed  Google Scholar 

  35. Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G. & Haxby, J. V. An area specialized for spatial working memory in human frontal cortex. Science 279, 1347–1351 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Smith, E. E. & Jonides, J. Storage and executive processes in the frontal lobes. Science 283, 1657–1661 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Greenlee, M. W., Magnussen, S. & Reinvang, I. Brain regions involved in spatial frequency discrimination: evidence from fMRI. Exp. Brain Res. 132, 399–403 (2000). A neuroimaging study that used a delayed match-to-sample task to investigate the retention of spatial frequency information. The memory task produced elevated activity in the prefrontal, parietal and occipital cortex.

    Article  CAS  PubMed  Google Scholar 

  38. Pessoa, L., Gutierrez, E., Bandettini, P. & Ungerleider, L. Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron 35, 975–987 (2002). An event-related neuroimaging study in which the subject had to detect a small orientation change in a single element of a line-element texture pattern. Trials with correct responses were associated with elevated activity in the prefrontal and parietal cortex, whereas those with incorrect responses were not.

    Article  CAS  PubMed  Google Scholar 

  39. Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Transient and sustained activity in a distributed neural system for human working memory. Nature 386, 608–611 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Cornette, L., Dupont, P., Salmon, E. & Orban, G. A. The neural substrate of orientation working memory. J. Cogn. Neurosci. 13, 813–828 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. McCarthy, G. et al. Brain activation associated with visual motion studied by functional magnetic resonance imaging in humans. Hum. Brain Mapp. 2, 234–243 (1994).

    Article  Google Scholar 

  42. Fuster, J. M., Bauer, R. H. & Jervey, J. P. Effects of cooling inferotemporal cortex on performance of visual memory tasks. Exp. Neurol. 71, 398–409 (1981).

    Article  CAS  PubMed  Google Scholar 

  43. Fuster, J. M., Bauer, R. H. & Jervey, J. P. Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Res. 330, 299–307 (1985).

    Article  CAS  PubMed  Google Scholar 

  44. Frey, S. & Petrides, M. Orbitofrontal cortex: a key prefrontal region for encoding information. Proc. Natl Acad. Sci. USA 97, 8723–8727 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Walsh, V., Le Mare, C., Blaimire, A. & Cowey, A. Normal discrimination performance accompanied by priming deficits in monkeys with V4 or TEO lesions. Neuroreport 11, 1459–1462 (2000).

    CAS  PubMed  Google Scholar 

  46. Greenlee, M. W., Rischewski, J., Mergner, T. & Seeger, W. Delayed pattern discrimination in patients with unilateral temporal lobe damage. J. Neurosci. 13, 2565–2574 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Greenlee, M. W., Lang, H. -J., Mergner, T. & Seeger, W. Visual short-term memory of stimulus velocity in patients with unilateral posterior brain damage. J. Neurosci. 15, 2287–2300 (1995). A visual working memory study in a group of patients with brain damage, who had to discriminate the relative speeds of moving gratings. The results indicate that the damaged extrastriate area MT+ is associated with a decline in discrimination performance that was more pronounced at long delays.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Davidoff, J. B. & Ostergaard, A. L. Colour anomia resulting from weakened short-term colour memory. A case study. Brain 107, 415–431 (1984).

    Article  PubMed  Google Scholar 

  49. Schoppig, A. et al. Short-term memory for colour following posterior hemispheric lesions in man. Neuroreport 10, 1379–1384 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Greenlee, M. W., Koessler, M., Cornelissen, F. W. & Mergner, T. Visual discrimination and short-term memory for random patterns in patients with a focal cortical lesion. Cereb. Cortex 7, 253–267 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Pierrot-Deseilligny, C., Rivaud, S., Penet, C. & Rigolet, M. H. Latencies of visually guided saccades in unilateral hemispheric cerebral lesions. Ann. Neurol. 21, 138–148 (1987).

    Article  CAS  PubMed  Google Scholar 

  52. Greenlee, M. W., Berg, H., Stuhr, V. & Mergner, T. Visual search and visual working memory in patients with chronic focal cortical lesions. Vision Res. 40, 3759–3773 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Merigan, W. H. & Pasternak, T. in The Neuropsychology of Vision (eds Fahle, M. & Greenlee, M.) 121–162 (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  54. Campana, G., Cowey, A. & Walsh, V. Priming of motion direction and area V5/MT: a test of perceptual memory. Cereb. Cortex 12, 663–669 (2002).

    Article  PubMed  Google Scholar 

  55. Bar, M. & Biederman, I. Localizing the cortical region mediating visual awareness of object identity. Proc. Natl Acad. Sci. USA 96, 1790–1793 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gilson, E. Q. & Baddeley, A. Tactile short-term memory. Q. J. Exp. Psychol. 21, 180–184 (1969).

    Article  CAS  PubMed  Google Scholar 

  57. Sullivan, E. V. & Turvey, M. Short-term retention of tactile stimulation. Q. J. Exp. Psychol. 24, 253–261 (1972).

    Article  CAS  PubMed  Google Scholar 

  58. Sinclair, R. J. & Burton, H. Discrimination of vibrotactile frequencies in a delayed pair comparison task. Percept. Psychophys. 58, 680–692 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Hernandez, A., Salinas, E., Garcia, R. & Romo, R. Discrimination in the sense of flutter: new psychophysical measurements in monkeys. J. Neurosci. 17, 6391–6400 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hernandez, A., Zainos, A. & Romo, R. Neuronal correlates of sensory discrimination in the somatosensory cortex. Proc. Natl Acad. Sci. USA 97, 6191–6196 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Romo, R. & Salinas, E. Touch and go: decision-making mechanisms in somatosensation. Annu. Rev. Neurosci. 24, 107–137 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Romo, R. & Salinas, E. Flutter discrimination: neural codes, perception, memory and decision making. Nature Rev. Neurosci. 4, 203–218 (2003). A review of elegant experiments in which Romo and Salinas combined psychophysical and neurophysiological approaches to examine the cortical mechanisms involved in the performance of a vibrotactile delayed discrimination task.

    Article  CAS  Google Scholar 

  63. Romo, R., Hernandez, A., Zainos, A., Lemus, L. & Brody, C. D. Neuronal correlates of decision-making in secondary somatosensory cortex. Nature Neurosci. 5, 1217–1225 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Koch, K. W. & Fuster, J. M. Unit activity in monkey parietal cortex related to haptic perception and temporary memory. Exp. Brain Res. 76, 292–306 (1989).

    Article  CAS  PubMed  Google Scholar 

  65. Burton, H. & Sinclair, R. J. Attending to and remembering tactile stimuli: a review of brain imaging data and single-neuron responses. J. Clin. Neurophysiol. 17, 575–591 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Klingberg, T., Kawashima, R. & Roland, P. E. Activation of multi-modal cortical areas underlies short-term memory. Eur. J. Neurosci. 8, 1965–1971 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Bonda, E., Petrides, M. & Evans, A. Neural systems for tactual memories. J. Neurophysiol. 75, 1730–1737 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Stoeckel, M. C. et al. A fronto-parietal circuit for tactile object discrimination: an event-related fMRI study. Neuroimage 19, 1103–1114 (2003).

    Article  PubMed  Google Scholar 

  69. Harris, J. A., Miniussi, C., Harris, I. M. & Diamond, M. E. Transient storage of a tactile memory trace in primary somatosensory cortex. J. Neurosci. 22, 8720–8725 (2002). This study reported the effects of TMS applied over the somatosensory cortex (area SI) on the ability to discriminate and remember the frequency of vibration (flutter). TMS pulses delivered to area SI on the contralateral side early in the delay period disrupted memory performance, whereas the same pulses delivered late in the delay or to the ipsilateral area SI had no effect.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Posner, M. I. Short term memory systems in human information processing. Acta Psychol. (Amst.) 27, 267–284 (1967).

    Article  CAS  Google Scholar 

  71. Samms, M., Hari, R., Rif, J. & Knuutila, J. The human auditory sensory memory trace persists about 10 sec: neuromagnetic evidence. J. Cogn. Neurosci. 5, 363–370 (1993).

    Article  Google Scholar 

  72. Deutsch, D. Mapping of interactions in the pitch memory store. Science 175, 1020–1022 (1972).

    Article  CAS  PubMed  Google Scholar 

  73. Deutsch, D. Interference in memory between tones adjacent in the musical scale. J. Exp. Psychol. 100, 228–231 (1973).

    Article  CAS  PubMed  Google Scholar 

  74. Clement, S., Demany, L. & Semal, C. Memory for pitch versus memory for loudness. J. Acoust. Soc. Am. 106, 2805–2811 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Anourova, I. et al. Selective interference reveals dissociation between auditory memory for location and pitch. Neuroreport 10, 3543–3547 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Clarke, S., Adriani, M. & Bellmann, A. Distinct short-term memory systems for sound content and sound localization. Neuroreport 9, 3433–3437 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Gottlieb, Y., Vaadia, E. & Abeles, M. Single unit activity in the auditory cortex of a monkey performing a short term memory task. Exp. Brain Res. 74, 139–148 (1989). This study showed that during the performance of a delayed discrimination task involving tone frequencies, the activity of neurons in the primary auditory cortex of monkeys carried signals about the remembered tone frequency. These results implicate neurons in auditory cortex in the circuitry that underlies auditory working memory.

    Article  CAS  PubMed  Google Scholar 

  78. Lu, Z. L., Williamson, S. J. & Kaufman, L. Behavioral lifetime of human auditory sensory memory predicted by physiological measures. Science 258, 1668–1670 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. Romanski, L. M., Bates, J. F. & Goldman-Rakic, P. S. Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. . J. Comp. Neurol. 403, 141–157 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Zatorre, R. J., Evans, A. C. & Meyer, E. Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci. 14, 1908–1919 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gaab, N., Gaser, C., Zaehle, T., Jancke, L. & Schlaug, G. Functional anatomy of pitch memory — an fMRI study with sparse temporal sampling. Neuroimage 19, 1417–1426 (2003).

    Article  PubMed  Google Scholar 

  82. Mathiak, K., Hertrich, I., Grodd, W. & Ackermann, H. Discrimination of temporal information at the cerebellum: functional magnetic resonance imaging of nonverbal auditory memory. Neuroimage 21, 154–162 (2004).

    Article  PubMed  Google Scholar 

  83. Zatorre, R. J. & Samson, S. Role of the right temporal neocortex in retention of pitch in auditory short-term memory. Brain 114, 2403–2417 (1991).

    Article  PubMed  Google Scholar 

  84. Levy, R. & Goldman-Rakic, P. S. Segregation of working memory functions within the dorsolateral prefrontal cortex. Exp. Brain Res. 133, 23–32 (2000). This review describes the evidence in support of a modular 'domain-specific' organization of the PFC and the role of this organization in sensory storage.

    Article  CAS  PubMed  Google Scholar 

  85. Barbas, H. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J. Comp. Neurol. 276, 313–342 (1988).

    Article  CAS  PubMed  Google Scholar 

  86. Carmichael, S. T. & Price, J. L. Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 363, 642–664 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. Romo, R., Brody, C. D., Hernandez, A. & Lemus, L. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399, 470–473 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Romanski, L. M. & Goldman-Rakic, P. S. An auditory domain in primate prefrontal cortex. Nature Neurosci. 5, 15–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J. Neurophysiol. 63, 814–831 (1990).

    Article  CAS  PubMed  Google Scholar 

  90. Fuster, J. M., Bodner, M. & Kroger, J. K. Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405, 347–351 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Bodner, M., Kroger, J. & Fuster, J. M. Auditory memory cells in dorsolateral prefrontal cortex. Neuroreport 7, 1905–1908 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Rao, S. C., Rainer, G. & Miller, E. K. Integration of what and where in the primate prefrontal cortex. Science 276, 821–824 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Barbas, H. & Pandya, D. N. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286, 353–375 (1989).

    Article  CAS  PubMed  Google Scholar 

  94. Wang, X. J. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 24, 455–463 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Goldman-Rakic, P. S. Cellular basis of working memory. Neuron 14, 477–485 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Miller, E. K., Erickson, C. A. & Desimone, R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154–5167 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fuster, J. M. Memory in the Cerebral Cortex: An Empirical Approach to Neural Networks in the Human and Nonhuman Primate (MIT Press, Cambridge, Massachusetts, 1999).

    Google Scholar 

  98. Rainer, G., Asaad, W. F. & Miller, E. K. Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393, 577–579 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349 (1989).

    Article  CAS  PubMed  Google Scholar 

  100. Constantinidis, C., Franowicz, M. N. & Goldman-Rakic, P. S. The sensory nature of mnemonic representation in the primate prefrontal cortex. Nature Neurosci. 4, 311–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Fuster, J. Memory In The Cerebral Cortex (MIT Press, Cambridge, Massachusetts, 1995). A unique and comprehensive overview of studies and theories exploring the neural basis of memory. Fuster, a pioneering memory researcher, presents a theory that short-term and working memory represent an updated temporary activation of cortical networks of long-term memory.

    Google Scholar 

  102. Bullier, J. in Visual Neurosciences (eds Chalupa, L. M. & Werner, J. S.) 522–540 (MIT Press, Cambridge, Massachusetts, 2004).

    Google Scholar 

  103. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001). A comprehensive review of neurophysiological, neurobiological, neuroimaging and computational studies that support the theory that the PFC is responsible for executive control of other brain regions and pathways involved in behaviour.

    Article  CAS  PubMed  Google Scholar 

  104. Chafee, M. V. & Goldman-Rakic, P. S. Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. J. Neurophysiol. 83, 1550–1566 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Tomita, H., Ohbayashi, M., Nakahara, K., Hasegawa, I. & Miyashita, Y. Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401, 699–703 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Miller, E. K. The prefrontal cortex: complex neural properties for complex behavior. Neuron 22, 15–17 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Durstewitz, D., Seamans, J. K. & Sejnowski, T. J. Neurocomputational models of working memory. Nature Neurosci. 3, 1184–1191 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Amit, D. J., Fusi, S. & Yakovlev, V. Paradigmatic working memory (attractor) cell in IT cortex. Neural Comput. 9, 1071–1092 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Compte, A., Brunel, N., Goldman-Rakic, P. S. & Wang, X. J. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10, 910–923 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Miller, P., Brody, C. D., Romo, R. & Wang, X. -J. A recurrent network model of somatosensory parametric working memory in the prefrontal cortex. Cereb. Cortex 13, 1208–1218 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

T. Pasternak was supported by a grant from the National Eye Institute and, in part, a grant to the Center for Visual Science. M. Greenlee acknowledges financial support from the German Research Foundation. We thank Gregor Rainer for comments on the early version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Pasternak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Pasternak's homepage

Greenlee's homepage

Glossary

VENTRAL AND DORSAL VISUAL STREAMS

Visual information coming from V1 is processed in two interconnected but partly dissociable visual pathways, a 'ventral' pathway extending into the temporal lobe, which is thought to be primarily involved in visual object recognition, and a 'dorsal' pathway extending into the parietal lobes, which are thought to be more involved in extracting information about 'where' an object is or 'how' to execute visually guided action towards it.

ROC

(Receiver operating characteristic). ROC analysis, introduced in signal detection theory, is often used to evaluate the results of a detection task with weak signals. A ROC curve is generated by plotting the probability of true positives (hits) against the probability of false positives (false alarms) for a binary classifier system as its criterion is varied. In neurophysiology, it is used to test whether an ideal observer could reliably identify a given stimulus (such as direction of stimulus motion) or a behaviour based on a neural response (such as firing rate).

N-BACK TASKS

The subject is presented with a series of stimuli and is required to respond when the stimulus on the current trial matches that presented n trials ago. The memory load can be increased by increasing n. The subject has a dual task: to encode the current stimulus and to compare it with that presented on the n-to-last trial.

DELAYED MATCHING-TO-SAMPLE TASKS

Presentation of a stimulus is followed by a delay, after which a choice is offered. In matching tasks, the original stimulus that was presented must be chosen; in non-matching tasks, a new stimulus must be selected. With small stimulus sets, the stimuli are frequently repeated and become highly familiar. So, such tasks are most readily solved by short-term or working memory rather than by long-term memory. In the original version of this task, trained animals or instructed volunteers report whether two stimuli separated by a memory delay are the same or different.

TRANSCRANIAL MAGNETIC STIMULATION

A technique that is used to induce a transient interruption of normal activity in a relatively restricted area of the brain. It is based on the generation of a strong magnetic field near the area of interest, which, if changed rapidly enough, will induce an electric field that is sufficient to stimulate neurons.

PRIMING

The facilitation of recognition, reproduction or biases in the selection of stimuli that have recently been perceived.

MAGNETOENCEPHALOGRAPHY

A non-invasive technique that allows the detection of the changing magnetic fields that are associated with brain activity. As the magnetic fields of the brain are weak, extremely sensitive magnetic detectors known as superconducting quantum interference devices — which work at very low, superconducting temperatures (−269 °C) — are used to pick up the signal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasternak, T., Greenlee, M. Working memory in primate sensory systems. Nat Rev Neurosci 6, 97–107 (2005). https://doi.org/10.1038/nrn1603

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1603

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing