Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging

Key Points

  • Neural activity influences the haemodynamic properties of the cerebral vasculature in a number of ways. The increase in local blood flow and subsequent decrease in the local concentration of deoxygenated haemoglobin that occur at the site of neural activity are the basis of the blood-oxygen-level-dependent (BOLD) signal that is measured by functional magnetic resonance imaging (fMRI). Changes in neurovascular coupling that occur with age or disease might alter the BOLD signal.

  • Vasodilators that are probably mediators of neurovascular coupling include: K+, which is released from active nerve terminals; nitric oxide (NO), which is probably produced by neuronal NO synthase; release of eicosanoids by astrocytes, stimulated by glutamate; and possibly other neurotransmitters.

  • Changes in cerebrovascular ultrastructure during ageing result largely from arteriosclerotic changes, which probably decrease the elasticity and compliance of affected vessels. If cerebral vessels are occluded, post-stenotic compensatory dilation might reduce the dynamic range of vascular reactivity in the affected area.

  • Ageing is also associated with a decrease in resting cerebral blood flow, cerebral metabolic rate of O2 consumption and vascular reactivity. There is evidence that the BOLD signal shows a decreased signal-to-noise ratio in older subjects, probably because of a greater level of noise. In individuals with cerebrovascular disease, neurovascular coupling has also been found to be altered, although only two studies have been reported.

  • These findings have implications for fMRI studies that aim to compare neural activity between ageing or diseased populations and young or healthy subjects. It might be necessary to screen subjects carefully for cerebrovascular abnormalities. Possible alterations in neurovascular coupling must be considered when interpreting the results of such studies.

  • Advances in the design or analysis of experiments should make it easier to distinguish between changes in neurovascular coupling and changes in neural activity. The combination of functional imaging with other techniques, such as the measurement of event-related potentials, might also be helpful in this regard.

Abstract

Functional magnetic resonance imaging (fMRI) has rapidly emerged as a powerful tool for studying brain function, despite the fact that it measures neuronal activity indirectly, through the blood-oxygen-level-dependent (BOLD) signal. The BOLD signal depends on neurovascular coupling — the processes by which neural activity influences the haemodynamic properties of the surrounding vasculature. Although the exact mechanisms that underlie neurovascular coupling are not completely understood, there is empirical evidence that these mechanisms might be altered in normal ageing and disease. So, interpretation of BOLD fMRI studies of individuals with different ages or pathology might be more challenging than is commonly acknowledged.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the transformation of neural activity elicited by a stimulus to a haemodynamic response resulting in a blood-oxygen-level-dependent (BOLD) signal.
Figure 2: Some of the suspected mediators of neurovascular coupling.
Figure 3: Ultrastructural changes observed in the cerebral microvasculature of elderly individuals as compared with younger individuals.
Figure 4: Empirical observations of decreased signal-to-noise ratio in the blood-oxygen-level-dependent (BOLD) signal of older individuals as compared with younger individuals.
Figure 5: Abnormal blood-oxygen-level-dependent (BOLD) signal in patients with cerebrovascular pathology.

Similar content being viewed by others

David S. Knopman, Helene Amieva, … David T. Jones

References

  1. Leniger-Follert, E. & Hossmann, K. A. Simultaneous measurements of microflow and evoked potentials in the somatomotor cortex of the cat brain during specific sensory activation. Pflugers Arch. 380, 85–89 (1979).

    CAS  PubMed  Google Scholar 

  2. Malonek, D. & Grinvald, A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272, 551–554 (1996).

    CAS  PubMed  Google Scholar 

  3. Ogawa, S., Lee, T. M., Kay, A. R. & Tank, D. W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl Acad. Sci. USA 87, 9868–9872 (1990).

    CAS  PubMed  Google Scholar 

  4. Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping using MRI. Proc. Natl Acad. Sci. USA 89, 5951–5955 (1992).

    CAS  PubMed  Google Scholar 

  5. Kwong, K. K. et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl Acad. Sci. USA 89, 5675–5679 (1992).

    CAS  PubMed  Google Scholar 

  6. Thulborn, K. R., Waterton, J. C., Matthews, P. M. & Radda, G. K. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim. Biophys. Acta 714, 265–270 (1982).

    CAS  PubMed  Google Scholar 

  7. Turner, R., Le Bihan, D., Moonen, C. T., Despres, D. & Frank, J. Echo-planar time course MRI of cat brain oxygenation changes. Magn. Reson. Med. 22, 159–166 (1991).

    CAS  PubMed  Google Scholar 

  8. Buxton, R. B. & Frank, L. R. A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J. Cereb. Blood Flow Metab. 17, 64–72 (1997).

    CAS  PubMed  Google Scholar 

  9. Buxton, R. in Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques 408–412 (Cambridge Univ. Press, Cambridge, 2002).

    Google Scholar 

  10. Fox, P. T. & Raichle, M. E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl Acad. Sci. USA 83, 1140–1144 (1986).

    CAS  PubMed  Google Scholar 

  11. Heeger, D. J. & Ress, D. What does fMRI tell us about neuronal activity? Nature Rev. Neurosci. 3, 142–151 (2002).

    CAS  Google Scholar 

  12. Boynton, G. M., Engel, S. A., Glover, G. H. & Heeger, D. J. Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 16, 4207–4221 (1996).

    CAS  PubMed  Google Scholar 

  13. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    CAS  PubMed  Google Scholar 

  14. Aguirre, G. K., Zarahn, E. & D'Esposito, M. The variability of human, BOLD hemodynamic responses. Neuroimage 8, 360–369 (1998).

    CAS  PubMed  Google Scholar 

  15. Miezin, F. M., Maccotta, L., Ollinger, J. M., Petersen, S. E. & Buckner, R. L. Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. Neuroimage 11, 735–759 (2000).

    CAS  PubMed  Google Scholar 

  16. Attwell, D. & Iadecola, C. The neural basis of functional brain imaging signals. Trends Neurosci. 25, 621–625 (2002).

    CAS  PubMed  Google Scholar 

  17. Wahl, M. Local chemical, neural, and humoral regulation of cerebrovascular resistance vessels. J. Cardiovasc. Pharmacol. 7 (Suppl. 3), S36–S46 (1985).

    CAS  PubMed  Google Scholar 

  18. Paulson, O. B. & Newman, E. A. Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237, 896–898 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Nguyen, T. S., Winn, H. R. & Janigro, D. ATP-sensitive potassium channels may participate in the coupling of neuronal activity and cerebrovascular tone. Am. J. Physiol. Heart Circ. Physiol. 278, H878–H885 (2000).

    CAS  PubMed  Google Scholar 

  20. Daut, J. et al. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247, 1341–1344 (1990).

    CAS  PubMed  Google Scholar 

  21. Quayle, J. M., Nelson, M. T. & Standen, N. B. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol. Rev. 77, 1165–1232 (1997). An encyclopaedic review of K+ channels that are involved in regulation of the vasculature.

    CAS  PubMed  Google Scholar 

  22. Sobey, C. G. Potassium channel function in vascular disease. Arterioscler. Thromb. Vasc. Biol. 21, 28–38 (2001). This review describes the variety of K+ channels that are involved in the control of vascular tone, specifically focusing on how they can be altered by hypertension, diabetes and hypercholesterolaemia.

    CAS  PubMed  Google Scholar 

  23. Kinoshita, H., Katusic, Z. S. & Wei, E. P. Role of potassium channels in relaxations of isolated canine basilar arteries to acidosis. Stroke 28, 433–438 (1997).

    CAS  PubMed  Google Scholar 

  24. Derdeyn, C. P. et al. Compensatory mechanisms for chronic cerebral hypoperfusion in patients with carotid occlusion. Stroke 30, 1019–1024 (1999).

    CAS  PubMed  Google Scholar 

  25. Goadsby, P. J., Kaube, H. & Hoskin, K. L. Nitric oxide synthesis couples cerebral blood flow and metabolism. Brain Res. 595, 167–170 (1992).

    CAS  PubMed  Google Scholar 

  26. Iadecola, C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci. 16, 206–214 (1993). One of the earlier reviews of the significant role of NO in neurovascular coupling.

    CAS  PubMed  Google Scholar 

  27. Northington, F. J., Matherne, G. P. & Berne, R. M. Competitive inhibition of nitric oxide synthase prevents the cortical hyperemia associated with peripheral nerve stimulation. Proc. Natl Acad. Sci. USA 89, 6649–6652 (1992).

    CAS  PubMed  Google Scholar 

  28. Estrada, C. & DeFelipe, J. Nitric oxide-producing neurons in the neocortex: morphological and functional relationship with intraparenchymal microvasculature. Cereb. Cortex 8, 193–203 (1998).

    CAS  PubMed  Google Scholar 

  29. Bonvento, G., Cholet, N. & Seylaz, J. Sustained attenuation of the cerebrovascular response to a 10 min whisker stimulation following neuronal nitric oxide synthase inhibition. Neurosci. Res. 37, 163–166 (2000).

    CAS  PubMed  Google Scholar 

  30. Cholet, N., Bonvento, G. & Seylaz, J. Effect of neuronal NO synthase inhibition on the cerebral vasodilatory response to somatosensory stimulation. Brain Res. 708, 197–200 (1996).

    CAS  PubMed  Google Scholar 

  31. Cholet, N., Seylaz, J., Lacombe, P. & Bonvento, G. Local uncoupling of the cerebrovascular and metabolic responses to somatosensory stimulation after neuronal nitric oxide synthase inhibition. J. Cereb. Blood Flow Metab. 17, 1191–1201 (1997).

    CAS  PubMed  Google Scholar 

  32. Ma, J., Ayata, C., Huang, P. L., Fishman, M. C. & Moskowitz, M. A. Regional cerebral blood flow response to vibrissal stimulation in mice lacking type I NOS gene expression. Am. J. Physiol. 270, H1085–H1090 (1996).

    CAS  PubMed  Google Scholar 

  33. Lovick, T. A., Brown, L. A. & Key, B. J. Neurovascular relationships in hippocampal slices: physiological and anatomical studies of mechanisms underlying flow-metabolism coupling in intraparenchymal microvessels. Neuroscience 92, 47–60 (1999).

    CAS  PubMed  Google Scholar 

  34. Rusakov, D. A. & Kullmann, D. M. Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J. Neurosci. 18, 3158–3170 (1998).

    CAS  PubMed  Google Scholar 

  35. Barone, P. & Kennedy, H. Non-uniformity of neocortex: areal heterogeneity of NADPH-diaphorase reactive neurons in adult macaque monkeys. Cereb. Cortex 10, 160–174 (2000).

    CAS  PubMed  Google Scholar 

  36. Lindauer, U., Megow, D., Matsuda, H. & Dirnagl, U. Nitric oxide: a modulator, but not a mediator, of neurovascular coupling in rat somatosensory cortex. Am. J. Physiol. 277, H799–H811 (1999).

    CAS  PubMed  Google Scholar 

  37. Harder, D. R., Alkayed, N. J., Lange, A. R., Gebremedhin, D. & Roman, R. J. Functional hyperemia in the brain: hypothesis for astrocyte-derived vasodilator metabolites. Stroke 29, 229–234 (1998). This paper presents the astrocytic hypothesis for neurovascular coupling.

    CAS  PubMed  Google Scholar 

  38. Harder, D. R., Roman, R. J. & Gebremedhin, D. Molecular mechanisms controlling nutritive blood flow: role of cytochrome P450 enzymes. Acta Physiol. Scand. 168, 543–549 (2000).

    CAS  PubMed  Google Scholar 

  39. Zonta, M. et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neurosci. 6, 43–50 (2003). In a series of experiments presented in this paper, the full cascade from glutamate stimulation to eicosanoid production is elegantly confirmed.

    CAS  PubMed  Google Scholar 

  40. Bhardwaj, A. et al. P-450 epoxygenase and NO synthase inhibitors reduce cerebral blood flow response to N-methyl-D-aspartate. Am. J. Physiol. Heart Circ. Physiol. 279, H1616–H1624 (2000).

    CAS  PubMed  Google Scholar 

  41. Anderson, C. M. & Nedergaard, M. Astrocyte-mediated control of cerebral microcirculation. Trends Neurosci. 26, 340–344 (2003).

    CAS  PubMed  Google Scholar 

  42. Voutsinos-Porche, B. et al. Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron 37, 275–286 (2003).

    CAS  PubMed  Google Scholar 

  43. Wiencken, A. E. & Casagrande, V. A. Endothelial nitric oxide synthetase (eNOS) in astrocytes: another source of nitric oxide in neocortex. Glia 26, 280–290 (1999).

    CAS  PubMed  Google Scholar 

  44. Martin, J. A., Craft, D. K., Su, J. H., Kim, R. C. & Cotman, C. W. Astrocytes degenerate in frontotemporal dementia: possible relation to hypoperfusion. Neurobiol. Aging 22, 195–207 (2001).

    CAS  PubMed  Google Scholar 

  45. Porter, J. T. & McCarthy, K. D. Astrocytic neurotransmitter receptors in situ and in vivo. Prog. Neurobiol. 51, 439–455 (1997).

    CAS  PubMed  Google Scholar 

  46. Vaucher, E. & Hamel, E. Cholinergic basal forebrain neurons project to cortical microvessels in the rat: electron microscopic study with anterogradely transported Phaseolus vulgaris leucoagglutinin and choline acetyltransferase immunocytochemistry. J. Neurosci. 15, 7427–7441 (1995).

    CAS  PubMed  Google Scholar 

  47. Vaucher, E., Tong, X. K., Cholet, N., Lantin, S. & Hamel, E. GABA neurons provide a rich input to microvessels but not nitric oxide neurons in the rat cerebral cortex: a means for direct regulation of local cerebral blood flow. J. Comp. Neurol. 421, 161–171 (2000).

    CAS  PubMed  Google Scholar 

  48. Smiley, J. F., Levey, A. I. & Mesulam, M. M. Infracortical interstitial cells concurrently expressing m2-muscarinic receptors, acetylcholinesterase and nicotinamide adenine dinucleotide phosphate-diaphorase in the human and monkey cerebral cortex. Neuroscience 84, 755–769 (1998).

    CAS  PubMed  Google Scholar 

  49. Farkas, E. & Luiten, P. G. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog. Neurobiol. 64, 575–611 (2001). An excellent review of the microvascular aspects of normal ageing and Alzheimer's disease, with special attention to CBF, neural metabolic changes and abnormalities in ultrastructure.

    CAS  PubMed  Google Scholar 

  50. Furuta, A., Ishii, N., Nishihara, Y. & Horie, A. Medullary arteries in aging and dementia. Stroke 22, 442–446 (1991).

    CAS  PubMed  Google Scholar 

  51. Masawa, N. et al. Morphometry of structural preservation of tunica media in aged and hypertensive human intracerebral arteries. Stroke 25, 122–127 (1994).

    CAS  PubMed  Google Scholar 

  52. Nagasawa, S. et al. Mechanical properties of human cerebral arteries. Part 1: effects of age and vascular smooth muscle activation. Surg. Neurol. 12, 297–304 (1979).

    CAS  PubMed  Google Scholar 

  53. Knox, C. A., Yates, R. D., Chen, I. & Klara, P. M. Effects of aging on the structural and permeability characteristics of cerebrovasculature in normotensive and hypertensive strains of rats. Acta Neuropathol. (Berl.) 51, 1–13 (1980).

    CAS  Google Scholar 

  54. Kalaria, R. N. Cerebral vessels in ageing and Alzheimer's disease. Pharmacol. Ther. 72, 193–214 (1996).

    CAS  PubMed  Google Scholar 

  55. Moody, D. M., Brown, W. R., Challa, V. R., Ghazi-Birry, H. S. & Reboussin, D. M. Cerebral microvascular alterations in aging, leukoaraiosis, and Alzheimer's disease. Ann. NY Acad. Sci. 826, 103–116 (1997).

    CAS  PubMed  Google Scholar 

  56. Fang, H. C. H. in Neurobiology of Aging (eds Gerson, S. & Terry, R. D.) 155–166 (Raven, New York, 1976).

    Google Scholar 

  57. Abernethy, W. B., Bell, M. A., Morris, M. & Moody, D. M. Microvascular density of the human paraventricular nucleus decreases with aging but not hypertension. Exp. Neurol. 121, 270–274 (1993).

    CAS  PubMed  Google Scholar 

  58. Sonntag, W. E., Lynch, C. D., Cooney, P. T. & Hutchins, P. M. Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology 138, 3515–3520 (1997).

    CAS  PubMed  Google Scholar 

  59. Olsen, T. S., Skriver, E. B. & Herning, M. Radiologic manifestations of focal cerebral hyperemia in acute stroke. Acta Radiol. 32, 100–104 (1991).

    CAS  PubMed  Google Scholar 

  60. Kawamura, J. et al. Leuko-araiosis and cerebral perfusion in normal aging. Exp. Aging Res. 19, 225–240 (1993).

    CAS  PubMed  Google Scholar 

  61. Bentourkia, M. et al. Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J. Neurol. Sci. 181, 19–28 (2000).

    CAS  PubMed  Google Scholar 

  62. Reich, T. & Rusinek, H. Cerebral cortical and white matter reactivity to carbon dioxide. Stroke 20, 453–457 (1989).

    CAS  PubMed  Google Scholar 

  63. Krejza, J. et al. Transcranial color Doppler sonography of basal cerebral arteries in 182 healthy subjects: age and sex variability and normal reference values for blood flow parameters. Am. J. Roentgenol. 172, 213–218 (1999).

    CAS  Google Scholar 

  64. Cohen, E. R., Ugurbil, K. & Kim, S. G. Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J. Cereb. Blood Flow Metab. 22, 1042–1053 (2002).

    CAS  PubMed  Google Scholar 

  65. Schwarzbauer, C. & Heinke, W. Investigating the dependence of BOLD contrast on oxidative metabolism. Magn. Reson. Med. 41, 537–543 (1999).

    CAS  PubMed  Google Scholar 

  66. Yamaguchi, T. et al. Reduction in regional cerebral rate of oxygen during human aging. Stroke 17, 1220–1228 (1986).

    CAS  PubMed  Google Scholar 

  67. Takada, H. et al. Age-related decline of cerebral oxygen metabolism in normal population detected with positron emission tomography. Neurol. Res. 14, 128–131 (1992).

    CAS  PubMed  Google Scholar 

  68. Tamaki, K., Nakai, M., Yokota, T. & Ogata, J. Effects of aging and chronic hypertension on cerebral blood flow and cerebrovascular CO2 reactivity in the rat. Gerontology 41, 11–17 (1995).

    CAS  PubMed  Google Scholar 

  69. Silvestrini, M. et al. Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis. J. Am. Med. Assoc. 283, 2122–2127 (2000).

    CAS  Google Scholar 

  70. Markus, H. & Cullinane, M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain 124, 457–467 (2001).

    CAS  PubMed  Google Scholar 

  71. Yamamoto, M., Meyer, J. S., Sakai, F. & Yamaguchi, F. Aging and cerebral vasodilator responses to hypercarbia: responses in normal aging and in persons with risk factors for stroke. Arch. Neurol. 37, 489–496 (1980).

    CAS  PubMed  Google Scholar 

  72. Ito, H., Kanno, I., Ibaraki, M. & Hatazawa, J. Effect of aging on cerebral vascular response to PaCO2 changes in humans as measured by positron emission tomography. J. Cereb. Blood Flow Metab. 22, 997–1003 (2002).

    PubMed  Google Scholar 

  73. Jiang, H. X., Chen, P. C., Sobin, S. S. & Giannotta, S. L. Age related alterations in the response of the pial arterioles to adenosine in the rat. Mech. Ageing Dev. 65, 257–276 (1992).

    CAS  PubMed  Google Scholar 

  74. Mayhan, W. G., Faraci, F. M., Baumbach, G. L. & Heistad, D. D. Effects of aging on responses of cerebral arterioles. Am. J. Physiol. 258, H1138–H1143 (1990).

    CAS  PubMed  Google Scholar 

  75. Back, T. Pathophysiology of the ischemic penumbra — revision of a concept. Cell. Mol. Neurobiol. 18, 621–638 (1998).

    CAS  PubMed  Google Scholar 

  76. Linville, D. G. & Arneric, S. P. Cortical cerebral blood flow governed by the basal forebrain: age-related impairments. Neurobiol. Aging 12, 503–510 (1991).

    CAS  PubMed  Google Scholar 

  77. D'Esposito, M., Zarahn, E., Aguirre, G. K. & Rypma, B. The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. Neuroimage 10, 6–14 (1999). One of the first empirical fMRI studies to challenge the assumption that neurovascular coupling is preserved in normal ageing by showing that some aspects of the haemodynamic coupling between neural activity and BOLD fMRI signal change with age.

    CAS  PubMed  Google Scholar 

  78. Buckner, R. L., Snyder, A. Z., Sanders, A. L., Raichle, M. E. & Morris, J. C. Functional brain imaging of young, nondemented, and demented older adults. J. Cogn. Neurosci. 12 (Suppl. 2), 24–34 (2000). An important paper that examined the haemodynamic response characteristics and summation properties of sensorimotor and visual cortex in young, healthy older and demented older patients. Regional haemodynamic differences were observed but summation properties were preserved across groups.

    PubMed  Google Scholar 

  79. Hesselmann, V. et al. Age related signal decrease in functional magnetic resonance imaging during motor stimulation in humans. Neurosci. Lett. 308, 141–144 (2001).

    CAS  PubMed  Google Scholar 

  80. Mattay, V. S. et al. Neurophysiological correlates of age-related changes in human motor function. Neurology 58, 630–635 (2002).

    CAS  PubMed  Google Scholar 

  81. Taoka, T. et al. Age correlation of the time lag in signal change on EPI-fMRI. J. Comput. Assist. Tomog. 22, 514–517 (1998).

    CAS  Google Scholar 

  82. Ross, M. H. et al. Age-related reduction in functional MRI response to photic stimulation. Neurology 48, 173–176 (1997).

    CAS  PubMed  Google Scholar 

  83. Huettel, S. A., Singerman, J. D. & McCarthy, G. The effects of aging upon the hemodynamic response measured by functional MRI. Neuroimage 13, 161–175 (2001).

    CAS  PubMed  Google Scholar 

  84. Cunnington, R., Iansek, R., Bradshaw, J. L. & Phillips, J. G. Movement-related potentials in Parkinson's disease. Presence and predictability of temporal and spatial cues. Brain 118, 935–950 (1995).

    PubMed  Google Scholar 

  85. Pineiro, R., Pendlebury, S., Johansen-Berg, H. & Matthews, P. M. Altered hemodynamic responses in patients after subcortical stroke measured by functional MRI. Stroke 33, 103–109 (2002). One of the first studies to investigate BOLD haemodynamic response characteristics in patients with subcortical strokes. It indicates that BOLD signal changes might result from diffuse microvascular changes in certain patient populations.

    CAS  PubMed  Google Scholar 

  86. Rother, J. et al. Negative dip in BOLD fMRI is caused by blood flow–oxygen consumption uncoupling in humans. Neuroimage 15, 98–102 (2002). An intriguing study on a single subject with severe cranial artery stenosis resulting in impaired cerebral autoregulation and an uncharacteristic BOLD signal during performance of a simple motor task.

    PubMed  Google Scholar 

  87. Barkhof, F. & Scheltens, P. Imaging of white matter lesions. Cerebrovasc. Dis. 13 (Suppl. 2), 21–30 (2002).

    PubMed  Google Scholar 

  88. Mitchell, K. J., Johnson, M. K., Raye, C. L. & D'Esposito, M. fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Brain Res. Cogn. Brain Res. 10, 197–206 (2000).

    CAS  PubMed  Google Scholar 

  89. Rypma, B. & D'Esposito, M. Isolating the neural mechanisms of age-related changes in human working memory. Nature Neurosci. 3, 509–515 (2000).

    CAS  PubMed  Google Scholar 

  90. Muller, K., Lohmann, G., Bosch, V. & von Cramon, D. Y. On multivariate spectral analysis of fMRI time series. Neuroimage 14, 347–356 (2001).

    CAS  PubMed  Google Scholar 

  91. Lauritzen, M. & Gold, L. Brain function and neurophysiological correlates of signals used in functional neuroimaging. J. Neurosci. 23, 3972–3980 (2003).

    CAS  PubMed  Google Scholar 

  92. Logothetis, N. K. The underpinnings of the BOLD functional magnetic resonance imaging signal. J. Neurosci. 23, 3963–3971 (2003).

    CAS  PubMed  Google Scholar 

  93. Ogawa, S. et al. An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds. Proc. Natl Acad. Sci. USA 97, 11026–11031 (2000).

    CAS  PubMed  Google Scholar 

  94. Arthurs, O. J. & Boniface, S. How well do we understand the neural origins of the fMRI BOLD signal? Trends Neurosci. 25, 27–31 (2002).

    CAS  PubMed  Google Scholar 

  95. Fazekas, F. et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 43, 1683–1689 (1993).

    CAS  PubMed  Google Scholar 

  96. George, A. E. et al. Leukoencephalopathy in normal and pathologic aging: 1. CT of brain lucencies. AJNR Am. J. Neuroradiol. 7, 561–566 (1986).

    CAS  PubMed  Google Scholar 

  97. Hatazawa, J., Shimosegawa, E., Satoh, T., Toyoshima, H. & Okudera, T. Subcortical hypoperfusion associated with asymptomatic white matter lesions on magnetic resonance imaging. Stroke 28, 1944–1947 (1997).

    CAS  PubMed  Google Scholar 

  98. Marstrand, J. R. et al. Cerebral perfusion and cerebrovascular reactivity are reduced in white matter hyperintensities. Stroke 33, 972–976 (2002).

    CAS  PubMed  Google Scholar 

  99. Kobari, M., Meyer, J. S. & Ichijo, M. Leuko-araiosis, cerebral atrophy, and cerebral perfusion in normal aging. Arch. Neurol. 47, 161–165 (1990).

    CAS  PubMed  Google Scholar 

  100. Kuwabara, Y. et al. Cerebral blood flow and vascular response to hypercapnia in hypertensive patients with leukoaraiosis. Ann. Nucl. Med. 10, 293–298 (1996).

    CAS  PubMed  Google Scholar 

  101. Claus, J. J. et al. Regional cerebral blood flow and cerebrovascular risk factors in the elderly population. Neurobiol. Aging 19, 57–64 (1998).

    CAS  PubMed  Google Scholar 

  102. Shantaram, V. Pathogenesis of atherosclerosis in diabetes and hypertension. Clin. Exp. Hypertens. 21, 69–77 (1999).

    CAS  PubMed  Google Scholar 

  103. Bednar, M. M. & Gross, C. E. Aspirin reduces experimental cerebral blood flow in vivo. Neurol. Res. 21, 488–490 (1999).

    CAS  PubMed  Google Scholar 

  104. Nobler, M. S., Olvet, K. R. & Sackeim, H. A. Effects of medications on cerebral blood flow in late-life depression. Curr. Psychiatry Rep. 4, 51–58 (2002).

    PubMed  Google Scholar 

  105. Miller, D. D. et al. Effect of antipsychotics on regional cerebral blood flow measured with positron emission tomography. Neuropsychopharmacology 17, 230–240 (1997).

    CAS  PubMed  Google Scholar 

  106. Neele, S. J. et al. Raloxifene affects brain activation patterns in postmenopausal women during visual encoding. J. Clin. Endocrinol. Metab. 86, 1422–1424 (2001).

    CAS  PubMed  Google Scholar 

  107. Pariente, J. et al. Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Ann. Neurol. 50, 718–729 (2001).

    CAS  PubMed  Google Scholar 

  108. Stein, E. A. et al. Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am. J. Psychiatry 155, 1009–1015 (1998).

    CAS  PubMed  Google Scholar 

  109. Laurienti, P. J. et al. Dietary caffeine consumption modulates fMRI measures. Neuroimage 17, 751–757 (2002).

    PubMed  Google Scholar 

  110. Jacobsen, L. K. et al. Impact of intravenous nicotine on BOLD signal response to photic stimulation. Magn. Reson. Imaging 20, 141–145 (2002).

    CAS  PubMed  Google Scholar 

  111. Mulderink, T. A., Gitelman, D. R., Mesulam, M. M. & Parrish, T. B. On the use of caffeine as a contrast booster for BOLD fMRI studies. Neuroimage 15, 37–44 (2002).

    PubMed  Google Scholar 

  112. Cameron, O. G., Modell, J. G. & Hariharan, M. Caffeine and human cerebral blood flow: a positron emission tomography study. Life Sci. 47, 1141–1146 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health and the American Federation for Aging Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D'Esposito.

Related links

Related links

FURTHER INFORMATION

Encyclopedia of Life Sciences

ageing and the brain

brain imaging as a diagnostic tool

Glossary

RESISTANCE VESSELS

Arterioles and small arteries.

ISCHAEMIA

A condition of insufficient oxygen delivery to a tissue.

CAROTID STENOSIS

The condition in which one or both carotid arteries (the arteries in the neck that supply blood to the brain) is narrowed or blocked. Can lead to stroke secondary to decreased blood flow in the brain region that it supplies.

ATHEROSCLEROSIS

A condition in which fatty material is deposited along the walls of arteries, which then thickens, hardens, and might eventually block the arteries.

TRANSCRANIAL DOPPLER ULTRASOUND

A non-invasive method that is used to assess blood-flow velocity in intracranial vessels and then make determinations about intracranial haemodynamics, such as cerebral blood flow (CBF).

CEREBRAL AUTOREGULATION

The intrinsic ability of cerebral vessels to maintain a relatively constant, steady-state CBF despite large changes in arterial blood pressure.

T2-WEIGHTED

A magnetic resonance imaging (MRI) recording sequence that provides sensitivity to pathologic processes through changes in water content. T2 is often lengthened for oedema and demyelination.

FLAIR

FLAIR (fluid-attenuated inversion recovery) is a T2-weighted MRI image that has the advantage of separating white-matter lesions from cerebrospinal fluid-like lesions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Esposito, M., Deouell, L. & Gazzaley, A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 4, 863–872 (2003). https://doi.org/10.1038/nrn1246

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1246

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing