Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mitochondria at the neuronal presynapse in health and disease

Key Points

  • Synaptic communication within the nervous system is a highly energy-demanding process that is tightly regulated by Ca2+ signalling

  • Mitochondria are ideally suited to provide energy to power synaptic function and buffer Ca2+, and they are actively recruited to and from synapses

  • Presynaptic mitochondria are important for providing ATP to support prolonged synaptic activity

  • Presynaptic mitochondria are also capable of buffering presynaptic Ca2+ signals, thereby modulating neurotransmission and potentially placing an upper limit on synaptic activity

  • Greater computational flexibility might be afforded by varying the mitochondrial occupancy of presynapses

  • Dysfunction of presynaptic mitochondria could contribute to neurodegeneration by impairing synaptic homeostasis

Abstract

Synapses enable neurons to communicate with each other and are therefore a prerequisite for normal brain function. Presynaptically, this communication requires energy and generates large fluctuations in calcium concentrations. Mitochondria are optimized for supplying energy and buffering calcium, and they are actively recruited to presynapses. However, not all presynapses contain mitochondria; thus, how might synapses with and without mitochondria differ? Mitochondria are also increasingly recognized to serve additional functions at the presynapse. Here, we discuss the importance of presynaptic mitochondria in maintaining neuronal homeostasis and how dysfunctional presynaptic mitochondria might contribute to the development of disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of a synapse.
Figure 2: Mitochondrial recruitment to the presynapse.
Figure 3: Generation and consumption of ATP in presynaptic terminals.
Figure 4: Regulation of Ca2+ transients at the presynapse.
Figure 5: Pathogenesis of disease.

Similar content being viewed by others

References

  1. Jahn, R. & Fasshauer, D. Molecular machines governing exocytosis of synaptic vesicles. Nature 490, 201–207 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. MacAskill, A. F. & Kittler, J. T. Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 20, 102–112 (2010).

    CAS  PubMed  Google Scholar 

  3. Sheng, Z.-H. The interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring. Trends Cell Biol. 27, 403–416 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Shepherd, G. M. & Harris, K. M. Three-dimensional structure and composition of CA3→CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J. Neurosci. 18, 8300–8310 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chang, D. T. W., Honick, A. S. & Reynolds, I. J. Mitochondrial trafficking to synapses in cultured primary cortical neurons. J. Neurosci. 26, 7035–7045 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kang, J.-S. et al. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132, 137–148 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Obashi, K. & Okabe, S. Regulation of mitochondrial dynamics and distribution by synapse position and neuronal activity in the axon. Eur. J. Neurosci. 38, 2350–2363 (2013).

    PubMed  Google Scholar 

  8. Smit-Rigter, L. et al. Mitochondrial dynamics in visual cortex are limited in vivo and not affected by axonal structural plasticity. Curr. Biol. 26, 2609–2616 (2016).

    CAS  PubMed  Google Scholar 

  9. Smith, H. L. et al. Mitochondrial support of persistent presynaptic vesicle mobilization with age-dependent synaptic growth after LTP. eLife 5, e15275 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. Amiri, M. & Hollenbeck, P. J. Mitochondrial biogenesis in the axons of vertebrate peripheral neurons. Dev. Neurobiol. 68, 1348–1361 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Davis, A. F. & Clayton, D. A. In situ localization of mitochondrial DNA replication in intact mammalian cells. J. Cell Biol. 135, 883–893 (1996).

    CAS  PubMed  Google Scholar 

  12. Chen, Y. & Sheng, Z.-H. Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J. Cell Biol. 202, 351–364 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sajic, M. et al. Impulse conduction increases mitochondrial transport in adult mammalian peripheral nerves in vivo. PLoS Biol. 11, e1001754 (2013).

    PubMed  PubMed Central  Google Scholar 

  14. Lewis, T. L. et al. Progressive decrease of mitochondrial motility during maturation of cortical axons in vitro and in vivo. Curr. Biol. 26, 2602–2608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Takihara, Y. et al. In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS. Proc. Natl Acad. Sci. USA 112, 10515–10520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, B. et al. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J. Cell Biol. 214, 103–119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stowers, R. S., Megeath, L. J., Górska-Andrzejak, J., Meinertzhagen, I. A. & Schwarz, T. L. Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 36, 1063–1077 (2002).

    CAS  PubMed  Google Scholar 

  18. van Spronsen, M. et al. TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77, 485–502 (2013).

    CAS  PubMed  Google Scholar 

  19. Guo, X. et al. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47, 379–393 (2005).

    CAS  PubMed  Google Scholar 

  20. Russo, G. J. et al. Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport. J. Neurosci. 29, 5443–5455 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Babic, M. et al. Miro's N-terminal GTPase domain is required for transport of mitochondria into axons and dendrites. J. Neurosci. 35, 5754–5771 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. MacAskill, A. F. et al. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61, 541–555 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, X. & Schwarz, T. L. The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136, 163–174 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nguyen, T. T. et al. Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease. Proc. Natl Acad. Sci. USA 111, E3631–E3640 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lopez-Domenech, G. et al. Loss of dendritic complexity precedes neurodegeneration in a mouse model with disrupted mitochondrial distribution in mature dendrites. Cell Rep. 17, 317–327 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chang, K. T., Niescier, R. F. & Min, K.-T. Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons. Proc. Natl Acad. Sci. USA 108, 15456–15461 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Misko, A., Jiang, S., Wegorzewska, I., Milbrandt, J. & Baloh, R. H. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J. Neurosci. 30, 4232–4240 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Saotome, M. et al. Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc. Natl Acad. Sci. 105, 20728–20733 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. MacAskill, A. F., Brickley, K., Stephenson, F. A. & Kittler, J. T. GTPase dependent recruitment of Grif-1 by Miro1 regulates mitochondrial trafficking in hippocampal neurons. Mol. Cell. Neurosci. 40, 301–312 (2009).

    CAS  PubMed  Google Scholar 

  30. Pekkurnaz, G., Trinidad, J. C., Wang, X., Kong, D. & Schwarz, T. L. Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase. Cell 158, 54–68 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferreira, J. M., Burnett, A. L. & Rameau, G. A. Activity-dependent regulation of surface glucose transporter-3. J. Neurosci. 31, 1991–1999 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ashrafi, G., Wu, Z., Farrell, R. J. & Ryan, T. A. GLUT4 mobilization supports energetic demands of active synapses. Neuron 93, 606–615.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Perkins, G. A. et al. The micro-architecture of mitochondria at active zones: electron tomography reveals novel anchoring scaffolds and cristae structured for high-rate metabolism. J. Neurosci. 30, 1015–1026 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Davey, G. P., Peuchen, S. & Clark, J. B. Energy thresholds in brain mitochondria potential involvement in neurodegeneration. J. Biol. Chem. 273, 12753–12757 (1998).

    CAS  PubMed  Google Scholar 

  35. Brown, M. R., Sullivan, P. G. & Geddes, J. W. Synaptic mitochondria are more susceptible to Ca2+ overload than nonsynaptic mitochondria. J. Biol. Chem. 281, 11658–11668 (2006).

    CAS  PubMed  Google Scholar 

  36. Rangaraju, V., Dieck, S. T. & Schuman, E. M. Local translation in neuronal compartments: how local is local? EMBO Rep. 18, 693–711 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Spillane, M., Ketschek, A., Merianda, T. T., Twiss, J. L. & Gallo, G. Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep. 5, 1564–1575 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Meyer, M. P. & Smith, S. J. Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. J. Neurosci. 26, 3604–3614 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ruthazer, E. S., Li, J. & Cline, H. T. Stabilization of axon branch dynamics by synaptic maturation. J. Neurosci. 26, 3594–3603 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Courchet, J. et al. Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell 153, 1510–1525 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, C. W. & Peng, H. B. The function of mitochondria in presynaptic development at the neuromuscular junction. Mol. Biol. Cell 19, 150–158 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Smirnova, E., Shurland, D. L., Ryazantsev, S. N. & van der Bliek, A. M. A human dynamin-related protein controls the distribution of mitochondria. J. Cell Biol. 143, 351–358 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, H. et al. Bcl-xL induces Drp1-dependent synapse formation in cultured hippocampal neurons. Proc. Natl Acad. Sci. USA 105, 2169–2174 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Huttenlocher, P. R., de Courten, C., Garey, L. J. & Van der Loos, H. Synaptogenesis in human visual cortex — evidence for synapse elimination during normal development. Neurosci. Lett. 33, 247–252 (1982).

    CAS  PubMed  Google Scholar 

  45. Walsh, M. K. & Lichtman, J. W. In vivo time-lapse imaging of synaptic takeover associated with naturally occurring synapse elimination. Neuron 37, 67–73 (2003).

    CAS  PubMed  Google Scholar 

  46. Zuo, Y., Lin, A., Chang, P. & Gan, W.-B. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46, 181–189 (2005).

    CAS  PubMed  Google Scholar 

  47. Wiesel, T. N. Postnatal development of the visual cortex and the influence of environment. Nature 299, 583–591 (1982).

    CAS  PubMed  Google Scholar 

  48. Colman, H., Nabekura, J. & Lichtman, J. W. Alterations in synaptic strength preceding axon withdrawal. Science 275, 356–361 (1997).

    CAS  PubMed  Google Scholar 

  49. Chen, C. & Regehr, W. G. Developmental remodeling of the retinogeniculate synapse. Neuron 28, 955–966 (2000).

    CAS  PubMed  Google Scholar 

  50. Buffelli, M. et al. Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition. Nature 424, 430–434 (2003).

    CAS  PubMed  Google Scholar 

  51. Li, Z., Okamoto, K.-I., Hayashi, Y. & Sheng, M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873–887 (2004).

    CAS  PubMed  Google Scholar 

  52. Ertürk, A., Wang, Y. & Sheng, M. Local pruning of dendrites and spines by caspase-3-dependent and proteasome-limited mechanisms. J. Neurosci. 34, 1672–1688 (2014).

    PubMed  PubMed Central  Google Scholar 

  53. Meng, L. et al. The cell death pathway regulates synapse elimination through cleavage of gelsolin in Caenorhabditis elegans neurons. Cell Rep. 11, 1737–1748 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zala, D. et al. Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152, 479–491 (2013).

    CAS  PubMed  Google Scholar 

  55. Nehlig, A. Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot. Essent. Fatty Acids 70, 265–275 (2004).

    CAS  PubMed  Google Scholar 

  56. Fukao, T., Lopaschuk, G. D. & Mitchell, G. A. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot. Essent. Fatty Acids 70, 243–251 (2004).

    CAS  PubMed  Google Scholar 

  57. Zheng, X. et al. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. eLife 5, e13374 (2016).

    PubMed  PubMed Central  Google Scholar 

  58. Hall, C. N., Klein-Flügge, M. C., Howarth, C. & Attwell, D. Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J. Neurosci. 32, 8940–8951 (2012). This study demonstrates that oxidative phosphorylation is central for powering synaptic transmission.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Harris, J. J., Jolivet, R. & Attwell, D. Synaptic energy use and supply. Neuron 75, 762–777 (2012).

    CAS  PubMed  Google Scholar 

  60. Liotta, A. et al. Energy demand of synaptic transmission at the hippocampal Schaffer-collateral synapse. J. Cereb. Blood Flow Metab. 32, 2076–2083 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Alnaes, E. & Rahamimoff, R. On the role of mitochondria in transmitter release from motor nerve terminals. J. Physiol. 248, 285–306 (1975). This is an early demonstration that inhibiting oxidative phosphorylation compromises synaptic transmission during prolonged activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Verstreken, P. et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47, 365–378 (2005). This study provides genetic evidence from a fly model that depleting presynapses of mitochondria leads to failure of prolonged synaptic activity.

    CAS  PubMed  Google Scholar 

  63. Bi, G. Q. et al. Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J. Cell Biol. 138, 999–1008 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Boissan, M. et al. Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science 344, 1510–1515 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ishihara, N. et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat. Cell Biol. 11, 958–966 (2009).

    CAS  PubMed  Google Scholar 

  66. Berthet, A. et al. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. J. Neurosci. 34, 14304–14317 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Shields, L. Y. et al. Dynamin-related protein 1 is required for normal mitochondrial bioenergetic and synaptic function in CA1 hippocampal neurons. Cell Death Dis. 6, e1725 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Oettinghaus, B. et al. Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons. Cell Death Differ. 23, 18–28 (2016).

    CAS  PubMed  Google Scholar 

  69. Cai, Q., Gerwin, C. & Sheng, Z.-H. Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J. Cell Biol. 170, 959–969 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ma, H., Cai, Q., Lu, W., Sheng, Z.-H. & Mochida, S. KIF5B motor adaptor syntabulin maintains synaptic transmission in sympathetic neurons. J. Neurosci. 29, 13019–13029 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Rangaraju, V., Calloway, N. & Ryan, T. A. Activity-driven local ATP synthesis is required for synaptic function. Cell 156, 825–835 (2014). This study demonstrates that local synthesis of ATP (via glycolysis and oxidative phosphorylation) is prerequisite for synaptic function.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jang, S. et al. Glycolytic enzymes localize to synapses under energy stress to support synaptic function. Neuron 90, 278–291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zador, A. Impact of synaptic unreliability on the information transmitted by spiking neurons. J. Neurophysiol. 79, 1219–1229 (1998).

    CAS  PubMed  Google Scholar 

  74. Sun, T., Qiao, H., Pan, P.-Y., Chen, Y. & Sheng, Z.-H. Motile axonal mitochondria contribute to the variability of presynaptic strength. Cell Rep. 4, 413–419 (2013). This study provides evidence that increasing movement of mitochondria to and from presynapses increases the variability of synaptic transmission.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pathak, D. et al. The role of mitochondrially derived ATP in synaptic vesicle recycling. J. Biol. Chem. 290, 22325–22336 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Belles, B., Hescheler, J. & Trube, G. Changes of membrane currents in cardiac cells induced by long whole-cell recordings and tolbutamide. Pflugers Arch. 409, 582–588 (1987).

    CAS  PubMed  Google Scholar 

  77. Hubley, M. J., Locke, B. R. & Moerland, T. S. The effects of temperature, pH, and magnesium on the diffusion coefficient of ATP in solutions of physiological ionic strength. Biochim. Biophys. Acta 1291, 115–121 (1996).

    PubMed  Google Scholar 

  78. Katz, B. & Miledi, R. The role of calcium in neuro-muscular facilitation. J. Physiol. 195, 481–492 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mulkey, R. M. & Zucker, R. S. Posttetanic potentiation at the crayfish neuromuscular junction is dependent on both intracellular calcium and sodium ion accumulation. J. Neurosci. 12, 4327–4336 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tang, Y. & Zucker, R. S. Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18, 483–491 (1997). This study suggests that mitochondria, under conditions of intense stimulation, prolong the elevation in presynaptic Ca2+, thereby contributing to PTP.

    CAS  PubMed  Google Scholar 

  81. David, G., Barrett, J. N. & Barrett, E. F. Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor nerve terminals. J. Physiol. 509, 59–65 (1998). This study suggests that, under physiological stimulation conditions, mitochondria slow down the elevation in presynaptic Ca2+.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. David, G. & Barrett, E. F. Stimulation-evoked increases in cytosolic [Ca2+] in mouse motor nerve terminals are limited by mitochondrial uptake and are temperature-dependent. J. Neurosci. 20, 7290–7296 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chouhan, A. K., Zhang, J., Zinsmaier, K. E. & Macleod, G. T. Presynaptic mitochondria in functionally different motor neurons exhibit similar affinities for Ca2+ but exert little influence as Ca2+ buffers at nerve firing rates in situ. J. Neurosci. 30, 1869–1881 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Billups, B. & Forsythe, I. D. Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J. Neurosci. 22, 5840–5847 (2002). This study shows that mitochondria at the calyx of Held slow removal of Ca2+, but this lowers neurotransmission, possibly by altering the balance between several Ca2+-mediated processes that regulate neurotransmission.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim, M.-H., Korogod, N., Schneggenburger, R., Ho, W.-K. & Lee, S.-H. Interplay between Na+/Ca2+ exchangers and mitochondria in Ca2+ clearance at the calyx of Held. J. Neurosci. 25, 6057–6065 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Waters, J. & Smith, S. J. Mitochondria and release at hippocampal synapses. Pflugers Arch. 447, 363–370 (2003).

    CAS  PubMed  Google Scholar 

  87. Zenisek, D. & Matthews, G. The role of mitochondria in presynaptic calcium handling at a ribbon synapse. Neuron 25, 229–237 (2000).

    CAS  PubMed  Google Scholar 

  88. Levy, M., Faas, G. C., Saggau, P., Craigen, W. J. & Sweatt, J. D. Mitochondrial regulation of synaptic plasticity in the hippocampus. J. Biol. Chem. 278, 17727–17734 (2003).

    CAS  PubMed  Google Scholar 

  89. Molgo, J. & Pecot-Dechavassine, M. Effects of carbonyl cyanide m-chlorophenylhydrazone on quantal transmitter release and ultrastructure of frog motor nerve terminals. Neuroscience 24, 695–708 (1988).

    CAS  PubMed  Google Scholar 

  90. Zengel, J. E., Sosa, M. A., Poage, R. E. & Mosier, D. R. Role of intracellular Ca2+ in stimulation-induced increases in transmitter release at the frog neuromuscular junction. J. Gen. Physiol. 104, 337–355 (1994).

    CAS  PubMed  Google Scholar 

  91. Calupca, M. A., Prior, C., Merriam, L. A., Hendricks, G. M. & Parsons, R. L. Presynaptic function is altered in snake K+-depolarized motor nerve terminals containing compromised mitochondria. J. Physiol. 532, 217–227 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. David, G. & Barrett, E. F. Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals. J. Physiol. 548, 425–438 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gazit, N. et al. IGF-1 receptor differentially regulates spontaneous and evoked transmission via mitochondria at hippocampal synapses. Neuron 89, 583–597 (2016). This study shows that IGF1 signalling can simultaneously modulate both evoked and spontaneous synaptic transmission by acting on mitochondrial ATP production and Ca2+ buffering.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kamer, K. J. & Mootha, V. K. The molecular era of the mitochondrial calcium uniporter. Nat. Rev. Mol. Cell Biol. 16, 545–553 (2015).

    CAS  PubMed  Google Scholar 

  95. Shutov, L. P., Kim, M.-S., Houlihan, P. R., Medvedeva, Y. V. & Usachev, Y. M. Mitochondria and plasma membrane Ca2+-ATPase control presynaptic Ca2+ clearance in capsaicin-sensitive rat sensory neurons. J. Physiol. 591, 2443–2462 (2013). This study finds that presynaptic mitochondria account for around 40% of Ca2+ clearance in rat sensory neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Marland, J. R. K., Hasel, P., Bonnycastle, K. & Cousin, M. A. Mitochondrial calcium uptake modulates synaptic vesicle endocytosis in central nerve terminals. J. Biol. Chem. 291, 2080–2086 (2016).

    PubMed  Google Scholar 

  97. Vaccaro, V., Devine, M. J., Higgs, N. F. & Kittler, J. T. Miro1-dependent mitochondrial positioning drives the rescaling of presynaptic Ca2+ signals during homeostatic plasticity. EMBO Rep. 18, 231–240 (2017). This study demonstrates that presynaptic mitochondria buffer Ca2+ signals via MCUs, thereby downregulating neurotransmission, and mitochondria are recruited to and from presynapses in response to long-term changes in network activity.

    CAS  PubMed  Google Scholar 

  98. Kwon, S.-K. et al. LKB1 regulates mitochondria-dependent presynaptic calcium clearance and neurotransmitter release properties at excitatory synapses along cortical axons. PLoS Biol. 14, e1002516 (2016). This study demonstrates that presynaptic mitochondria buffer Ca2+ via MCUs, thus lowering neurotransmission, and that MCU abundance is regulated by LKB1.

    PubMed  PubMed Central  Google Scholar 

  99. Kim, H. Y. et al. Mitochondrial Ca2+ uptake is essential for synaptic plasticity in pain. J. Neurosci. 31, 12982–12991 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Dobrunz, L. E. & Stevens, C. F. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18, 995–1008 (1997).

    CAS  PubMed  Google Scholar 

  101. Duchen, M. R. Ca2+-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Biochem. J. 283, 41–50 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Luongo, T. S. et al. The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell Rep. 12, 23–34 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Llorente Folch, I. et al. The regulation of neuronal mitochondrial metabolism by calcium. J. Physiol. 593, 3447–3462 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Paillusson, S. et al. There's something wrong with my MAM; the ER–mitochondria axis and neurodegenerative diseases. Trends Neurosci. 39, 146–157 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wu, Y. et al. Contacts between the endoplasmic reticulum and other membranes in neurons. Proc. Natl Acad. Sci. USA 114, E4859–E4867 (2017). This ultrastructural study shows that the ER forms a web around mitochondria and other organelles at presynapses.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Mironov, S. L. & Symonchuk, N. ER vesicles and mitochondria move and communicate at synapses. J. Cell Sci. 119, 4926–4934 (2006).

    CAS  PubMed  Google Scholar 

  107. Csordás, G. et al. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol. Cell 39, 121–132 (2010). This study demonstrates that pockets of high [Ca2+]i exist at sites of contact between the ER and mitochondria.

    PubMed  PubMed Central  Google Scholar 

  108. Lee, S. et al. Polo kinase phosphorylates Miro to control ER-mitochondria contact sites and mitochondrial Ca2+ homeostasis in neural stem cell development. Dev. Cell 37, 174–189 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kornmann, B., Osman, C. & Walter, P. The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. Proc. Natl Acad. Sci. USA 108, 14151–14156 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. de Juan-Sanz, J. et al. Axonal endoplasmic reticulum Ca2+ content controls release probability in CNS nerve terminals. Neuron 93, 867–881.e6 (2017). This study demonstrates that the ER also has a role in regulating neurotransmission via modulating presynaptic Ca2+ signals.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Butow, R. A. & Avadhani, N. G. Mitochondrial signaling. Mol. Cell 14, 1–15 (2004).

    CAS  PubMed  Google Scholar 

  112. Cagin, U. et al. Mitochondrial retrograde signaling regulates neuronal function. Proc. Natl Acad. Sci. USA 112, E6000–E6009 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Accardi, M. V. et al. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission. Nat. Commun. 5, 3168 (2014).

    PubMed  Google Scholar 

  114. Sena, L. A. & Chandel, N. S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48, 158–167 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Su, B., Ji, Y. S., Sun, X. L., Liu, X. H. & Chen, Z. Y. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission. J. Biol. Chem. 289, 1213–1226 (2014).

    CAS  PubMed  Google Scholar 

  116. Bénard, G. et al. Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat. Neurosci. 15, 558–564 (2012).

    PubMed  Google Scholar 

  117. Hebert-Chatelain, E. et al. A cannabinoid link between mitochondria and memory. Nature 539, 555–559 (2016).

    CAS  PubMed  Google Scholar 

  118. Sibson, N. R. et al. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc. Natl Acad. Sci. USA 95, 316–321 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Waagepetersen, H. S., Sonnewald, U., Gegelashvili, G., Larsson, O. M. & Schousboe, A. Metabolic distinction between vesicular and cytosolic GABA in cultured GABAergic neurons using 13C magnetic resonance spectroscopy. J. Neurosci. Res. 63, 347–355 (2001).

    CAS  PubMed  Google Scholar 

  120. Sandoval, H. et al. Mitochondrial fusion but not fission regulates larval growth and synaptic development through steroid hormone production. eLife 3, e03558 (2014).

    PubMed Central  Google Scholar 

  121. Remage-Healey, L., Saldanha, C. J. & Schlinger, B. A. Estradiol synthesis and action at the synapse: evidence for 'synaptocrine' signaling. Front. Endocrinol. 2, 28 (2011).

    Google Scholar 

  122. Sarzi, E. et al. Increased steroidogenesis promotes early-onset and severe vision loss in females with OPA1 dominant optic atrophy. Hum. Mol. Genet. 25, 2539–2551 (2016).

    CAS  PubMed  Google Scholar 

  123. Chernova, T., Nicotera, P. & Smith, A. G. Heme deficiency is associated with senescence and causes suppression of N-methyl-d-aspartate receptor subunits expression in primary cortical neurons. Mol. Pharmacol. 69, 697–705 (2006).

    CAS  PubMed  Google Scholar 

  124. Chernova, T. et al. Neurite degeneration induced by heme deficiency mediated via inhibition of NMDA receptor-dependent extracellular signal-regulated kinase 1/2 activation. J. Neurosci. 27, 8475–8485 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Shidara, Y. & Hollenbeck, P. J. Defects in mitochondrial axonal transport and membrane potential without increased reactive oxygen species production in a Drosophila model of Friedreich ataxia. J. Neurosci. 30, 11369–11378 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bissell, D. M., Anderson, K. E. & Bonkovsky, H. L. Porphyria. N. Engl. J. Med. 377, 862–872 (2017).

    CAS  PubMed  Google Scholar 

  127. Varela, L., Schwartz, M. L. & Horvath, T. L. Mitochondria controlled by UCP2 determine hypoxia-induced synaptic remodeling in the cortex and hippocampus. Neurobiol. Dis. 90, 68–74 (2016).

    CAS  PubMed  Google Scholar 

  128. Herrup, K. & Yang, Y. Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat. Rev. Neurosci. 8, 368–378 (2007).

    CAS  PubMed  Google Scholar 

  129. Ferreirinha, F. et al. Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J. Clin. Invest. 113, 231–242 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Scheff, S. W., Price, D. A., Schmitt, F. A., DeKosky, S. T. & Mufson, E. J. Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68, 1501–1508 (2007).

    CAS  PubMed  Google Scholar 

  131. Cheng, H. C., Ulane, C. M. & Burke, R. E. Clinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol. 67, 715–725 (2010).

    PubMed  PubMed Central  Google Scholar 

  132. Hardy, J. Amyloid double trouble. Nat. Genet. 38, 11–12 (2006).

    CAS  PubMed  Google Scholar 

  133. Keller, J. N. et al. Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid β-peptide: role of the lipid peroxidation product 4-hydroxynonenal. J. Neurochem. 69, 273–284 (1997).

    CAS  PubMed  Google Scholar 

  134. Keller, J. N. et al. Amyloid β-peptide effects on synaptosomes from apolipoprotein E-deficient mice. J. Neurochem. 74, 1579–1586 (2000).

    CAS  PubMed  Google Scholar 

  135. Mungarro Menchaca, X., Ferrera, P., Morán, J. and Arias, C. β-Amyloid peptide induces ultrastructural changes in synaptosomes and potentiates mitochondrial dysfunction in the presence of ryanodine. J. Neurosci. Res. 68, 89–96 (2002).

    CAS  PubMed  Google Scholar 

  136. Rui, Y., Tiwari, P., Xie, Z. & Zheng, J. Q. Acute impairment of mitochondrial trafficking by beta-amyloid peptides in hippocampal neurons. J. Neurosci. 26, 10480–10487 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang, X., Perry, G., Smith, M. A. & Zhu, X. Amyloid-beta-derived diffusible ligands cause impaired axonal transport of mitochondria in neurons. Neurodegener. Dis. 7, 56–59 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Lin, M.-Y. et al. Releasing syntaphilin removes stressed mitochondria from axons independent of mitophagy under pathophysiological conditions. Neuron 94, 595–610.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ye, X., Sun, X., Starovoytov, V. & Cai, Q. Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer's disease patient brains. Hum. Mol. Genet. 24, 2938–2951 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Cho, D.-H. et al. S-Nitrosylation of Drp1 mediates β-amyloid-related mitochondrial fission and neuronal injury. Science 324, 102–105 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Manczak, M., Calkins, M. J. & Reddy, P. H. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: implications for neuronal damage. Hum. Mol. Genet. 20, 2495–2509 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Manczak, M., Kandimalla, R., Fry, D., Sesaki, H. & Reddy, P. H. Protective effects of reduced dynamin-related protein 1 against amyloid beta-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease. Hum. Mol. Genet. 25, 5148–5166 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. DuBoff, B., Götz, J. & Feany, M. B. Tau promotes neurodegeneration via DRP1 mislocalization in vivo. Neuron 75, 618–632 (2012). This study shows that disease-associated mutant tau inhibits DRP1 activity, leading to impaired mitochondrial fission.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Kandimalla, R. et al. Reduced dynamin-related protein 1 protects against phosphorylated tau-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease. Hum. Mol. Genet. 25, 4881–4897 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Shahpasand, K. et al. Regulation of mitochondrial transport and inter-microtubule spacing by tau phosphorylation at the sites hyperphosphorylated in Alzheimer's disease. J. Neurosci. 32, 2430–2441 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Iijima-Ando, K. et al. Loss of axonal mitochondria promotes tau-mediated neurodegeneration and Alzheimer's disease-related tau phosphorylation via PAR-1. PLoS Genet. 8, e1002918 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Roberson, E. D. et al. Reducing endogenous tau ameliorates amyloid ß-induced deficits in an Alzheimer's disease mouse model. Science 316, 750–754 (2007).

    CAS  PubMed  Google Scholar 

  148. Ittner, L. M. et al. Dendritic function of tau mediates amyloid-β toxicity in alzheimer's disease mouse models. Cell 142, 387–397 (2010).

    CAS  PubMed  Google Scholar 

  149. Vossel, K. A. et al. Tau reduction prevents Aβ-induced defects in axonal transport. Science 330, 198–198 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Hansson Petersen, C. A. et al. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc. Natl Acad. Sci. USA 105, 13145–13150 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Du, H. et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease. Nat. Med. 14, 1097–1105 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhao, X.-L. et al. Expression of beta-amyloid induced age-dependent presynaptic and axonal changes in Drosophila. J. Neurosci. 30, 1512–1522 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Lee, S.-H. et al. Impaired short-term plasticity in mossy fiber synapses caused by mitochondrial dysfunction of dentate granule cells is the earliest synaptic deficit in a mouse model of Alzheimer's disease. J. Neurosci. 32, 5953–5963 (2012). This study shows that presynaptic mitochondrial handling of Ca2+ is altered in an AD mouse model.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Lee, S.-H. et al. Presenilins regulate synaptic plasticity and mitochondrial calcium homeostasis in the hippocampal mossy fiber pathway. Mol. Neurodegener 12, 48 (2017).

    PubMed  PubMed Central  Google Scholar 

  155. Moloney, A. M. et al. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer's disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol. Aging 31, 224–243 (2010).

    CAS  PubMed  Google Scholar 

  156. Zhang, B., Tang, X. C. & Zhang, H. Y. Alternations of central insulin-like growth factor-1 sensitivity in APP/PS1 transgenic mice and neuronal models. J. Neurosci. Res. 91, 717–725 (2013).

    CAS  PubMed  Google Scholar 

  157. Hedskog, L. et al. Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer's disease and related models. Proc. Natl Acad. Sci. USA 110, 7916–7921 (2013). This study shows that MAM proteins are upregulated in brain tissue from people with AD and in an AD mouse model.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Schapira, A. H. V. et al. Mitochondrial complex I deficiency in Parkinson's disease. Lancet 333, 1269 (1989).

    Google Scholar 

  159. Valente, E. M. Hereditary early-onset parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    CAS  PubMed  Google Scholar 

  160. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    CAS  PubMed  Google Scholar 

  161. Miller, K. E. & Sheetz, M. P. Axonal mitochondrial transport and potential are correlated. J. Cell Sci. 117, 2791–2804 (2004).

    CAS  PubMed  Google Scholar 

  162. Cai, Q., Zakaria, H. M., Simone, A. & Sheng, Z.-H. Spatial Parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons. Curr. Biol. 22, 545–552 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Devireddy, S., Liu, A., Lampe, T. & Hollenbeck, P. J. The organization of mitochondrial quality control and life cycle in the nervous system in vivo in the absence of PINK1. J. Neurosci. 35, 9391–9401 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Sung, H., Tandarich, L. C., Nguyen, K. & Hollenbeck, P. J. Compartmentalized regulation of Parkin-mediated mitochondrial quality control in the Drosophila nervous system in vivo. J. Neurosci. 36, 7375–7391 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Sterky, F. H., Lee, S., Wibom, R., Olson, L. & Larsson, N.-G. Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc. Natl Acad. Sci. USA 108, 12937–12942 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Kim-Han, J. S., Antenor-Dorsey, J. A. & O'Malley, K. L. The parkinsonian mimetic, MPP+, specifically impairs mitochondrial transport in dopamine axons. J. Neurosci. 31, 7212–7221 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Dukes, A. A. et al. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP+ exposure. Neurobiol. Dis. 95, 238–249 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang, X. et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147, 893–906 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Birsa, N. et al. Lysine 27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase. J. Biol. Chem. 289, 14569–14582 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Hsieh, C.-H. et al. Functional Impairment in Miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson's disease. Cell Stem Cell 19, 709–724 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Ashrafi, G., Schlehe, J. S., Lavoie, M. J. & Schwarz, T. L. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J. Cell Biol. 206, 655–670 (2014). This study suggests that mitophagy can occur locally in distal axons without needing to transport damaged mitochondria back to the soma.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Kitada, T. et al. Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc. Natl Acad. Sci. USA 104, 11441–11446 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Morais, V. A. et al. Parkinson's disease mutations in PINK1 result in decreased complex I activity and deficient synaptic function. EMBO Mol. Med. 1, 99–111 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Polymeropoulos, M. H. et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276, 2045–2047 (1997).

    CAS  PubMed  Google Scholar 

  175. Spillantini, M. G. et al. Alpha-synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    CAS  PubMed  Google Scholar 

  176. Cole, N. B., Dieuliis, D., Leo, P., Mitchell, D. C. & Nussbaum, R. L. Mitochondrial translocation of alpha-synuclein is promoted by intracellular acidification. Exp. Cell Res. 314, 2076–2089 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Hsu, L. J. et al. Alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am. J. Pathol. 157, 401–410 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Martin, L. J. et al. Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J. Neurosci. 26, 41–50 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Li, L. et al. Human A53T α-synuclein causes reversible deficits in mitochondrial function and dynamics in primary mouse cortical neurons. PLoS ONE 8, e85815 (2013).

    PubMed  PubMed Central  Google Scholar 

  180. Kramer, M. L. & Schulz-Schaeffer, W. J. Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J. Neurosci. 27, 1405–1410 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Nemani, V. M. et al. Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65, 66–79 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Scott, D. A. et al. A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration. J. Neurosci. 30, 8083–8095 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Guardia-Laguarta, C. et al. α-Synuclein is localized to mitochondria-associated ER membranes. J. Neurosci. 34, 249–259 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Paillusson, S. et al. α-Synuclein binds to the ER–mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production. Acta Neuropathol. 28, 1–21 (2017).

    Google Scholar 

  185. De Vos, K. J. et al. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum. Mol. Genet. 21, 1299–1311 (2012).

    CAS  PubMed  Google Scholar 

  186. Gautier, C. A. et al. The endoplasmic reticulum-mitochondria interface is perturbed in PARK2 knockout mice and patients with PARK2 mutations. Hum. Mol. Genet. 25, 2972–2984 (2016).

    CAS  PubMed  Google Scholar 

  187. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    CAS  PubMed  Google Scholar 

  188. De Vos, K. J. et al. Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum. Mol. Genet. 16, 2720–2728 (2007).

    CAS  PubMed  Google Scholar 

  189. Moller, A., Bauer, C. S., Cohen, R. N., Webster, C. P. & De Vos, K. J. Amyotrophic lateral sclerosis-associated mutant SOD1 inhibits anterograde axonal transport of mitochondria by reducing Miro1 levels. Hum. Mol. Genet. 26, 4668–4679 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Baldwin, K. R., Godena, V. K., Hewitt, V. L. & Whitworth, A. J. Axonal transport defects are a common phenotype in Drosophila models of ALS. Hum. Mol. Genet. 25, 2378–2392 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Mórotz, G. M. et al. Amyotrophic lateral sclerosis-associated mutant VAPBP56S perturbs calcium homeostasis to disrupt axonal transport of mitochondria. Hum. Mol. Genet. 21, 1979–1988 (2012).

    PubMed  PubMed Central  Google Scholar 

  192. Stoica, R. et al. ER–mitochondria associations are regulated by the VAPB–PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 5, 3996 (2014).

    CAS  PubMed  Google Scholar 

  193. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    CAS  PubMed  Google Scholar 

  194. Sreedharan, J. et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Covill-Cooke, C., Howden, J. H., Birsa, N. & Kittler, J. T. Ubiquitination at the mitochondria in neuronal health and disease. Neurochem. Int. http://dx.doi.org/10.1016/j.neuint.2017.07.003 (2017).

  196. McLelland, G. L., Soubannier, V., Chen, C. X., McBride, H. M. & Fon, E. A. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 33, 282–295 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Neuspiel, M. et al. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr. Biol. 18, 102–108 (2008).

    CAS  PubMed  Google Scholar 

  198. Bhujabal, Z. et al. FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep. 18, 947–961 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Liu, L. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177–185 (2012).

    PubMed  Google Scholar 

  200. Chen, G. et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell 54, 362–377 (2014).

    CAS  PubMed  Google Scholar 

  201. Davis, C.-H. O. et al. Transcellular degradation of axonal mitochondria. Proc. Natl Acad. Sci. USA 111, 9633–9638 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Wood, J. G. et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686–689 (2004).

    CAS  PubMed  Google Scholar 

  203. Moussa, C. et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer's disease. J. Neuroinflamm. 14, 1 (2017).

    Google Scholar 

  204. McManus, M. J., Murphy, M. P. & Franklin, J. L. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer's disease. J. Neurosci. 31, 15703–15715 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Ma, T. et al. Amyloid β-induced impairments in hippocampal synaptic plasticity are rescued by decreasing mitochondrial superoxide. J. Neurosci. 31, 5589–5595 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Yin, X., Manczak, M. & Reddy, P. H. Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington's disease. Hum. Mol. Genet. 25, 1739–1753 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Snow, B. J. et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Mov. Disord. 25, 1670–1674 (2010).

    PubMed  Google Scholar 

  208. Cui, M., Tang, X., Christian, W. V., Yoon, Y. & Tieu, K. Perturbations in mitochondrial dynamics induced by human mutant PINK1 can be rescued by the mitochondrial division inhibitor mdivi-1. J. Biol. Chem. 285, 11740–11752 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Baek, S. H. et al. Inhibition of Drp1 ameliorates synaptic depression, Aβ deposition, and cognitive impairment in an Alzheimer's disease model. J. Neurosci. 37, 5099–5110 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Bordt, E. A. et al. The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species. Dev. Cell 40, 583–594.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Wang, D. et al. A small molecule promotes mitochondrial fusion in mammalian cells. Angew. Chem. Int. Ed. 51, 9302–9305 (2012).

    CAS  Google Scholar 

  212. Cartoni, R. et al. The mammalian-specific protein Armcx1 regulates mitochondrial transport during axon regeneration. Neuron 92, 1294–1307 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Logan, C. V. et al. Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nat. Genet. 46, 188–193 (2014).

    CAS  PubMed  Google Scholar 

  214. Bhosale, G., Sharpe, J. A., Sundier, S. Y. & Duchen, M. R. Calcium signaling as a mediator of cell energy demand and a trigger to cell death. Ann. NY Acad. Sci. 1350, 107–116 (2015).

    CAS  PubMed  Google Scholar 

  215. Luongo, T. S. et al. The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis and viability. Nature 545, 93–97 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Banks, W. A. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 15, 275–292 (2016).

    CAS  PubMed  Google Scholar 

  217. Han, X.-J. et al. CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J. Cell Biol. 182, 573–585 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Coppola, T. et al. Disruption of Rab3–calmodulin interaction, but not other effector interactions, prevents Rab3 inhibition of exocytosis. EMBO J. 18, 5885–5891 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Sakaba, T. & Neher, E. Calmodulin mediates rapid recruitment of fast-releasing synaptic vesicles at a calyx-type synapse. Neuron 32, 1119–1131 (2001).

    CAS  PubMed  Google Scholar 

  220. Cousin, M. A. & Robinson, P. J. Ca2+ influx inhibits dynamin and arrests synaptic vesicle endocytosis at the active zone. J. Neurosci. 20, 949–957 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to those colleagues whose work could not be cited owing to space limitations. M.J.D. was supported by a Wellcome Trust Clinical Postdoctoral Fellowship (106713/Z/14/Z) and an Academy of Medical Sciences starter grant. This work was further supported by a grant from the Wellcome Trust (093239/Z/10/Z), a European Research Council starting grant 282430 (Fuelling Synapses) and a research prize from the Lister Institute of Preventive Medicine to J.T.K.

Author information

Authors and Affiliations

Authors

Contributions

M.J.D. and J.T.K. researched data for the article, discussed the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Michael J. Devine or Josef T. Kittler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Mitochondrial matrix

The space within the inner membrane of the mitochondrion, containing the enzymes that facilitate reactions in the citric acid cycle, oxidative phosphorylation, pyruvate oxidation and β-oxidation of fatty acids.

Recycling pool

(RP). Vesicles that are recruited to the active zone once the RRP is depleted and that maintain vesicle release under moderate stimulation.

Reserve pool

A depot of vesicles that are released only during intense stimulation, constituting the majority of vesicles in most presynaptic terminals.

Readily releasable pool

(RRP). The pool of synaptic vesicles that are available for immediate release, being docked at the presynaptic active zone and primed for release.

Retinal bipolar neurons

Cells that connect light-sensitive rods or cones in the retina with ganglion cells.

Mitochondrial permeability transition pore

(MPTP). Formed in the inner membrane of the mitochondrion under certain pathological conditions, increasing mitochondrial membrane permeability, which can lead to mitochondrial swelling and cell death.

Retinal ganglion cells

These cells convey visual information from retinal bipolar cells to the brain.

Wallerian degeneration

The degeneration of an axon distal to the site of an injury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devine, M., Kittler, J. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 19, 63–80 (2018). https://doi.org/10.1038/nrn.2017.170

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.170

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing