Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Progranulin, lysosomal regulation and neurodegenerative disease

Abstract

The discovery that heterozygous and homozygous mutations in the gene encoding progranulin are causally linked to frontotemporal dementia and lysosomal storage disease, respectively, reveals previously unrecognized roles of the progranulin protein in regulating lysosome biogenesis and function. Given the importance of lysosomes in cellular homeostasis, it is not surprising that progranulin deficiency has pleiotropic effects on neural circuit development and maintenance, stress response, innate immunity and ageing. This Progress article reviews recent advances in progranulin biology emphasizing its roles in lysosomal function and brain innate immunity, and outlines future avenues of investigation that may lead to new therapeutic approaches for neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolutionary dynamics of granulin domains and progranulin genes.
Figure 2: Intracellular trafficking of progranulin and its role in lysosome biogenesis and function.
Figure 3: Progranulin deficiency disrupts glia–neuron homeostasis and promotes neurodegeneration during ageing.

Similar content being viewed by others

References

  1. Bateman, A. & Bennett, H. P. The granulin gene family: from cancer to dementia. Bioessays 31, 1245–1254 (2009).

    CAS  PubMed  Google Scholar 

  2. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    CAS  PubMed  Google Scholar 

  3. Cruts, M. et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920–924 (2006).

    CAS  PubMed  Google Scholar 

  4. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

    CAS  PubMed  Google Scholar 

  5. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    CAS  PubMed  Google Scholar 

  6. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cruts, M., Kumar-Singh, S. & Van Broeckhoven, C. Progranulin mutations in ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Curr. Alzheimer Res. 3, 485–491 (2006).

    CAS  PubMed  Google Scholar 

  9. Cenik, B., Sephton, C. F., Kutluk Cenik, B., Herz, J. & Yu, G. Progranulin: a proteolytically processed protein at the crossroads of inflammation and neurodegeneration. J. Biol. Chem. 287, 32298–32306 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith, K. R. et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am. J. Hum. Genet. 90, 1102–1107 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Almeida, M. R. et al. Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation. Neurobiol. Aging 41, 200.e1–201.e5 (2016).

    CAS  Google Scholar 

  12. Kessenbrock, K. et al. Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. J. Clin. Invest. 118, 2438–2447 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Salazar, N. et al. The progranulin cleavage products, granulins, exacerbate TDP-43 toxicity and increase TDP-43 levels. J. Neurosci. 35, 9315–9328 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu, J. et al. Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell 111, 867–878 (2002).

    CAS  PubMed  Google Scholar 

  15. Tolkatchev, D. et al. Structure dissection of human progranulin identifies well-folded granulin/epithelin modules with unique functional activities. Protein Sci. 17, 711–724 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Palfree, R. G., Bennett, H. P. & Bateman, A. The evolution of the secreted regulatory protein progranulin. PLoS ONE 10, e0133749 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Lavergne, V., Taft, R. J. & Alewood, P. F. Cysteine-rich mini-proteins in human biology. Curr. Top. Med. Chem. 12, 1514–1533 (2012).

    CAS  PubMed  Google Scholar 

  18. Kanazawa, M. et al. Multiple therapeutic effects of progranulin on experimental acute ischaemic stroke. Brain 138, 1932–1948 (2015).

    PubMed  Google Scholar 

  19. Songsrirote, K., Li, Z., Ashford, D., Bateman, A. & Thomas-Oates, J. Development and application of mass spectrometric methods for the analysis of progranulin N-glycosylation. J. Proteomics 73, 1479–1490 (2010).

    CAS  PubMed  Google Scholar 

  20. Daniel, R., Daniels, E., He, Z. & Bateman, A. Progranulin (acrogranin/PC cell-derived growth factor/granulin-epithelin precursor) is expressed in the placenta, epidermis, microvasculature, and brain during murine development. Dev. Dyn. 227, 593–599 (2003).

    CAS  PubMed  Google Scholar 

  21. Daniel, R., He, Z., Carmichael, K. P., Halper, J. & Bateman, A. Cellular localization of gene expression for progranulin. J. Histochem. Cytochem. 48, 999–1009 (2000).

    CAS  PubMed  Google Scholar 

  22. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Petoukhov, E. et al. Activity-dependent secretion of progranulin from synapses. J. Cell Sci. 126, 5412–5421 (2013).

    CAS  PubMed  Google Scholar 

  24. Lui, H. et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165, 921–935 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nicholson, A. M. et al. Progranulin protein levels are differently regulated in plasma and CSF. Neurology 82, 1871–1878 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Van Damme, P. et al. Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J. Cell Biol. 181, 37–41 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, J. et al. Pathogenic cysteine mutations affect progranulin function and production of mature granulins. J. Neurochem. 112, 1305–1315 (2010).

    CAS  PubMed  Google Scholar 

  28. Gao, X. et al. Progranulin promotes neurite outgrowth and neuronal differentiation by regulating GSK-3ß. Protein Cell 1, 552–562 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gass, J. et al. Progranulin regulates neuronal outgrowth independent of sortilin. Mol. Neurodegener. 7, 33 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tapia, L. et al. Progranulin deficiency decreases gross neural connectivity but enhances transmission at individual synapses. J. Neurosci. 31, 11126–11132 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu, F. et al. Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 68, 654–667 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang, W. et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332, 478–484 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen, X. et al. Progranulin does not bind tumor necrosis factor (TNF) receptors and is not a direct regulator of TNF-dependent signaling or bioactivity in immune or neuronal cells. J. Neurosci. 33, 9202–9213 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. De Muynck, L. et al. The neurotrophic properties of progranulin depend on the granulin E domain but do not require sortilin binding. Neurobiol. Aging 34, 2541–2547 (2013).

    CAS  PubMed  Google Scholar 

  35. Neill, T. et al. EphA2 is a functional receptor for the growth factor progranulin. J. Cell Biol. 215, 687–703 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gass, J. et al. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum. Mol. Genet. 15, 2988–3001 (2006).

    CAS  PubMed  Google Scholar 

  37. Shankaran, S. S. et al. Missense mutations in the progranulin gene linked to frontotemporal lobar degeneration with ubiquitin-immunoreactive inclusions reduce progranulin production and secretion. J. Biol. Chem. 283, 1744–1753 (2008).

    CAS  PubMed  Google Scholar 

  38. Finch, N. et al. Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain 132, 583–591 (2009).

    PubMed  PubMed Central  Google Scholar 

  39. Neumann, M., Kwong, L. K., Sampathu, D. M., Trojanowski, J. Q. & Lee, V. M. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. Arch. Neurol. 64, 1388–1394 (2007).

    PubMed  Google Scholar 

  40. Carcel-Trullols, J., Kovacs, A. D. & Pearce, D. A. Cell biology of the NCL proteins: what they do and don't do. Biochim. Biophys. Acta 1852, 2242–2255 (2015).

    CAS  PubMed  Google Scholar 

  41. Ward, M. E. et al. Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Sci. Transl Med. 9, http://stm.sciencemag.org/content/9/385/eaah5642 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. Gotzl, J. K. et al. Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis. Acta Neuropathol. 127, 845–860 (2014).

    PubMed  Google Scholar 

  43. Filiano, A. J. et al. Dissociation of frontotemporal dementia-related deficits and neuroinflammation in progranulin haploinsufficient mice. J. Neurosci. 33, 5352–5361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahmed, Z. et al. Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggests a role for progranulin in successful aging. Am. J. Pathol. 177, 311–324 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Martens, L. H. et al. Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J. Clin. Invest. 122, 3955–3959 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yin, F. et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J. Exp. Med. 207, 117–128 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yin, F. et al. Behavioral deficits and progressive neuropathology in progranulin-deficient mice: a mouse model of frontotemporal dementia. FASEB J 24, 4639–4647 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Almeida, S., Zhou, L. & Gao, F. B. Progranulin, a glycoprotein deficient in frontotemporal dementia, is a novel substrate of several protein disulfide isomerase family proteins. PLoS ONE 6, e26454 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Butler, G. S., Dean, R. A., Tam, E. M. & Overall, C. M. Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: dynamics of matrix metalloproteinase-14 (MT1-MMP) mediated membrane protein shedding. Mol. Cell. Biol. 28, 4896–4914 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bai, X. H. et al. ADAMTS-7, a direct target of PTHrP, adversely regulates endochondral bone growth by associating with and inactivating GEP growth factor. Mol. Cell. Biol. 29, 4201–4219 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Suh, H. S., Choi, N., Tarassishin, L. & Lee, S. C. Regulation of progranulin expression in human microglia and proteolysis of progranulin by matrix metalloproteinase-12 (MMP-12). PLoS ONE 7, e35115 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Capell, A. et al. Rescue of progranulin deficiency associated with frontotemporal lobar degeneration by alkalizing reagents and inhibition of vacuolar ATPase. J. Neurosci. 31, 1885–1894 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kishimoto, Y., Hiraiwa, M. & O'Brien, J. S. Saposins: structure, function, distribution, and molecular genetics. J. Lipid Res. 33, 1255–1267 (1992).

    CAS  PubMed  Google Scholar 

  54. Meyer, R. C., Giddens, M. M., Coleman, B. M. & Hall, R. A. The protective role of prosaposin and its receptors in the nervous system. Brain Res. 1585, 1–12 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lefrancois, S., Zeng, J., Hassan, A. J., Canuel, M. & Morales, C. R. The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin. EMBO J. 22, 6430–6437 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hassan, A. J., Zeng, J., Ni, X. & Morales, C. R. The trafficking of prosaposin (SGP-1) and GM2AP to the lysosomes of TM4 Sertoli cells is mediated by sortilin and monomeric adaptor proteins. Mol. Reprod. Dev. 68, 476–483 (2004).

    CAS  PubMed  Google Scholar 

  57. Zeng, J., Racicott, J. & Morales, C. R. The inactivation of the sortilin gene leads to a partial disruption of prosaposin trafficking to the lysosomes. Exp. Cell Res. 315, 3112–3124 (2009).

    CAS  PubMed  Google Scholar 

  58. Hulkova, H. et al. A novel mutation in the coding region of the prosaposin gene leads to a complete deficiency of prosaposin and saposins, and is associated with a complex sphingolipidosis dominated by lactosylceramide accumulation. Hum. Mol. Genet. 10, 927–940 (2001).

    CAS  PubMed  Google Scholar 

  59. Zhou, X. et al. Prosaposin facilitates sortilin-independent lysosomal trafficking of progranulin. J. Cell Biol. 210, 991–1002 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nicholson, A. M. et al. Prosaposin is a regulator of progranulin levels and oligomerization. Nat. Commun. 7, 11992 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hiesberger, T. et al. Cellular uptake of saposin (SAP) precursor and lysosomal delivery by the low density lipoprotein receptor-related protein (LRP). EMBO J. 17, 4617–4625 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gowrishankar, S. et al. Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer's disease amyloid plaques. Proc. Natl Acad. Sci. USA 112, E3699–E3708 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tanaka, Y., Chambers, J. K., Matsuwaki, T., Yamanouchi, K. & Nishihara, M. Possible involvement of lysosomal dysfunction in pathological changes of the brain in aged progranulin-deficient mice. Acta Neuropathol. Commun. 2, 78 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. Nixon, R. A. The role of autophagy in neurodegenerative disease. Nat. Med. 19, 983–997 (2013).

    CAS  PubMed  Google Scholar 

  65. Aharon-Peretz, J., Badarny, S., Rosenbaum, H. & Gershoni-Baruch, R. Mutations in the glucocerebrosidase gene and Parkinson disease: phenotype–genotype correlation. Neurology 65, 1460–1461 (2005).

    CAS  PubMed  Google Scholar 

  66. Ramirez, A. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38, 1184–1191 (2006).

    CAS  PubMed  Google Scholar 

  67. Schuur, M. et al. Cathepsin D gene and the risk of Alzheimer's disease: a population-based study and meta-analysis. Neurobiol. Aging 32, 1607–1614 (2011).

    CAS  PubMed  Google Scholar 

  68. Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).

    CAS  PubMed  Google Scholar 

  70. Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tanaka, Y., Matsuwaki, T., Yamanouchi, K. & Nishihara, M. Increased lysosomal biogenesis in activated microglia and exacerbated neuronal damage after traumatic brain injury in progranulin-deficient mice. Neuroscience 250, 8–19 (2013).

    CAS  PubMed  Google Scholar 

  72. Belcastro, V. et al. Transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function. Nucleic Acids Res. 39, 8677–8688 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pickford, F. et al. Progranulin is a chemoattractant for microglia and stimulates their endocytic activity. Am. J. Pathol. 178, 284–295 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Park, B. et al. Granulin is a soluble cofactor for toll-like receptor 9 signaling. Immunity 34, 505–513 (2011).

    PubMed  Google Scholar 

  75. Kao, A. W. et al. A neurodegenerative disease mutation that accelerates the clearance of apoptotic cells. Proc. Natl Acad. Sci. USA 108, 4441–4446 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Walport, M. J. Complement. First of two parts. N. Engl. J. Med. 344, 1058–1066 (2001).

    CAS  PubMed  Google Scholar 

  77. Guerra, R. R., Kriazhev, L., Hernandez-Blazquez, F. J. & Bateman, A. Progranulin is a stress-response factor in fibroblasts subjected to hypoxia and acidosis. Growth Factors 25, 280–285 (2007).

    CAS  PubMed  Google Scholar 

  78. Holler, C. J. et al. Trehalose upregulates progranulin expression in human and mouse models of GRN haploinsufficiency: a novel therapeutic lead to treat frontotemporal dementia. Mol. Neurodegener. 11, 46 (2016).

    PubMed  PubMed Central  Google Scholar 

  79. Cenik, R. et al. Suberoylanilide hydroxamic acid (vorinostat) up-regulates progranulin transcription: rational therapeutic approach to frontotemporal dementia. J. Biol. Chem. 286, 16101–16108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Rademakers, R. et al. Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum. Mol. Genet. 17, 3631–3642 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hsiung, G. Y., Fok, A., Feldman, H. H., Rademakers, R. & Mackenzie, I. R. rs5848 polymorphism and serum progranulin level. J. Neurol. Sci. 300, 28–32 (2011).

    CAS  PubMed  Google Scholar 

  82. Jiao, J., Herl, L. D., Farese, R. V. & Gao, F. B. MicroRNA-29b regulates the expression level of human progranulin, a secreted glycoprotein implicated in frontotemporal dementia. PLoS ONE 5, e10551 (2010).

    PubMed  PubMed Central  Google Scholar 

  83. Wang, W. X. et al. miR-107 regulates granulin/progranulin with implications for traumatic brain injury and neurodegenerative disease. Am. J. Pathol. 177, 334–345 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Valenzano, D. R. et al. The African turquoise killifish genome provides insights into evolution and genetic architecture of lifespan. Cell 163, 1539–1554 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Minami, S. S. et al. Progranulin protects against amyloid ß deposition and toxicity in Alzheimer's disease mouse models. Nat. Med. 20, 1157–1164 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kelley, B. J. et al. Prominent phenotypic variability associated with mutations in Progranulin. Neurobiol. Aging 30, 739–751 (2007).

    PubMed  PubMed Central  Google Scholar 

  88. Perry, D. C. et al. Progranulin mutations as risk factors for Alzheimer disease. JAMA Neurol. 70, 774–778 (2013).

    PubMed  PubMed Central  Google Scholar 

  89. Rademakers, R. et al. Phenotypic variability associated with progranulin haploinsufficiency in patients with the common 1477C→T (Arg493X) mutation: an international initiative. Lancet Neurol. 6, 857–868 (2007).

    CAS  PubMed  Google Scholar 

  90. Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).

    CAS  PubMed  Google Scholar 

  91. Herrero, J. et al. Ensembl comparative genomics resources. Database (Oxford) 2016, bav096 (2016).

    Google Scholar 

  92. Singh, P. P. et al. On the expansion of “dangerous” gene repertoires by whole-genome duplications in early vertebrates. Cell Rep. 2, 1387–1398 (2012).

    CAS  PubMed  Google Scholar 

  93. Knopman, D. S. & Roberts, R. O. Estimating the number of persons with frontotemporal lobar degeneration in the US population. J. Mol. Neurosci. 45, 330–335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Mackenzie, I. R. et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 122, 111–113 (2011).

    PubMed  PubMed Central  Google Scholar 

  95. Mackenzie, I. R. et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 119, 1–4 (2010).

    PubMed  Google Scholar 

  96. van Swieten, J. C. & Heutink, P. Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia. Lancet Neurol. 7, 965–974 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank W. W. Seeley, E. H. Bigio and I. R. Mackenzie for sharing the neuropathology findings in patients with frontotemporal lobar degeneration with mutations in the gene encoding progranulin. This work has been supported by US Public Health Service grants NS095257 (A.W.K.) and NS098516 (E.J.H.), the Tau Consortium (A.W.K.), the Consortium for Frontotemporal Dementia Research (E.J.H.), VA Merit Award BX002978 (E.J.H.), and the Glenn Foundation for Medical Research (A.M., P.P.S. and A.B.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aimee W. Kao or Eric J. Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Deficiency

A nonspecific term used to describe both null and heterozygous loss-of-function alleles.

Frontotemporal dementia

(FTD). A clinical term describing a group of disorders caused by progressive neuron loss in the frontal and/or temporal lobes of the brain. Symptoms typically manifest as personality, behaviour and language changes and can be accompanied by motor features (for additional details, see Box 2).

Frontotemporal lobar degeneration

(FTLD). Umbrella term for a group of neurodegenerative conditions that affect primarily, or first, the frontal and/or temporal lobes of the brain, and that are characterized by a diverse array of neuronal inclusions comprising tau, TAR DNA-binding protein 43 or FUS.

Granulin

An approximately 60 amino-acid motif characterized by highly conserved cysteines that are arranged singly or in pairs, which form six disulfide bonds.

Haploinsufficiency

A loss-of-function mutation in one gene allele.

Innate immunity

A relatively nonspecific part of the immune response, consists of physical barriers (such as skin and mucosa), phagocytic cells (microglia, macrophages, dendritic cells, and so on) and circulating factors (tumour necrosis factor, interferon and complement) that co-ordinately provide protection from invading pathogens, and participate in repair and maintenance of cells and organ systems.

Lysosomal storage disease

A group of approximately 50 metabolic disorders that result from defective lysosomal degradation of cellular constituents, primarily affecting terminally differentiated neurons. Symptoms include seizure, blindness and developmental delay.

Lysosome

A subcellular organelle found in eukaryotes containing cathepsins and other acid hydrolases that are responsible for degrading and recycling cellular constituents.

Microglia

A type of non-neuronal support cells found in the CNS. Considered the resident macrophages of the brain and spinal cord, microglia are part of the innate immune system and originate from yolk sac progenitors.

Neuronal ceroid lipofuscinosis

(NCL). A relatively rare subset of lysosomal storage diseases in which protein–lipid adducts known as lipofuscin accumulate in various tissues. Symptoms include blindness, epilepsy and cognitive decline.

Nonsense mediated decay

A process that induces degradation of mRNAs that contain premature translation-termination codons, and constitutes an mRNA-surveillance mechanism that prevents the synthesis of truncated, potentially toxic, proteins.

Null

A situation in which both alleles of a gene are mutated, leading to complete loss of gene expression.

Overexpression

Excessive expression of a gene beyond the normal biologically defined levels. It can be found in pathological conditions such as cancer or it can be induced as part of experimental manipulation of a gene.

Progranulin

Also known as proepithelin, granulin-epithelin precursor, acrogranin, PC cell-derived growth factor and epithelial transforming growth factor, this precursor protein has pleotropic effects in neurons owing to its effects on lysosomal function.

Proteostasis

A linguistic blend of 'protein' and 'homeostasis' that refers to the cellular processes regulating the production, folding, trafficking and degradation of proteins.

TAR DNA-binding protein 43

(TDP43). The protein encoded by the TARDBP gene. TDP43 acts as a transcriptional regulator that shuttles between the nucleus and the cytoplasm. In certain forms of frontotemporal lobar degeneration, including those due to mutations in the genes encoding progranulin and C9ORF72, it forms intra-cytoplasmic aggregates of hyperphosphorylated, cleaved proteins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kao, A., McKay, A., Singh, P. et al. Progranulin, lysosomal regulation and neurodegenerative disease. Nat Rev Neurosci 18, 325–333 (2017). https://doi.org/10.1038/nrn.2017.36

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.36

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing