Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signalling mechanisms mediating neuronal responses to guidance cues

Key Points

  • Neuronal migration and axon pathfinding are guided by extracellular cues, including netrins, semaphorins, ephrins and Slits. This review focuses on the signalling mechanisms that underlie axon guidance and neuronal migration in the vertebrate nervous system.

  • There are several classical models of axon projection and neuronal migration in vertebrates, including the retinotectal projection, the commissural axons of the spinal cord, the radially migrating neuronal precursors in the neocortex, and the tangentially migrating neurons in the rostral migratory stream.

  • Actin assembly is a key process that controls the growth and steering of axon growth cones (although recent evidence also supports a role for microtubules). The Rho family of small GTPases, which includes Rho, Rac and Cdc42, have important roles in regulating actin cytoskeletal dynamics and have been implicated in growth cone guidance.

  • Netrins were the first family of directional guidance cues to be found in both invertebrate and vertebrate nervous systems. Netrin-1 and netrin-2 were identified as floor-plate-derived promoters of commissural axon outgrowth. A single netrin can be attractive to some axons and repulsive to others.

  • Semaphorins are a family of secreted and membrane-associates proteins that can mediate axon repulsion and growth cone collapse. They have also been implicated in immune responses.

  • Ephrins are membrane-associated guidance molecules, and are divided into two classes (A and B) on the basis of their mechanism of membrane association. The Eph proteins were originally defined as the receptors for the ephrins, but they can also act as ephrin ligands.

  • Slits are axon repellents, and they are also important for neuronal migration. Roundabout (Robo) is a cell surface receptor that is responsible for the repulsive effect of Slit.

  • The chemokine stromal-derived factor 1 (Sdf1) is involved in axon guidance and neuronal migration. Sdf1 is expressed in the meninges surrounding the cerebellum, and it prevents premature migration of granule cells into the inner layer by anchoring them in the external layer.

  • Recent reports have implicated several well-known morphogens in axon guidance, including sonic hedgehog, bone morphogenetic proteins and the Wnt family of secreted proteins.

  • Different signals have to be integrated in the growth cone to reach an appropriate response and this requires crosstalk between the signalling pathways; for example, through receptor–receptor interaction, regulation of the RhoGTPases or modulation of intracellular levels of second messengers.

Abstract

Several families of extracellular guidance cues have been implicated in guiding neurons and axons to their appropriate destinations in the nervous system. Their receptors include single- and seven-transmembrane receptors, and their signal transduction pathways converge onto the Rho family of small GTPases, which control the cytoskeleton. A single guidance protein can use different mechanisms to regulate different kinds of motility or the motilities of different cell types. There is crosstalk between the signalling pathways initiated by distinct guidance cues. Studies of neuronal guidance mechanisms have shed light not only on neural development, but also on other processes that involve the extracellular regulation of the cytoskeleton.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classical pathways of axon projection and neuronal migration.
Figure 2: Signal transduction pathways downstream of the Rho GTPases in regulation of cytoskeletal organization.
Figure 3: Intracellular signalling pathways of netrin receptors.
Figure 4: Intracellular signalling pathways of semaphorin receptors.
Figure 5: Forward and reverse ephrin-Eph signalling.
Figure 6: Intracellular signalling pathways mediating the Slit responses.

Similar content being viewed by others

References

  1. Colamarino, S. A. & Tessier-Lavigne, M. The role of the floor plate in axon guidance. Annu. Rev. Neurosci. 18, 497–529 (1995).

    CAS  PubMed  Google Scholar 

  2. Kennedy, T. E. Cellular mechanisms of netrin function: long-range and short-range actions. Biochem. Cell Biol. 78, 569–575 (2000).

    CAS  PubMed  Google Scholar 

  3. Merz, D. C. & Culotti, J. G. Genetic analysis of growth cone migrations in Caenorhabditis elegans. J. Neurobiol. 44, 281–288 (2000).

    CAS  PubMed  Google Scholar 

  4. Kolodkin, A. L. & Ginty, D. D. Steering clear of semaphorins: neuropilins sound the retreat. Neuron 19, 1159–1162 (1997).

    CAS  PubMed  Google Scholar 

  5. Raper, J. A. Semaphorins and their receptors in vertebrates and invertebrates. Curr. Opin. Neurobiol. 10, 88–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Flanagan, J. G. & Vanderhaeghen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. O'Leary, D. D. & Wilkinson, D. G. Eph receptors and ephrins in neural development. Curr. Opin. Neurobiol. 9, 65–73 (1999).

    CAS  PubMed  Google Scholar 

  8. Palmer, A. & Klein, R. Multiple roles of ephrins in morphogenesis, neuronal networking, and brain function. Genes Dev. 17, 1429–1450 (2003).

    CAS  PubMed  Google Scholar 

  9. Wong, K., Park, H. T., Wu, J. Y. & Rao, Y. Slit proteins: molecular guidance cues for cells ranging from neurons to leukocytes. Curr. Opin. Genet. Dev. 12, 583–591 (2002).

    CAS  PubMed  Google Scholar 

  10. Wu, W. et al. Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400, 331–336 (1999). This paper demonstrates that Slit guides neuronal migration, establishing that axon guidance and neuronal migration share similar guidance mechanisms.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu, J. Y. et al. The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature 410, 948–952 (2001). This paper demonstrates that fundamental guidance mechanisms are conserved from neurons to leukocytes, and proposes the idea that all somatic cells use similar guidance mechanisms

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rao, Y., Wong, K., Ward, M., Jurgensen, C. & Wu, J. Y. Neuronal migration and molecular conservation with leukocyte chemotaxis. Genes Dev. 16, 2973–2984 (2002).

    CAS  PubMed  Google Scholar 

  13. Klein, R. S. et al. SDF-1α induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells. Development 128, 1971–1981 (2001).

    CAS  PubMed  Google Scholar 

  14. Lu, Q., Sun, E. E., Klein, R. S. & Flanagan, J. G. Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell 105, 69–79 (2001). This paper provides an interesting molecular mechanism for interaction between signalling pathways: Eph binding to ephrin causes the intracellular part of ephrin to bind an RGS protein, which inactivates heterotrimeric G proteins that are downstream of Cxcr4 — the receptor for Sdf1 — thereby inhibiting Sdf1–Cxcr4 signalling.

    CAS  PubMed  Google Scholar 

  15. Lu, M., Grove, E. A. & Miller, R. J. Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. Proc. Natl Acad. Sci. USA 99, 7090–7095 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu, Y. et al. Role of the chemokine SDF-1 as the meningeal attractant for embryonic cerebellar neurons. Nature Neurosci. 5, 719–720 (2002).

    CAS  PubMed  Google Scholar 

  17. Xiang, Y. et al. Nerve growth cone guidance mediated by G protein-coupled receptors. Nature Neurosci. 5, 843–848 (2002). References 13–17 demonstrate that the chemokine Sdf1 works directly on neurons to guide axon projection and neuronal migration. Taken together with the results in reference 11, these results establish that guidance cues are conserved between neurons and leukocytes.

    CAS  PubMed  Google Scholar 

  18. Wang, B. et al. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4, 19–29 (2003).

    PubMed  Google Scholar 

  19. Serini, G. et al. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 424, 391–397 (2003). Results in references 18, 19 and 115 show that 'neuronal' guidance cues also act on vascular endothelial cells.

    CAS  PubMed  Google Scholar 

  20. Song, H. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518 (1998). References 20 and 226 showed that changes in the levels of cyclic nucleotides could qualitatively regulate axonal responses, which revealed not only a striking phenomenon, but also raises an interesting mechanistic question. Later work by the same and other groups also indicates that this is helpful for designing therapeutic approaches, by reversing axonal responses to molecules that would otherwise inhibit the regeneration of axons after injury.

    CAS  PubMed  Google Scholar 

  21. Nishiyama, M. et al. Cyclic AMP/GMP-dependent modulation of Ca2+ channels sets the polarity of nerve growth-cone turning. Nature 424, 990–995 (2003).

    Google Scholar 

  22. Hong, K., Nishiyama, M., Henley, J., Tessier-Lavigne, M. & Poo, M. Calcium signalling in the guidance of nerve growth by netrin-1. Nature 403, 93–98 (2000).

    CAS  PubMed  Google Scholar 

  23. Zheng, J. Q. Turning of nerve growth cones induced by localized increases in intracellular calcium ions. Nature 403, 89–93 (2000). References 21–23 show the role of localized changes in Ca2+ concentration in axon guidance.

    CAS  PubMed  Google Scholar 

  24. Colavita, A., Krishna, S., Zheng, H., Padgett, R. W. & Culotti, J. G. Pioneer axon guidance by UNC-129, a C. elegans TGF-β. Science 281, 706–709 (1998). The first report of genetic evidence indicating that a morphogen of the TGFβ family functions in axon guidance, possibly using a non-canonical TGFβ signalling pathway.

    CAS  PubMed  Google Scholar 

  25. Augsburger, A., Schuchardt, A., Hoskins, S., Dodd, J. & Butler, S. BMPs as mediators of roof plate repulsion of commissural neurons. Neuron 24, 127–141 (1999). This article and reference 209 establish the repulsive function of BMPs for commissural axons in the mammalian neural tube.

    CAS  PubMed  Google Scholar 

  26. Bonkowsky, J. L., Yoshikawa, S., O'Keefe, D. D., Scully, A. L. & Thomas, J. B. Axon routing across the midline controlled by the Drosophila Derailed receptor. Nature 402, 540–544 (1999).

    CAS  PubMed  Google Scholar 

  27. Charron, F., Stein, E., Jeong, J., McMahon, A. P. & Tessier-Lavigne, M. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113, 11–23 (2003).

    CAS  PubMed  Google Scholar 

  28. Yoshikawa, S., McKinnon, R. D., Kokel, M. & Thomas, J. B. Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 422, 583–588 (2003). This and reference 26 demonstrate that Wnt acts through the Derailed receptor (which is a transmembrane receptor with homology to tyrosine kinase but probably has no kinase activity) in axon guidance through a non-canonical Wnt signalling pathway.

    CAS  PubMed  Google Scholar 

  29. Sperry, R. W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl Acad. Sci. USA 50, 703–710 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shewan, D., Dwivedy, A., Anderson, R. & Holt, C. Age-related changes underlie switch in netrin-1 responsiveness as growth cones advance along visual pathway. Nature Neurosci. 5, 955–962 (2002).

    CAS  PubMed  Google Scholar 

  31. Constantine-Paton, M. & Caprianica, R. R. Central projection of optic tract from translocated eyes in the leopard frog (Rana pipiens). Science 189, 480–482 (1975). References 29 and 31 are the classic papers on the chemoaffinity hypothesis of axon guidance. A must-read for anyone entering the field.

    CAS  PubMed  Google Scholar 

  32. Constantine-Paton, M. & Caprianica, R. R. Axonal guidance of developing optic nerves in the frog. I. Anatomy of the projection from the transplanted eye primordia. J. Comp. Neurol. 170, 17–31 (1976).

    CAS  PubMed  Google Scholar 

  33. Bonhoeffer, F. & Huf, J. Recognition of cell types by axonal growth cones in vitro. Nature 288, 162–164 (1980).

    CAS  PubMed  Google Scholar 

  34. Bonhoeffer, F. & Huf, J. In vitro experiments on axon guidance demonstrating an anterior–posterior gradient on the tectum. EMBO J. 1, 427–431 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Walter, J., Kern-Veits, B., Huf, J., Stolze, B. & Bonhoeffer, F. Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. Development 101, 685–696 (1987).

    CAS  PubMed  Google Scholar 

  36. Cheng, H. J. & Flanagan, J. G. Identification and cloning of ELF-1, a developmentally expressed ligand for the Mek4 and Sek receptor tyrosine kinases. Cell 79, 157–168 (1994). Using a powerful molecular approach, combined with insights gained from expression patterns, this study showed that the ligand for transmembrane receptor tyrosine kinases is an ephrin. Work by this group and others established that ephrin repels specific retinal axons.

    CAS  PubMed  Google Scholar 

  37. Drescher, U. et al. In vitro guidance of retinal ganglion cell axons by RAGS, a 25kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359–370 (1995). This is the culmination of the elegant and heroic series of work (see also references 33–35) by F. Bonhoeffer and colleagues, starting from the establishment of an in vitro assay, to functional realization of a repellent in the tectum, all the way through biochemical purifications to successfully identifying the molecular nature of the repellent as an ephrin.

    CAS  PubMed  Google Scholar 

  38. de la Torre, J. R. et al. Turning of retinal growth cones in a netrin-1 gradient mediated by the netrin receptor DCC. Neuron 19, 1211–1224 (1997).

    CAS  PubMed  Google Scholar 

  39. Fricke, C., Lee, J. S., Geiger-Rudolph, S., Bonhoeffer, F. & Chien, C. B. astray, a zebrafish roundabout homolog required for retinal axon guidance. Science 292, 507–510 (2001).

    CAS  PubMed  Google Scholar 

  40. Hutson, L. D. & Chien, C. B. Pathfinding and error correction by retinal axons: the role of astray/robo2. Neuron 33, 205–217 (2002). Dynamic analyses of the Robo phenotype in the zebrafish are informative on the in vivo function of Slit/Robo signalling.

    CAS  PubMed  Google Scholar 

  41. Plump, A. S. et al. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33, 219–232 (2002).

    CAS  PubMed  Google Scholar 

  42. Nakagawa, S. et al. Ephrin-B regulates the ipsilateral routing of retinal axons at the optic chiasm. Neuron 25, 599–610 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, H. S. et al. Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell 96, 807–818 (1999).

    CAS  PubMed  Google Scholar 

  44. Altman, J. & Bayer, S. A. The development of the rat spinal cord. Adv. Anat. Embryol. Cell Biol. 85, 1–164 (1984).

    CAS  PubMed  Google Scholar 

  45. Tessier-Lavigne, M., Placzek, M., Lumsden, A. G., Dodd, J. & Jessell, T. M. Chemotropic guidance of developing axons in the mammalian central nervous system. Nature 336, 775–778 (1988). This is the first report of a chemoattractive activity in the floor plate from commissural axons.

    CAS  PubMed  Google Scholar 

  46. Placzek, M., Tessier-Lavigne, M., Jessell, T. & Dodd, J. Orientation of commissural axons in vitro in response to a floor plate-derived chemoattractant. Development 110, 19–30 (1990).

    CAS  PubMed  Google Scholar 

  47. Bovolenta, P. & Dodd, J. Guidance of commissural growth cones at the floor plate in embryonic rat spinal cord. Development 109, 435–447 (1990).

    CAS  PubMed  Google Scholar 

  48. Bovolenta, P. & Dodd, J. Perturbation of neuronal differentiation and axon guidance in the spinal cord of mouse embryos lacking a floor plate: analysis of Danforth's short-tail mutation. Development 113, 625–639 (1991).

    CAS  PubMed  Google Scholar 

  49. Stoeckli, E. T., Sonderegger, P., Pollerberg, G. E. & Landmesser, L. T. Interference with axonin-1 and NrCAM interactions unmasks a floor-plate activity inhibitory for commissural axons. Neuron 18, 209–221 (1997).

    CAS  PubMed  Google Scholar 

  50. Shirasaki, R., Katsumata, R. & Murakami, F. Change in chemoattractant responsiveness of developing axons at an intermediate target. Science 279, 105–107 (1998). An interesting paper showing that commissural axons are attracted by the floor plate (and netrin) before crossing the floor plate, but are not attracted by the floor plate or netrin after crossing.

    CAS  PubMed  Google Scholar 

  51. Matise, M. P., Lustig, M., Sakurai, T., Grumet, M. & Joyner, A. L. Ventral midline cells are required for the local control of commissural axon guidance in the mouse spinal cord. Development 126, 3649–3659 (1999).

    CAS  PubMed  Google Scholar 

  52. Shirasaki, R. & Murakami, F. Crossing the floor plate triggers sharp turning of commissural axons. Dev. Biol. 236, 99–108 (2001).

    CAS  PubMed  Google Scholar 

  53. Rakic, P. Guidance of neurons migrating to the fetal monkey neocortex. Brain Res. 33, 471–476 (1971). A classic paper showing the role of radial glial cells in neuronal migration.

    CAS  PubMed  Google Scholar 

  54. Hatten, M. E. & Mason, C. A. Mechanisms of glial-guided neuronal migration in vitro and in vivo. Experientia 46, 907–916 (1990).

    CAS  PubMed  Google Scholar 

  55. Altman, J. & Das, G. D. Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J. Comp. Neurol. 126, 337–389 (1966).

    CAS  PubMed  Google Scholar 

  56. Altman, J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J. Comp. Neurol. 137, 433–457 (1969).

    CAS  PubMed  Google Scholar 

  57. Luskin, M. B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).

    CAS  PubMed  Google Scholar 

  58. Lois, C. & Alvarez-Buylla, A. Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148 (1994).

    CAS  PubMed  Google Scholar 

  59. Hu, H. & Rutishauser, U. A septum-derived chemorepulsive factor for migrating olfactory interneuron precursors. Neuron 16, 933–940 (1996).

    CAS  PubMed  Google Scholar 

  60. Liu, G. & Rao, Y. Neuronal migration from the forebrain to the olfactory bulb requires a new attractant persistent in the olfactory bulb. J. Neurosci. 23, 6651–6659 (2003). Evidence that there are more guidance cues to be defined molecularly, and that molecular cues might be used even in adult stages for directional guidance.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bear, J. E., Krause, M. & Gertler, F. B. Regulating cellular actin assembly. Curr. Opin. Cell Biol. 13, 158–166 (2001).

    CAS  PubMed  Google Scholar 

  62. Luo, L. Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu. Rev. Cell Dev. Biol. 18, 601–635 (2002).

    CAS  PubMed  Google Scholar 

  63. Buck, K. B. & Zheng, J. Q. Growth cone turning induced by direct local modification of microtubule dynamics. J. Neurosci. 22, 9358–9367 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dickson, B. J. Rho GTPases in growth cone guidance. Curr. Opin. Neurobiol. 11, 103–110 (2001).

    CAS  PubMed  Google Scholar 

  65. Luo, L. Rho GTPases in neuronal morphogenesis. Nature Rev. Neurosci. 1, 173–180 (2000).

    CAS  Google Scholar 

  66. Patel, B. N. & Van Vactor, D. L. Axon guidance: the cytoplasmic tail. Curr. Opin. Cell Biol. 14, 221–229 (2002).

    CAS  PubMed  Google Scholar 

  67. Bishop, A. L. & Hall, A. Rho GTPases and their effector proteins. Biochem. J. 348, 241–255 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lamarche, N. & Hall, A. GAPs for rho-related GTPases. Trends Genet. 10, 436–440 (1994).

    CAS  PubMed  Google Scholar 

  69. Moon, S. Y. & Zheng, Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13, 13–22 (2003).

    CAS  PubMed  Google Scholar 

  70. Schmidt, A. & Hall, A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16, 1587–1609 (2002).

    CAS  PubMed  Google Scholar 

  71. Hart, M. J., Eva, A., Evans, T., Aaronson, S. A. & Cerione, R. A. Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl oncogene product. Nature 354, 311–314 (1991).

    CAS  PubMed  Google Scholar 

  72. Fukuhara, S., Murga, C., Zohar, M., Igishi, T. & Gutkind, J. S. A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J. Biol. Chem. 274, 5868–5879 (1999).

    CAS  PubMed  Google Scholar 

  73. Reuther, G. W. et al. Leukemia-associated Rho guanine nucleotide exchange factor, a Dbl family protein found mutated in leukemia, causes transformation by activation of RhoA. J. Biol. Chem. 276, 27145–27151 (2001).

    CAS  PubMed  Google Scholar 

  74. Shamah, S. M. et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105, 233–244 (2001). This article reported a direct connection between ephrin receptors and Rho family GTPases through a RhoGEF.

    CAS  PubMed  Google Scholar 

  75. Corvera, S. & Czech, M. P. Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol. 8, 442–446 (1998).

    CAS  PubMed  Google Scholar 

  76. Brugnera, E. et al. Unconventional Rac-GEF activity is mediated through the Dock180–ELMO complex. Nature Cell Biol. 4, 574–582 (2002).

    CAS  PubMed  Google Scholar 

  77. Cote, J. F. & Vuori, K. Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J. Cell Sci. 115, 4901–4913 (2002).

    CAS  PubMed  Google Scholar 

  78. Meller, N., Irani-Tehrani, M., Kiosses, W. B., Del Pozo, M. A. & Schwartz, M. A. Zizimin1, a novel Cdc42 activator, reveals a new GEF domain for Rho proteins. Nature Cell Biol. 4, 639–647 (2002).

    CAS  PubMed  Google Scholar 

  79. Wu, Y. C. & Horvitz, H. R. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392, 501–504 (1998).

    CAS  PubMed  Google Scholar 

  80. Hedgecock, E. M., Culotti, J. G., Thomson, J. N. & Perkins, L. A. Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev. Biol. 111, 158–170 (1985). The first report using a genetic approach to search for genes involved in axon guidance.

    CAS  PubMed  Google Scholar 

  81. Hedgecock, E. M., Culotti, J. G., Hall, D. H. & Stern, B. D. Genetics of cell and axon migrations in Caenorhabditis elegans. Development 100, 365–382 (1987).

    CAS  PubMed  Google Scholar 

  82. Hedgecock, E. M., Culotti, J. G. & Hall, D. H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61–85 (1990). A classic paper characterizing the roles of unc-5, unc-6 and unc-40 in axon projection and mesodermal cell migration. The functions defined here provide a model for all animal species.

    CAS  PubMed  Google Scholar 

  83. Ishii, N., Wadsworth, W. G., Stern, B. D., Culotti, J. G. & Hedgecock, E. M. UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron 9, 873–881 (1992).

    CAS  PubMed  Google Scholar 

  84. Bernhardt, R. R., Nguyen, N. & Kuwada, J. Y. Growth cone guidance by floor plate cells in the spinal cord of zebrafish embryos. Neuron 8, 869–882 (1992).

    CAS  PubMed  Google Scholar 

  85. Kennedy, T. E., Serafini, T., de la Torre, J. R. & Tessier-Lavigne, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425–435 (1994).

    CAS  PubMed  Google Scholar 

  86. Serafini, T. et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424 (1994). References 85 and 86 report on the discovery of netrin as the floor plate attractant for commissural axons. On the basis of the finding that netrin is homologous to UNC-6, these papers establish the important idea that guidance cues are conserved between vertebrates and invertebrates.

    CAS  PubMed  Google Scholar 

  87. Chan, S. S. et al. UNC-40, a C. elegans homolog of DCC (Deleted in colorectal cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87, 187–195 (1996).

    CAS  PubMed  Google Scholar 

  88. Leung-Hagesteijn, C. et al. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell 71, 289–299 (1992).

    CAS  PubMed  Google Scholar 

  89. Keino-Masu, K. et al. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87, 175–185 (1996).

    CAS  PubMed  Google Scholar 

  90. Fazeli, A. et al. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 386, 796–804 (1997).

    CAS  PubMed  Google Scholar 

  91. Ackerman, S. L. et al. The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386, 838–842 (1997).

    CAS  PubMed  Google Scholar 

  92. Leonardo, E. D. et al. Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature 386, 833–838 (1997).

    CAS  PubMed  Google Scholar 

  93. Przyborski, S. A., Knowles, B. B. & Ackerman, S. L. Embryonic phenotype of Unc5h3 mutant mice suggests chemorepulsion during the formation of the rostral cerebellar boundary. Development 125, 41–50 (1998).

    CAS  PubMed  Google Scholar 

  94. Engelkamp, D. Cloning of three mouse Unc5 genes and their expression patterns at mid-gestation. Mech. Dev. 118, 191–197 (2002).

    CAS  PubMed  Google Scholar 

  95. Kolodziej, P. A. et al. frazzled encodes a Drosophila member of the DCC immunoglobulin subfamily and is required for CNS and motor axon guidance. Cell 87, 197–204 (1996).

    CAS  PubMed  Google Scholar 

  96. Hamelin, M., Zhou, Y., Su, M. W., Scott, I. M. & Culotti, J. G. Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally. Nature 364, 327–330 (1993).

    CAS  PubMed  Google Scholar 

  97. Fearon, E. R. et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 247, 49–56 (1990).

    CAS  PubMed  Google Scholar 

  98. Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927–941 (1999). References 96 and 98 demonstrate that Unc5 and DCC can form a functional receptor complex to mediate repulsive responses to netrin.

    CAS  PubMed  Google Scholar 

  99. Keleman, K. & Dickson, B. J. Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron 32, 605–617 (2001). This paper reports that Unc5 alone is sufficient for short-range repulsion, whereas long-range repulsion requires both Unc5 and DCC (or Frazzled in flies).

    CAS  PubMed  Google Scholar 

  100. Colavita, A. & Culotti, J. G. Suppressors of ectopic UNC-5 growth cone steering identify eight genes involved in axon guidance in Caenorhabditis elegans. Dev. Biol. 194, 72–85 (1998).

    CAS  PubMed  Google Scholar 

  101. Huang, X., Cheng, H. J., Tessier-Lavigne, M. & Jin, Y. MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion. Neuron 34, 563–576 (2002).

    CAS  PubMed  Google Scholar 

  102. Gitai, Z., Yu, T. W., Lundquist, E. A., Tessier-Lavigne, M. & Bargmann, C. I. The netrin receptor Unc-40/DCC stimulates axon attraction and outgrowth through Enabled and, in parallel, Rac and Unc-115/Ablim. Neuron 37, 53–65 (2003). Results of genetic analyses of molecular components involved in netrin signalling in worms.

    CAS  PubMed  Google Scholar 

  103. Struckhoff, E. C. & Lundquist, E. A. The actin-binding protein UNC-115 is an effector of Rac signaling during axon pathfinding in C. elegans. Development 130, 693–704 (2003).

    CAS  PubMed  Google Scholar 

  104. Gertler, F. B., Niebuhr, K., Reinhard, M., Wehland, J. & Soriano, P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87, 227–239 (1996).

    CAS  PubMed  Google Scholar 

  105. Niebuhr, K. et al. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J. 16, 5433–5444 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Bachmann, C., Fischer, L., Walter, U. & Reinhard, M. The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation. J. Biol. Chem. 274, 23549–23557 (1999).

    CAS  PubMed  Google Scholar 

  107. Roof, D. J., Hayes, A., Adamian, M., Chishti, A. H. & Li, T. Molecular characterization of abLIM, a novel actin-binding and double zinc finger protein. J. Cell Biol. 138, 575–588 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Ming, G. et al. Phospholipase C-γ and phosphoinositide 3-kinase mediate cytoplasmic signaling in nerve growth cone guidance. Neuron 23, 139–148 (1999).

    CAS  PubMed  Google Scholar 

  109. Forcet, C. et al. Netrin-1-mediated axon outgrowth requires deleted in colorectal cancer-dependent MAPK activation. Nature 417, 443–447 (2002).

    CAS  PubMed  Google Scholar 

  110. Ming, G. L. et al. Adaptation in the chemotactic guidance of nerve growth cones. Nature 417, 411–418 (2002). This paper reveals that adaptation of neuronal responses involves MAPK.

    CAS  PubMed  Google Scholar 

  111. Campbell, D. S. & Holt, C. E. Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron 37, 939–952 (2003).

    CAS  PubMed  Google Scholar 

  112. Li, X., Saint-Cyr-Proulx, E., Aktories, K. & Lamarche-Vane, N. Rac1 and Cdc42 but not RhoA or Rho kinase activities are required for neurite outgrowth induced by the Netrin-1 receptor DCC (deleted in colorectal cancer) in N1E-115 neuroblastoma cells. J. Biol. Chem. 277, 15207–15214 (2002).

    CAS  PubMed  Google Scholar 

  113. Shekarabi, M. & Kennedy, T. E. The netrin-1 receptor DCC promotes filopodia formation and cell spreading by activating Cdc42 and Rac1. Mol. Cell. Neurosci. 19, 1–17 (2002).

    CAS  PubMed  Google Scholar 

  114. Yuan, X. B. et al. Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nature Cell Biol. 5, 38–45 (2003). This is a fairly comprehensive study of Rho GTPase involvement in axonal turning in the Xenopus spinal cord.

    CAS  PubMed  Google Scholar 

  115. Li, X. et al. The adaptor protein Nck-1 couples the netrin-1 receptor DCC (Deleted in colorectal cancer) to the activation of the small GTPase Rac1 through an atypical mechanism. J. Biol. Chem. 277, 37788–37797 (2002). References 112–115 reveal roles for Cdc42 and Rac1 in mediating netrin responses.

    CAS  PubMed  Google Scholar 

  116. Garrity, P. A. et al. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein. Cell 85, 639–650 (1996).

    CAS  PubMed  Google Scholar 

  117. Tong, J. et al. Netrin stimulates tyrosine phosphorylation of the UNC-5 family of netrin receptors and induces Shp2 binding to the RCM cytodomain. J. Biol. Chem. 276, 40917–40925 (2001).

    CAS  PubMed  Google Scholar 

  118. Killeen, M. et al. UNC-5 function requires phosphorylation of cytoplasmic tyrosine 482, but its UNC-40-independent functions also require a region between the ZU-5 and death domains. Dev. Biol. 251, 348–366 (2002).

    CAS  PubMed  Google Scholar 

  119. Campbell, D. S. & Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026 (2001).

    CAS  PubMed  Google Scholar 

  120. Graef, I. A. et al. Neurotrophins and netrins require Calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons. Cell 113, 657–670 (2003). This article reports that the transcription factor NFAT mediates the axon outgrowth response but not attractive responses to netrin. Involvement of transcription factors seems to be required for long-term, but not short-term responses.

    CAS  PubMed  Google Scholar 

  121. Pasterkamp, R. J. & Kolodkin, A. L. Semaphorin junction: making tracks toward neural connectivity. Curr. Opin. Neurobiol. 13, 79–89 (2003).

    CAS  PubMed  Google Scholar 

  122. Kolodkin, A. L. et al. Fasciclin IV: sequence, expression, and function during growth cone guidance in the grasshopper embryo. Neuron 9, 831–845 (1992).

    CAS  PubMed  Google Scholar 

  123. Kapfhammer, J. P. & Raper, J. A. Collapse of growth cone structure on contact with specific neurites in culture. J. Neurosci. 7, 201–212 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Luo, Y., Raible, D. & Raper, J. A. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75, 217–227 (1993). This biochemical study revealed the functional role of semaphorin as an axon guidance molecule in vertebrates.

    CAS  PubMed  Google Scholar 

  125. Kolodkin, A. L., Matthes, D. J. & Goodman, C. S. The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 75, 1389–1399 (1993). References 125–127 establish the Semaphorin family.

    CAS  PubMed  Google Scholar 

  126. Luo, Y. et al. A family of molecules related to collapsin in the embryonic chick nervous system. Neuron 14, 1131–1140 (1995).

    CAS  PubMed  Google Scholar 

  127. Messersmith, E. K. et al. Semaphorin III can function as a selective chemorepellent to pattern sensory projections in the spinal cord. Neuron 14, 949–959 (1995).

    CAS  PubMed  Google Scholar 

  128. Hall, K. T. et al. Human CD100, a novel leukocyte semaphorin that promotes B-cell aggregation and differentiation. Proc. Natl Acad. Sci. USA 93, 11780–11785 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Comeau, M. R. et al. A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR. Immunity 8, 473–482 (1998).

    CAS  PubMed  Google Scholar 

  130. He, Z. & Tessier-Lavigne, M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90, 739–751 (1997). References 130 and 131 demonstrate that neuropilin is a receptor for semaphorins.

    CAS  PubMed  Google Scholar 

  131. Kolodkin, A. L. et al. Neuropilin is a semaphorin III receptor. Cell 90, 753–762 (1997).

    CAS  PubMed  Google Scholar 

  132. Takahashi, T. et al. Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell 99, 59–69 (1999). References 132 and 133 show the role of plexins (and plexin/neuropilin complex) in semaphorin signalling.

    CAS  PubMed  Google Scholar 

  133. Tamagnone, L. et al. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 99, 71–80 (1999).

    CAS  PubMed  Google Scholar 

  134. Giordano, S. et al. The semaphorin 4D receptor controls invasive growth by coupling with Met. Nature Cell Biol. 4, 720–724 (2002).

    CAS  PubMed  Google Scholar 

  135. Winberg, M. L. et al. The transmembrane protein Off-track associates with Plexins and functions downstream of Semaphorin signaling during axon guidance. Neuron 32, 53–62 (2001).

    CAS  PubMed  Google Scholar 

  136. Rohm, B., Rahim, B., Kleiber, B., Hovatta, I. & Puschel, A. W. The semaphorin 3A receptor may directly regulate the activity of small GTPases. FEBS Lett. 486, 68–72 (2000).

    CAS  PubMed  Google Scholar 

  137. Vikis, H. G., Li, W., He, Z. & Guan, K. L. The semaphorin receptor plexin-B1 specifically interacts with active Rac in a ligand-dependent manner. Proc. Natl Acad. Sci. USA 97, 12457–12462 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Driessens, M. H. et al. Plexin-B semaphorin receptors interact directly with active Rac and regulate the actin cytoskeleton by activating Rho. Curr. Biol. 11, 339–344 (2001).

    CAS  PubMed  Google Scholar 

  139. Vikis, H. G., Li, W. & Guan, K. L. The plexin-B1/Rac interaction inhibits PAK activation and enhances Sema4D ligand binding. Genes Dev. 16, 836–845 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Hu, H., Marton, T. F. & Goodman, C. S. Plexin B mediates axon guidance in Drosophila by simultaneously inhibiting active Rac and enhancing RhoA signaling. Neuron 32, 39–51 (2001).

    CAS  PubMed  Google Scholar 

  141. Driessens, M. H., Olivo, C., Nagata, K., Inagaki, M. & Collard, J. G. B plexins activate Rho through PDZ-RhoGEF. FEBS Lett. 529, 168–172 (2002).

    CAS  PubMed  Google Scholar 

  142. Hirotani, M. et al. Interaction of plexin-B1 with PDZ domain-containing Rho guanine nucleotide exchange factors. Biochem. Biophys. Res. Commun. 297, 32–37 (2002).

    CAS  PubMed  Google Scholar 

  143. Aurandt, J., Vikis, H. G., Gutkind, J. S., Ahn, N. & Guan, K. L. The semaphorin receptor plexin-B1 signals through a direct interaction with the Rho-specific nucleotide exchange factor, LARG. Proc. Natl Acad. Sci. USA 99, 12085–12090 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Perrot, V., Vazquez-Prado, J. & Gutkind, J. S. Plexin B regulates Rho through the guanine nucleotide exchange factors leukemia-associated Rho GEF (LARG) and PDZ-RhoGEF. J. Biol. Chem. 277, 43115–43120 (2002).

    CAS  PubMed  Google Scholar 

  145. Swiercz, J. M., Kuner, R., Behrens, J. & Offermanns, S. Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron 35, 51–63 (2002).

    CAS  PubMed  Google Scholar 

  146. Mitsui, N. et al. Involvement of Fes/Fps tyrosine kinase in semaphorin3A signaling. EMBO J. 21, 3274–85 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Goshima, Y., Nakamura, F., Strittmatter, P. & Strittmatter, S. M. Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376, 509–514 (1995).

    CAS  PubMed  Google Scholar 

  148. Fukata, Y. et al. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nature Cell Biol. 4, 583–591 (2002).

    CAS  PubMed  Google Scholar 

  149. Sasaki, Y. et al. Fyn and Cdk5 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex. Neuron 35, 907–920 (2002).

    CAS  PubMed  Google Scholar 

  150. Zanata, S. M., Hovatta, I., Rohm, B. & Puschel, A. W. Antagonistic effects of Rnd1 and RhoD GTPases regulate receptor activity in Semaphorin 3A-induced cytoskeletal collapse. J. Neurosci. 22, 471–477 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Oinuma, I., Katoh, H., Harada, A. & Negishi, M. Direct interaction of Rnd1 with Plexin-B1 regulates PDZ-RhoGEF-mediated Rho activation by Plexin-B1 and induces cell contraction in COS-7 cells. J. Biol. Chem. 278, 25671–25677 (2003).

    CAS  PubMed  Google Scholar 

  152. Wennerberg, K. et al. Rnd proteins function as RhoA antagonists by activating p190 RhoGAP. Curr. Biol. 13, 1106–1115 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Pasterkamp, R. J., Peschon, J. J., Spriggs, M. K. & Kolodkin, A. L. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 424, 398–405 (2003).

    PubMed  Google Scholar 

  154. Furuyama, T. et al. Identification of a novel transmembrane semaphorin expressed on lymphocytes. J. Biol. Chem. 271, 33376–33381 (1996).

    CAS  PubMed  Google Scholar 

  155. Herold, C., Elhabazi, A., Bismuth, G., Bensussan, A. & Boumsell, L. CD100 is associated with CD45 at the surface of human T lymphocytes. Role in T cell homotypic adhesion. J. Immunol. 157, 5262–5268 (1996).

    CAS  PubMed  Google Scholar 

  156. Kumanogoh, A. et al. Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100: a novel mechanism for regulating B cell signaling. Immunity 13, 621–631 (2000).

    CAS  PubMed  Google Scholar 

  157. Shi, W. et al. The class IV semaphorin CD100 plays nonredundant roles in the immune system: defective B and T cell activation in CD100-deficient mice. Immunity 13, 633–642 (2000).

    CAS  PubMed  Google Scholar 

  158. Watanabe, C. et al. Enhanced immune responses in transgenic mice expressing a truncated form of the lymphocyte semaphorin CD100. J. Immunol. 167, 4321–4328 (2001).

    CAS  PubMed  Google Scholar 

  159. Delaire, S. et al. Biological activity of soluble CD100. II. Soluble CD100, similarly to H-SemaIII, inhibits immune cell migration. J. Immunol. 166, 4348–4354 (2001).

    CAS  PubMed  Google Scholar 

  160. Kumanogoh, A. & Kikutani, H. The CD100-CD72 interaction: a novel mechanism of immune regulation. Trends Immunol. 22, 670–676 (2001).

    CAS  PubMed  Google Scholar 

  161. Kumanogoh, A. et al. Class IV semaphorin Sema4A enhances T-cell activation and interacts with Tim-2. Nature 419, 629–633 (2002).

    CAS  PubMed  Google Scholar 

  162. Kullander, K. & Klein, R. Mechanisms and functions of Eph and ephrin signalling. Nature Rev. Mol. Cell Biol. 3, 475–486 (2002).

    CAS  Google Scholar 

  163. Holzman, L. B., Marks, R. M. & Dixit, V. M. A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein. Mol. Cell. Biol. 10, 5830–5838 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Contractor, A. et al. Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP. Science 296, 1864–1869 (2002).

    CAS  PubMed  Google Scholar 

  165. Penzes, P. et al. Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37, 263–274 (2003).

    CAS  PubMed  Google Scholar 

  166. Murai, K. K., Nguyen, L. N., Irie, F., Yamaguchi, Y. & Pasquale, E. B. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nature Neurosci. 6, 153–160 (2003).

    CAS  PubMed  Google Scholar 

  167. Elowe, S., Holland, S. J., Kulkarni, S. & Pawson, T. Downregulation of the Ras-mitogen-activated protein kinase pathway by the EphB2 receptor tyrosine kinase is required for ephrin-induced neurite retraction. Mol. Cell. Biol. 21, 7429–7441 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Miao, H. et al. Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nature Cell Biol. 3, 527–530 (2001).

    CAS  PubMed  Google Scholar 

  169. Ellis, C. et al. A juxtamembrane autophosphorylation site in the Eph family receptor tyrosine kinase, Sek, mediates high affinity interaction with p59fyn. Oncogene 12, 1727–1736 (1996).

    CAS  PubMed  Google Scholar 

  170. Zisch, A. H., Kalo, M. S., Chong, L. D. & Pasquale, E. B. Complex formation between EphB2 and Src requires phosphorylation of tyrosine 611 in the EphB2 juxtamembrane region. Oncogene 16, 2657–2670 (1998).

    CAS  PubMed  Google Scholar 

  171. Koleske, A. J. et al. Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron 21, 1259–1272 (1998).

    CAS  PubMed  Google Scholar 

  172. Yu, H. H., Zisch, A. H., Dodelet, V. C. & Pasquale, E. B. Multiple signaling interactions of Abl and Arg kinases with the EphB2 receptor. Oncogene 20, 3995–4006 (2001).

    CAS  PubMed  Google Scholar 

  173. Holland, S. J. et al. Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383, 722–725 (1996). References 173 and 174 provide convincing data for the reverse signalling of ephrins and Eph receptors.

    CAS  PubMed  Google Scholar 

  174. Bruckner, K., Pasquale, E. B. & Klein, R. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275, 1640–1643 (1997).

    CAS  PubMed  Google Scholar 

  175. Xu, Z., Lai, K. O., Zhou, H. M., Lin, S. C. & Ip, N. Y. Ephrin-B1 reverse signaling activates JNK through a novel mechanism that is independent of tyrosine phosphorylation. J. Biol. Chem. 278, 24767–24775 (2003).

    CAS  PubMed  Google Scholar 

  176. Palmer, A. et al. EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol. Cell 9, 725–737 (2002).

    CAS  PubMed  Google Scholar 

  177. Cowan, C. A. & Henkemeyer, M. The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature 413, 174–179 (2001).

    CAS  PubMed  Google Scholar 

  178. Knoll, B. & Drescher, U. Ephrin-As as receptors in topographic projections. Trends Neurosci. 25, 145–149 (2002).

    CAS  PubMed  Google Scholar 

  179. Davy, A. et al. Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev. 13, 3125–3135 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Davy, A. & Robbins, S. Ephrin-A5 modulates cell adhesion and morphology in an integrin-dependent manner. EMBO J. 19, 5396–5405 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Huai, J. & Drescher, U. An ephrin-A-dependent signaling pathway controls integrin function and is linked to the tyrosine phosphorylation of a 120-kDa protein. J. Biol. Chem. 276, 6689–6694 (2001).

    CAS  PubMed  Google Scholar 

  182. Wieschaus, E., Nusslein-Volhard, C. & Kluding, H. Kruppel, a gene whose activity is required early in the zygotic genome for normal embryonic segmentation. Dev. Biol. 104, 172–186 (1984). Slit mutations were discovered in this screen.

    CAS  PubMed  Google Scholar 

  183. Rothberg, J. M., Hartley, D. A., Walther, Z. & Artavanis-Tsakonas, S. slit: an EGF-homologous locus of D. melanogaster involved in the development of the embryonic central nervous system. Cell 55, 1047–1059 (1988).

    CAS  PubMed  Google Scholar 

  184. Rothberg, J. M., Jacobs, J. R., Goodman, C. S. & Artavanis-Tsakonas, S. slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Genes Dev. 4, 2169–2187 (1990).

    CAS  PubMed  Google Scholar 

  185. Brose, K. et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795–806 (1999).

    CAS  PubMed  Google Scholar 

  186. Kidd, T., Bland, K. S. & Goodman, C. S. Slit is the midline repellent for the robo receptor in Drosophila. Cell 96, 785–794 (1999).

    CAS  PubMed  Google Scholar 

  187. Wang, K. H. et al. Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 96, 771–784 (1999).

    CAS  PubMed  Google Scholar 

  188. Zhu, Y., Li, H., Zhou, L., Wu, J. Y. & Rao, Y. Cellular and molecular guidance of GABAergic neuronal migration from an extracortical origin to the neocortex. Neuron 23, 473–485 (1999).

    CAS  PubMed  Google Scholar 

  189. Ward, M., McCann, C., DeWulf, M., Wu, J. Y. & Rao, Y. Distinguishing between directional guidance and motility regulation in neuronal migration. J. Neurosci. 23, 5170–5177 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Kidd, T. et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92, 205–215 (1998).

    CAS  PubMed  Google Scholar 

  191. Zallen, J. A., Yi, B. A. & Bargmann, C. I. The conserved immunoglobulin superfamily member SAX-3/Robo directs multiple aspects of axon guidance in C. elegans. Cell 92, 217–227 (1998). References 190 and 191 characterize the function and molecular nature of Robo in flies and worms

    CAS  PubMed  Google Scholar 

  192. Rajagopalan, S., Vivancos, V., Nicolas, E. & Dickson, B. J. Selecting a longitudinal pathway: Robo receptors specify the lateral position of axons in the Drosophila CNS. Cell 103, 1033–1045 (2000).

    CAS  PubMed  Google Scholar 

  193. Simpson, J. H., Bland, K. S., Fetter, R. D. & Goodman, C. S. Short-range and long-range guidance by Slit and its Robo receptors: a combinatorial code of Robo receptors controls lateral position. Cell 103, 1019–1032 (2000).

    CAS  PubMed  Google Scholar 

  194. Bashaw, G. J., Kidd, T., Murray, D., Pawson, T. & Goodman, C. S. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell 101, 703–715 (2000). This article implicates the Abl tyrosine kinase in antagonizing Slit/Robo signalling.

    CAS  PubMed  Google Scholar 

  195. Wills, Z. et al. A Drosophila homolog of cyclase-associated proteins collaborates with the Abl tyrosine kinase to control midline axon pathfinding. Neuron 36, 611–622 (2002). Evidence presented here indicates that Abl synergizes with Slit/Robo signalling.

    CAS  PubMed  Google Scholar 

  196. Yu, T. W., Hao, J. C., Lim, W., Tessier-Lavigne, M. & Bargmann, C. I. Shared receptors in axon guidance: SAX-3/Robo signals via UNC-34/Enabled and a Netrin-independent UNC-40/DCC function. Nature Neurosci. 5, 1147–1154 (2002).

    CAS  PubMed  Google Scholar 

  197. Sun, Q., Bahri, S., Schmid, A., Chia, W. & Zinn, K. Receptor tyrosine phosphatases regulate axon guidance across the midline of the Drosophila embryo. Development 127, 801–812 (2000). In this study, RPTPs were found to interact with Slit/Robo signalling.

    CAS  PubMed  Google Scholar 

  198. Wong, K. et al. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit–Robo pathway. Cell 107, 209–221 (2001). This article made a biochemical and functional connection between Robo and Rho family GTPases (especially Cdc42) through the action of srGAPs.

    CAS  PubMed  Google Scholar 

  199. Fan, X, Labrador J. P, Hing, H. & Bashaw, G. J. Slit stimulation recruits Dock and Pak to the roundabout receptor and increases Rac activity to regulate axon repulsion at the CNS midline. Neuron 40, 113–127 (2002). This paper shows genetic interactions between slit, robo and rac1, dock and pak . The conclusion is that Slit activates Rac1 and Pak.

    Google Scholar 

  200. Hao, J. C. et al. C. elegans slit acts in midline, dorsal-ventral, and anterior-posterior guidance via the SAX-3/Robo receptor. Neuron 32, 25–38 (2001).

    CAS  PubMed  Google Scholar 

  201. McCutcheon, M. Chemotaxis in leukocytes. Physiol. Rev. 26, 319–336 (1946).

    CAS  PubMed  Google Scholar 

  202. Duel, T. F., Keim, P. S., Farmer, M. & Heinrikson, R. L. Amino acid sequence of human platelet factor 4. Proc. Natl Acad. Sci. USA 74, 2256–2258 (1977).

    Google Scholar 

  203. Yoshimura, T. et al. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc. Natl Acad. Sci. USA 84, 9233–9237 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Tashiro, K. et al. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science 261, 600–603 (1993).

    CAS  PubMed  Google Scholar 

  205. Nagasawa, T. et al. Molecular cloning and characterization of a murine pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry coreceptor fusin. Proc. Natl Acad. Sci. USA 93, 14726–14729 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I. & Littman, D. R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998).

    CAS  PubMed  Google Scholar 

  207. Ma, Q. et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl Acad. Sci. USA 95, 9448–9453 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Tachibana, K. et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393, 591–594 (1998).

    CAS  PubMed  Google Scholar 

  209. Bagri, A., Cheng, H. J., Yaron, A., Pleasure, S. J. & Tessier-Lavigne, M. Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphorin family. Cell 113, 285–299 (2003).

    CAS  PubMed  Google Scholar 

  210. Hogan, B. L. Bone morphogenetic proteins in development. Curr. Opin. Genet. Dev. 6, 432–438 (1996).

    CAS  PubMed  Google Scholar 

  211. Butler, S. J. & Dodd, J. A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron 38, 389–401 (2003).

    CAS  PubMed  Google Scholar 

  212. Nash, B., Colavita, A., Zheng, H., Roy, P. J. & Culotti, J. G. The forkhead transcription factor UNC-130 is required for the graded spatial expression of the UNC-129 TGF-β guidance factor in C. elegans. Genes Dev. 14, 2486–2500 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Rev. Genet. 1, 20–29 (2000).

    CAS  PubMed  Google Scholar 

  214. Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).

    CAS  PubMed  Google Scholar 

  215. Moon, R. T., Bowerman, B., Boutros, M. & Perrimon, N. The promise and perils of Wnt signaling through β-catenin. Science 296, 1644–1646 (2002).

    CAS  PubMed  Google Scholar 

  216. Wickelgren, I. Tracking insulin to the mind. Science 280, 517–519 (1998).

    CAS  PubMed  Google Scholar 

  217. Song, J., Wu, L., Chen, Z., Kohanski, R. A. & Pick, L. Axons guided by insulin receptor in Drosophila visual system. Science 300, 502–505 (2003).

    CAS  PubMed  Google Scholar 

  218. Hing, H., Xiao, J., Harden, N., Lim, L. & Zipursky, S. L. Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila. Cell 97, 853–863 (1999).

    CAS  PubMed  Google Scholar 

  219. Ruan, W., Pang, P. & Rao, Y. The SH2/SH3 adaptor protein dock interacts with the Ste20-like kinase misshapen in controlling growth cone motility. Neuron 24, 595–605 (1999).

    CAS  PubMed  Google Scholar 

  220. Clandinin, T. R. & Zipursky, S. L. Making connections in the fly visual system. Neuron 35, 827–841 (2002).

    CAS  PubMed  Google Scholar 

  221. Tayler, T. D. & Garrity, P. A. Axon targeting in the Drosophila visual system. Curr. Opin. Neurobiol. 13, 90–95 (2003). References 220 and 221 are excellent reviews on a model system for axon guidance in Drosophila . Much of the material reviewed is not covered here.

    CAS  PubMed  Google Scholar 

  222. Brogiolo, W. et al. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213–221 (2001).

    CAS  PubMed  Google Scholar 

  223. Monnier, P. P. et al. RGM is a repulsive guidance molecule for retinal axons. Nature 419, 392–395 (2002).

    CAS  PubMed  Google Scholar 

  224. Stein, E. & Tessier-Lavigne, M. Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 291, 1928–1938 (2001). This article provides a molecular basis for crosstalk between different guidance pathways (Slit/Robo and netrin/DCC) at the receptor level.

    CAS  PubMed  Google Scholar 

  225. Hornberger, M. et al. Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons. Neuron 22, 731–742 (1999).

    CAS  PubMed  Google Scholar 

  226. Dutting, D., Handwerker, C. & Drescher, U. Topographic targeting and pathfinding errors of retinal axons following overexpression of ephrinA ligands on retinal ganglion cell axons. Dev. Biol. 216, 297–311 (1999).

    CAS  PubMed  Google Scholar 

  227. Chalasani, S. H., Sabelko, K. A., Sunshine, M. J., Littman, D. R. & Raper, J. A. A chemokine, SDF-1, reduces the effectiveness of multiple axonal repellents and is required for normal axon pathfinding. J. Neurosci. 23, 1360–1371 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Ming, G. L. et al. cAMP-dependent growth cone guidance by netrin-1. Neuron 19, 1225–1235 (1997).

    CAS  PubMed  Google Scholar 

  229. Hopker, V. H., Shewan, D., Tessier-Lavigne, M., Poo, M. & Holt, C. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401, 69–73 (1999).

    CAS  PubMed  Google Scholar 

  230. Stevens, A. & Jacobs, J. R. Integrins regulate responsiveness to slit repellent signals. J. Neurosci. 22, 4448–4455 (2002). Genetic evidence in Drosophila that integrins are involved in Slit signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Rhee, J. et al. Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion. Nature Cell Biol. 4, 798–805 (2002).

    CAS  PubMed  Google Scholar 

  232. Brittis, P. A., Lu, Q. & Flanagan, J. G. Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110, 223–235 (2002).

    CAS  PubMed  Google Scholar 

  233. Araújo, S. J. & Tear, G. Axon guidance mechanisms and molecules: lessons from invertebrates. Nature Rev. Neurosci. 4, 910–922 (2003).

    Google Scholar 

Download references

Acknowledgements

Our review is limited by space, and work in invertebrates is covered more extensively in the reivew by Araújo and Tear in the November issue of Nature Reviews Neuroscience. The authors wish to thank J. Aurandt, H. Jiang, R. Kruger and H. Vikis for critical reading of the manuscript, G. Liu for help with figure 1e, M. Ward for the colour panel in figure 2 and for the neuronal migration panels in box 1, X.-B. Yuan for the axon turning panels in box 1, H.-T. Park for help with table 1. Research in our laboratories has been supported by grants from the NIH (K.L.G and Y.R.), the Walther Cancer Institute (K.L.G.) and the National Brain Tumor Foundation (Y.R).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun-Liang Guan or Yi Rao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

Abl

Ablim

Arg

Bif

Capt

CD72

Cdc42

CED-10

CED-5

CRAM

CRMP

Cxcr4

DCC

DOCK180

Drl

Ena

ephrins

Frazzled

InsR

max-1

Mbc

Mena

Met

Misshapen

Nck1

Neogenin

netrin

Neuropilins

Nfatc2

Nfatc3

Nfatc4

Otk

Plexins

Ptc

Rac

RGM

Robo

Robo2

Robo3

sax-3

Sdf1

semaphorins

slit

Slits

slt-1

Smo

Src

Tim2

UNC-115

UNC-129

unc-34

UNC-40

UNC-5

UNC-6

ZO-1

Glossary

ANGIOGENESIS

The formation of blood vessels, such as occurs during embryogenesis, tissue repair or tumourigenesis.

GLYCOSYLPHOSPHATIDLYLINOSITOL LINKAGE

A molecular mechanism for attaching a cell membrane protein to the lipid bilayer. It consists of a glycerophospholipid molecule that is attached to the protein through a carbohydrate chain.

BONE MORPHOGENETIC PROTEINS

Multifunctional secreted proteins of the transforming growth factor-β superfamily. In the early embryo, they participate in dorsoventral patterning.

WNT PROTEINS

A family of highly conserved secreted signalling molecules that are related to the Drosophila wingless protein, and which regulate cell–cell interactions during embryogenesis. Wnt proteins bind on the cell surface to receptors of the Frizzled family.

TECTUM

The dorsal portion of the midbrain (mesencephalon) that mediates reflexive responses to visual and auditory stimuli.

OPTIC CHIASM

The crossing point, in the base of the forebrain, for fibres from the two optic stalks that project to the opposite side of the brain.

FLOOR PLATE

The neural tube has been divided into different regions. The ventral cells closest to the midline constitute the floor plate. The dorsal cells closest to the midline correspond to the roof plate. The alar plate (dorsal) and the basal plate (ventral) lie between these two cell populations and are separated by the sulcus limitans.

MICROTUBULES

Hollow tubes, 25 nm in diameter, formed by the lateral association of 13 protofilaments, which are themselves polymers of α- and β-tubulin subunits.

LIM

Cysteine- and histadine-rich domain that was originally defined by lin1, isl1 and mec3.

SH3 DOMAIN

Src-homology domains are involved in interactions with phosphorylated tyrosine residues on other proteins (SH2 domains) or with proline-rich sections of other proteins (SH3 domains).

DEATH DOMAIN

A protein–protein interaction domain found in many proteins that are involved in signalling and apoptosis.

CASPASES

A family of intracellular cysteine endopeptidases that have a key role in inflammation and mammalian apoptosis. They cleave proteins at specific aspartate residues.

PROTEASOME

A protein complex responsible for degrading intracellular proteins that have been tagged for destruction by the addition of ubiquitin.

PDZ DOMAIN

A peptide-binding domain that is important for the organization of membrane proteins, particularly at cell–cell junctions, including synapses. It can bind to the carboxyl termini of proteins or can form dimers with other PDZ domains.

INTEGRINS

A large family of heterodimeric transmembrane proteins that act as receptors for cell adhesion molecules.

EXPRESSION CLONING

Cloning strategy that is based on the transfection of cDNAs such that functional proteins are expressed, followed by a screening of the functional activity of the gene of interest.

DOMINANT NEGATIVE

A mutant molecule that can form a heteromeric complex with the normal molecule, knocking out the activity of the entire complex.

NOTOCHORD

A rod-like structure of mesodermal origin that is found in vertebrate embryos. It participates in the differentiation of the ventral neural tube and in the specification of motor neurons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, KL., Rao, Y. Signalling mechanisms mediating neuronal responses to guidance cues. Nat Rev Neurosci 4, 941–956 (2003). https://doi.org/10.1038/nrn1254

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing