Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Axo-myelinic neurotransmission: a novel mode of cell signalling in the central nervous system

An Erratum to this article was published on 14 December 2017

This article has been updated

Abstract

It is widely recognized that myelination of axons greatly enhances the speed of signal transmission. An exciting new finding is the dynamic communication between axons and their myelin-forming oligodendrocytes, including activity-dependent signalling from axon to myelin. The oligodendrocyte–myelin complex may in turn respond by providing metabolic support or alter subtle myelin properties to modulate action potential propagation. In this Opinion, we discuss what is known regarding the molecular physiology of this novel, synapse-like communication and speculate on potential roles in disease states including multiple sclerosis, schizophrenia and Alzheimer disease. An emerging appreciation of the contribution of white-matter perturbations to neurological dysfunction identifies the axo-myelinic synapse as a potential novel therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular architecture of the proposed axo-myelinic synapse.
Figure 2: Hypothetical transition from OPC synapse to axo-myelinic synapse.
Figure 3: Proposed pathological consequences of overactivation of the axo-myelinic synapse.

Similar content being viewed by others

Change history

  • 14 December 2017

    In this Opinion article, the first names of the authors did not appear. The error has been corrected in the online versions of the article. The editors apologize to the authors and readers for this error.

References

  1. Saab, A. S. et al. Oligodendroglial NMDA Receptors regulate glucose import and axonal energy metabolism. Neuron 91, 119–132 (2016).

    CAS  PubMed  Google Scholar 

  2. Fünfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485, 517–521 (2012).

    PubMed  PubMed Central  Google Scholar 

  3. Micu, I. et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439, 988–992 (2006).

    CAS  PubMed  Google Scholar 

  4. Micu, I. et al. Real-time measurement of free Ca2+ changes in CNS myelin by two-photon microscopy. Nat. Med. 13, 874–879 (2007).

    CAS  PubMed  Google Scholar 

  5. Stys, P. K. The axo-myelinic synapse. Trends Neurosci. 34, 393–400 (2011).

    CAS  PubMed  Google Scholar 

  6. Micu, I. et al. The molecular physiology of the axo-myelinic synapse. Exp. Neurol. 276, 41–50 (2016).

    CAS  PubMed  Google Scholar 

  7. Káradóttir, R., Cavelier, P., Bergersen, L. H. & Attwell, D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162–1166 (2005).

    PubMed  PubMed Central  Google Scholar 

  8. Burzomato, V., Frugier, G., Pérez- Otaño, I., Kittler, J. T. & Attwell, D. The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes. J. Physiol. 588, 3403–3414 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nave, K.-A. Myelination and support of axonal integrity by glia. Nature 468, 244–252 (2010).

    CAS  PubMed  Google Scholar 

  10. Bergles, D. E., Roberts, J. D., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000).

    CAS  PubMed  Google Scholar 

  11. Wake, H., Lee, P. R. & Fields, R. D. Control of local protein synthesis and initial events in myelination by action potentials. Science 333, 1647–1651 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schlaepfer, W. W. Vesicular disruption of myelin simulated by exposure of nerve to calcium ionophore. Nature 265, 734–736 (1977).

    CAS  PubMed  Google Scholar 

  13. Káradóttir, R., Hamilton, N. B., Bakiri, Y. & Attwell, D. Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat. Neurosci. 11, 450–456 (2008).

    PubMed  PubMed Central  Google Scholar 

  14. Lin, S.-C. & Bergles, D. E. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat. Neurosci. 7, 24–32 (2004).

    CAS  PubMed  Google Scholar 

  15. Ziskin, J. L., Nishiyama, A., Rubio, M., Fukaya, M. & Bergles, D. E. Vesicular release of glutamate from unmyelinated axons in white matter. Nat. Neurosci. 10, 321–330 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kukley, M., Capetillo-Zarate, E. & Dietrich, D. Vesicular glutamate release from axons in white matter. Nat. Neurosci. 10, 311–320 (2007).

    CAS  PubMed  Google Scholar 

  17. Ge, W.-P. et al. Long-term potentiation of neuron-glia synapses mediated by Ca2+-permeable AMPA receptors. Science 312, 1533–1537 (2006).

    CAS  PubMed  Google Scholar 

  18. Kang, S. H., Fukaya, M., Yang, J. K., Rothstein, J. D. & Bergles, D. E. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68, 668–681 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rivers, L. E. et al. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat. Neurosci. 11, 1392–1401 (2008).

    CAS  PubMed  Google Scholar 

  20. Ge, W.-P., Zhou, W., Luo, Q., Jan, L. Y. & Jan, Y. N. Dividing glial cells maintain differentiated properties including complex morphology and functional synapses. Proc. Natl Acad. Sci. USA 106, 328–333 (2009).

    CAS  PubMed  Google Scholar 

  21. Kukley, M. et al. Glial cells are born with synapses. FASEB J. 22, 2957–2969 (2008).

    CAS  PubMed  Google Scholar 

  22. Fannon, J., Tarmier, W. & Fulton, D. Neuronal activity and AMPA-type glutamate receptor activation regulates the morphological development of oligodendrocyte precursor cells. Glia 63, 1021–1035 (2015).

    PubMed  Google Scholar 

  23. Yuan, X., Eisen, A. M., McBain, C. J. & Gallo, V. A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development 125, 2901–2914 (1998).

    CAS  PubMed  Google Scholar 

  24. Zonouzi, M. et al. GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nat. Neurosci. 18, 674–682 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gudz, T. I., Komuro, H. & Macklin, W. B. Glutamate stimulates oligodendrocyte progenitor migration mediated via an alphav integrin/myelin proteolipid protein complex. J. Neurosci. 26, 2458–2466 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mangin, J.-M., Li, P., Scafidi, J. & Gallo, V. Experience-dependent regulation of NG2 progenitors in the developing barrel cortex. Nat. Neurosci. 15, 1192–1194 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gibson, E. M. et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344, 1252304 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Mensch, S. et al. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat. Neurosci. 18, 628–630 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Koudelka, S. et al. Individual neuronal subtypes exhibit diversity in CNS myelination mediated by synaptic vesicle release. Curr. Biol. 26, 1447–1455 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. De Biase, L. M. et al. NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination. J. Neurosci. 31, 12650–12662 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lundgaard, I. et al. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol. 11, e1001743 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. Kougioumtzidou, E. et al. Signalling through AMPA receptors on oligodendrocyte precursors promotes myelination by enhancing oligodendrocyte survival. eLife 6, 31 (2017).

    Google Scholar 

  33. Kukley, M., Nishiyama, A. & Dietrich, D. The fate of synaptic input to NG2 glial cells: neurons specifically downregulate transmitter release onto differentiating oligodendroglial cells. J. Neurosci. 30, 8320–8331 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hines, J. H., Ravanelli, A. M., Schwindt, R., Scott, E. K. & Appel, B. Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci. 18, 683–689 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Catterall, W. A. Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium 24, 307–323 (1998).

    CAS  PubMed  Google Scholar 

  36. Yin, X. et al. Proteolipid protein-deficient myelin promotes axonal mitochondrial dysfunction via altered metabolic coupling. J. Cell Biol. 215, 531–542 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ouardouz, M., Malek, S., Coderre, E. & Stys, P. K. Complex interplay between glutamate receptors and intracellular Ca2+ stores during ischaemia in rat spinal cord white matter. J. Physiol. 577, 191–204 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ouardouz, M. et al. Glutamate receptors on myelinated spinal cord axons: II. AMPA and GluR5 receptors. Ann. Neurol. 65, 160–166 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fern, R., Ransom, B. R. & Waxman, S. G. Voltage-gated calcium channels in CNS white matter: role in anoxic injury. J. Neurophysiol. 74, 369–377 (1995).

    CAS  PubMed  Google Scholar 

  40. Alix, J. J. P., Dolphin, A. C. & Fern, R. Vesicular apparatus, including functional calcium channels, are present in developing rodent optic nerve axons and are required for normal node of Ranvier formation. J. Physiol. 586, 4069–4089 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ouardouz, M. et al. Depolarization-induced Ca2+ release in ischemic spinal cord white matter involves L-type Ca2+ channel activation of ryanodine receptors. Neuron 40, 53–63 (2003).

    CAS  PubMed  Google Scholar 

  42. Stirling, D. P., Cummins, K., Wayne Chen, S. R. & Stys, P. Axoplasmic reticulum Ca2+ release causes secondary degeneration of spinal axons. Ann. Neurol. 75, 220–229 (2014).

    CAS  PubMed  Google Scholar 

  43. Hamilton, N. B., Kolodziejczyk, K., Kougioumtzidou, E. & Attwell, D. Proton-gated Ca2+-permeable TRP channels damage myelin in conditions mimicking ischaemia. Nature 529, 523–527 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Piña-Crespo, J. C. et al. Excitatory glycine responses of CNS myelin mediated by NR1/NR3 'NMDA' receptor subunits. J. Neurosci. 30, 11501–11505 (2010).

    PubMed  PubMed Central  Google Scholar 

  45. Micu, I., Brideau, C., Lu, L. & Stys, P. K. Effects of laser polarization on responses of the fluorescent Ca2+ indicator X-Rhod-1 in neurons and myelin. Neurophotonics 4, 025002 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. Ishii, A. et al. Human myelin proteome and comparative analysis with mouse myelin. Proc. Natl Acad. Sci. USA 106, 14605–14610 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ray, S. K. et al. Calpain inhibitor prevented apoptosis and maintained transcription of proteolipid protein and myelin basic protein genes in rat spinal cord injury. J. Chem. Neuroanat. 26, 119–124 (2003).

    CAS  PubMed  Google Scholar 

  48. Wood, D. D. et al. Myelin localization of peptidylarginine deiminases 2 and 4: comparison of PAD2 and PAD4 activities. Lab. Invest. 88, 354–364 (2008).

    CAS  PubMed  Google Scholar 

  49. Reiss, D. S., Lees, M. B. & Sapirstein, V. S. Is Na+ ATPase a myelin-associated enzyme? J. Neurochem. 36, 1418–1426 (1981).

    CAS  PubMed  Google Scholar 

  50. Maxwell, W. L., McCreath, B. J., Graham, D. I. & Gennarelli, T. A. Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of the optic nerve after stretch injury. J. Neurocytol. 24, 925–942 (1995).

    CAS  PubMed  Google Scholar 

  51. Mata, M., Fink, D. J., Ernst, S. A. & Siegel, G. J. Immunocytochemical demonstration of Na+,K+-ATPase in internodal axolemma of myelinated fibers of rat sciatic and optic nerves. J. Neurochem. 57, 184–192 (1991).

    CAS  PubMed  Google Scholar 

  52. Patzig, J. et al. Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction. eLife 5, 711 (2016).

    Google Scholar 

  53. Harris, J. J. & Attwell, D. The energetics of CNS white matter. J. Neurosci. 32, 356–371 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Micheva, K. D. et al. A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. eLife 5, 3347 (2016).

    Google Scholar 

  55. Koch, K. et al. How much the eye tells the brain. Curr. Biol. 16, 1428–1434 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Trevisiol, A. et al. Monitoring ATP dynamics in electrically active white matter tracts. eLife 6, 27 (2017).

    Google Scholar 

  57. Griffiths, I. et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280, 1610–1613 (1998).

    CAS  PubMed  Google Scholar 

  58. Lappe-Siefke, C. et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat. Genet. 33, 366–374 (2003).

    CAS  PubMed  Google Scholar 

  59. Saab, A. S. & Nave, K.-A. Neuroscience: a mechanism for myelin injury. Nature 529, 474–475 (2016).

    CAS  PubMed  Google Scholar 

  60. Lee, Y. et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487, 443–448 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Czopka, T., Ffrench-Constant, C. & Lyons, D. A. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev. Cell 25, 599–609 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yeung, M. S. Y. et al. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159, 766–774 (2014).

    CAS  PubMed  Google Scholar 

  63. Fields, R. D. A new mechanism of nervous system plasticity: activity-dependent myelination. Nat. Rev. Neurosci. 16, 756–767 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bengtsson, S. L. et al. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 8, 1148–1150 (2005).

    CAS  PubMed  Google Scholar 

  65. Scholz, J., Klein, M. C., Behrens, T. E. J. & Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci. 12, 1370–1371 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Luk, G., Bialystok, E., Craik, F. I. M. & Grady, C. L. Lifelong bilingualism maintains white matter integrity in older adults. J. Neurosci. 31, 16808–16813 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jolles, D. et al. Plasticity of left perisylvian white-matter tracts is associated with individual differences in math learning. Brain Struct. Funct. 221, 1337–1351 (2016).

    PubMed  Google Scholar 

  68. Emmorey, K., Allen, J. S., Bruss, J., Schenker, N. & Damasio, H. A morphometric analysis of auditory brain regions in congenitally deaf adults. Proc. Natl Acad. Sci. USA 100, 10049–10054 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lao, Y. et al. A study of brain white matter plasticity in early blinds using tract-based spatial statistics and tract statistical analysis. Neuroreport 26, 1151–1154 (2015).

    PubMed  Google Scholar 

  70. Makinodan, M., Rosen, K. M., Ito, S. & Corfas, G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337, 1357–1360 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, J. et al. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat. Neurosci. 15, 1621–1623 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sampaio-Baptista, C. et al. Motor skill learning induces changes in white matter microstructure and myelination. J. Neurosci. 33, 19499–19503 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. McKenzie, I. A. et al. Motor skill learning requires active central myelination. Science 346, 318–322 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Demerens, C. et al. Induction of myelination in the central nervous system by electrical activity. Proc. Natl Acad. Sci. USA 93, 9887–9892 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Arancibia-Cárcamo, I. L. et al. Node of Ranvier length as a potential regulator of myelinated axon conduction speed. eLife 6, 521 (2017).

    Google Scholar 

  76. Young, K. M. et al. Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77, 873–885 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ishii, A., Fyffe-Maricich, S. L., Furusho, M., Miller, R. H. & Bansal, R. ERK1/ERK2 MAPK signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination. J. Neurosci. 32, 8855–8864 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Jeffries, M. A. et al. ERK1/2 activation in preexisting oligodendrocytes of adult mice drives new myelin synthesis and enhanced CNS function. J. Neurosci. 36, 9186–9200 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Waggener, C. T., Dupree, J. L., Elgersma, Y. & Fuss, B. CaMKIIβ regulates oligodendrocyte maturation and CNS myelination. J. Neurosci. 33, 10453–10458 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Barnett, M. H. & Prineas, J. W. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neurol. 55, 458–468 (2004).

    PubMed  Google Scholar 

  82. Barnett, M. H., Parratt, J. D. E., Pollard, J. D. & Prineas, J. W. MS: is it one disease? Int. MS J. 16, 57–65 (2009).

    CAS  PubMed  Google Scholar 

  83. Trapp, B. D. & Nave, K.-A. Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci. 31, 247–269 (2008).

    CAS  PubMed  Google Scholar 

  84. Rodriguez, M. & Scheithauer, B. Ultrastructure of multiple sclerosis. Ultrastruct. Pathol. 18, 3–13 (1994).

    CAS  PubMed  Google Scholar 

  85. Baranzini, S. E. et al. Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Hum. Mol. Genet. 18, 2078–2090 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Azevedo, C. J. et al. In vivo evidence of glutamate toxicity in multiple sclerosis. Ann. Neurol. 76, 269–278 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Nave, K.-A. & Ehrenreich, H. Myelination and oligodendrocyte functions in psychiatric diseases. JAMA Psychiatry 71, 582–584 (2014).

    PubMed  Google Scholar 

  88. Dan, Y. & Poo, M.-M. Spike timing-dependent plasticity: from synapse to perception. Physiol. Rev. 86, 1033–1048 (2006).

    PubMed  Google Scholar 

  89. Hakak, Y. et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc. Natl Acad. Sci. USA 98, 4746–4751 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Tamnes, C. K. & Agartz, I. White matter microstructure in early-onset schizophrenia: a systematic review of diffusion tensor imaging studies. J. Am. Acad. Child Adolesc. Psychiatry 55, 269–279 (2016).

    PubMed  Google Scholar 

  91. Hattori, T. et al. DISC1 (disrupted-in-schizophrenia-1) regulates differentiation of oligodendrocytes. PLoS ONE 9, e88506 (2014).

    PubMed  PubMed Central  Google Scholar 

  92. Ripke, S. et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet. 45, 1150–1159 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Windrem, M. S. et al. Human iPSC glial mouse chimeras reveal glial contributions to schizophrenia. Cell Stem Cell 21, 195–208.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Olmos-Serrano, J. L. et al. Down syndrome developmental brain transcriptome reveals defective oligodendrocyte differentiation and myelination. Neuron 89, 1208–1222 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Peters, A. The effects of normal aging on myelin and nerve fibers: a review. J. Neurocytol. 31, 581–593 (2002).

    PubMed  Google Scholar 

  96. Stokin, G. B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307, 1282–1288 (2005).

    CAS  PubMed  Google Scholar 

  97. Agosta, F. et al. White matter damage in Alzheimer disease and its relationship to gray matter atrophy. Radiology 258, 853–863 (2011).

    PubMed  Google Scholar 

  98. You, H. et al. Aβ neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors. Proc. Natl Acad. Sci. USA 109, 1737–1742 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Laurén, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W. & Strittmatter, S. M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 457, 1128–1132 (2009).

    PubMed  PubMed Central  Google Scholar 

  100. Feder, N. Microperoxidase. An ultrastructural tracer of low molecular weight. J. Cell Biol. 51, 339–343 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Jang, B. et al. Myelin basic protein citrullination, a hallmark of central nervous system demyelination, assessed by novel monoclonal antibodies in prion diseases. Mol. Neurobiol. 63, 1945–1913 (2017).

    Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories was supported by the Deutsche Forschungsgemeinschaft (Centre for Nanoscale Microscopy and Molecular Physiology of the Brain) and an European Research Council (ERC) Advanced Grant (to K.A.N.) and by the Multiple Sclerosis Society of Canada, Canadian Institutes of Health Research, Alberta Innovates — Health Solutions, Alberta Prion Research Institute, Canada Research Chairs and the Canada Foundation for Innovation (to P.K.S.).

Author information

Authors and Affiliations

Authors

Contributions

P. K. Stys: researching data for article, substantial contribution to discussion of content, writing, review/editing of manuscript before submission. I. Micu: researching data for article, substantial contribution to discussion of content, writing, review/editing of manuscript before submission. J. R. Plemel: researching data for article, substantial contribution to discussion of content, writing, review/editing of manuscript before submission. A. V. Caprariello: researching data for article, substantial contribution to discussion of content, writing, review/editing of manuscript before submission. K.-A. Nave: substantial contribution to discussion of content, writing, review/editing of manuscript before submission.

Corresponding author

Correspondence to Peter K. Stys.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Micu, I., Plemel, J., Caprariello, A. et al. Axo-myelinic neurotransmission: a novel mode of cell signalling in the central nervous system. Nat Rev Neurosci 19, 49–58 (2018). https://doi.org/10.1038/nrn.2017.128

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing