Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The impact of cytoskeletal organization on the local regulation of neuronal transport

Key Points

  • The neuronal cytoskeleton is functionally specialized within distinct compartments; local differences in cytoskeletal organization regulate local traffic patterns.

  • In axons, the axon initial segment serves as a filter discriminating between axonal and somatodendritic cargoes, whereas the axon shaft is a conduit for long-range transport to and from more distal synaptic sites.

  • In dendrites, both the mixed microtubule polarity and the more dynamic nature of dendritic microtubules create unique challenges for efficient long-range transport and localized delivery to dendritic spines.

  • These distinct regions of the neuron utilize both a common toolbox of cytoskeletal filaments and binding partners and unique complements of motors, adaptors, effectors and microtubule-associated proteins (MAPs) to provide locally specific trafficking patterns.

  • Common themes are emerging, including the role of cytoskeletal polarity, the modulation of cytoskeletal tracks by post-translational modifications, the contribution of MAPs, and the precise control of multiple motors bound to the same cargo by associated adaptors and effectors.

  • Further work is required to fully define the interplay between cytoskeletal organization and organelle trafficking, particularly in the AIS and in dendrites.

Abstract

Neurons are akin to modern cities in that both are dependent on robust transport mechanisms. Like the best mass transit systems, trafficking in neurons must be tailored to respond to local requirements. Neurons depend on both high-speed, long-distance transport and localized dynamics to correctly deliver cargoes and to tune synaptic responses. Here, we focus on the mechanisms that provide localized regulation of the transport machinery, including the cytoskeleton and molecular motors, to yield compartment-specific trafficking in the axon initial segment, axon terminal, dendrites and spines. The synthesis of these mechanisms provides a sophisticated and responsive transit system for the cell.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of neuronal compartments and their cytoskeletal architecture.
Figure 2: The cytoskeletal organization of the axon initial segment.
Figure 3: The cytoskeletal organization of the distal axon terminal.
Figure 4: The cytoskeletal organization of dendrites.

Similar content being viewed by others

References

  1. Bentley, M. & Banker, G. The cellular mechanisms that maintain neuronal polarity. Nat. Rev. Neurosci. 17, 611–622 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Maday, S. & Holzbaur, E. L. Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev. Cell 30, 71–85 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ehlers, M. D. Dendritic trafficking for neuronal growth and plasticity. Biochem. Soc. Trans. 41, 1365–1382 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Baas, P. W., Deitch, J. S., Black, M. M. & Banker, G. A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl Acad. Sci. USA 85, 8335–8339 (1988). This study analysed microtubule orientation in hippocampal neurons and demonstrated uniform plus-end-outward orientation in axons and mixed orientation in dendrites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yogev, S., Cooper, R., Fetter, R., Horowitz, M. & Shen, K. Microtubule organization determines axonal transport dynamics. Neuron 92, 449–460 (2016). This study developed a computational method for quantifying microtubule number and length in C. elegans and characterized how microtubule number and density relate to axonal transport.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yau, K. W. et al. Dendrites in vitro and in vivo contain microtubules of opposite polarity and axon formation correlates with uniform plus-end-out microtubule orientation. J. Neurosci. 36, 1071–1085 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matus, A., Ackermann, M., Pehling, G., Byers, H. R. & Fujiwara, K. High actin concentrations in brain dendritic spines and postsynaptic densities. Proc. Natl Acad. Sci. USA 79, 7590–7594 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maday, S., Twelvetrees, A. E., Moughamian, A. J. & Holzbaur, E. L. Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron 84, 292–309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matamoros, A. J. & Baas, P. W. Microtubules in health and degenerative disease of the nervous system. Brain Res. Bull. 126, 217–225 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Leterrier, C. & Dargent, B. No Pasaran! Role of the axon initial segment in the regulation of protein transport and the maintenance of axonal identity. Semin. Cell Dev. Biol. 27, 44–51 (2014).

    Article  PubMed  Google Scholar 

  11. Hirokawa, N. & Tanaka, Y. Kinesin superfamily proteins (KIFs): Various functions and their relevance for important phenomena in life and diseases. Exp. Cell Res. 334, 16–25 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Kollins, K. M., Bell, R. L., Butts, M. & Withers, G. S. Dendrites differ from axons in patterns of microtubule stability and polymerization during development. Neural Dev. 4, 26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brown, A., Li, Y., Slaughter, T. & Black, M. M. Composite microtubules of the axon: quantitative analysis of tyrosinated and acetylated tubulin along individual axonal microtubules. J. Cell Sci. 104, 339–352 (1993).

    CAS  PubMed  Google Scholar 

  14. McIntosh, B. B., Holzbaur, E. L. & Ostap, E. M. Control of the initiation and termination of kinesin-1-driven transport by myosin-Ic and nonmuscle tropomyosin. Curr. Biol. 25, 523–529 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saxton, W. M. & Hollenbeck, P. J. The axonal transport of mitochondria. J. Cell Sci. 125, 2095–2104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kneussel, M. & Wagner, W. Myosin motors at neuronal synapses: drivers of membrane transport and actin dynamics. Nat. Rev. Neurosci. 14, 233–247 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Gramlich, M. W. & Klyachko, V. A. Actin/myosin-V and activity-dependent inter-synaptic vesicle exchange in central neurons. Cell Rep. 18, 2096–2104 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Farias, G. G., Guardia, C. M., De Pace, R., Britt, D. J. & Bonifacino, J. S. BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon. Proc. Natl Acad. Sci. USA 114, E2955–E2964 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Niwa, S., Tanaka, Y. & Hirokawa, N. KIF1Bβ- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. Nat. Cell Biol. 10, 1269–1279 (2008). This study showed that RAB3 GDP–GTP exchange factor (also known as MADD or DENN) binds to KIF1A–KIF1Bβ to promote anterograde transport of synaptic vesicle proteins and suggests that the GTP state of RAB3 may regulate motor-cargo loading and unloading.

    Article  CAS  PubMed  Google Scholar 

  20. Dey, S., Banker, G. & Ray, K. Anterograde transport of Rab4-associated vesicles regulates synapse organization in Drosophila. Cell Rep. 18, 2452–2463 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johansson, M. et al. Activation of endosomal dynein motors by stepwise assembly of Rab7-RILP-p150Glued, ORP1L, and the receptor βlll spectrin. J. Cell Biol. 176, 459–471 (2007). This study characterized the assembly of a late-endosomal dynein-adaptor complex via the scaffolding proteins and adaptors RILP and ORP1L.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kevenaar, J. T. et al. Kinesin-binding protein controls microtubule dynamics and cargo trafficking by regulating kinesin motor activity. Curr. Biol. 26, 849–861 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Gill, S. R. et al. Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J. Cell Biol. 115, 1639–1650 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Holzbaur, E. L. et al. Homology of a 150K cytoplasmic dynein-associated polypeptide with the Drosophila gene Glued. Nature 351, 579–583 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Ayloo, S. et al. Dynactin functions as both a dynamic tether and brake during dynein-driven motility. Nat. Commun. (2014).

  26. Nirschl, J. J., Magiera, M. M., Lazarus, J. E., Janke, C. & Holzbaur, E. L. α-Tubulin tyrosination and CLIP-170 phosphorylation regulate the initiation of dynein-driven transport in neurons. Cell Rep. 14, 2637–2652 (2016). This work characterized the roles of CLIP170 phosphorylation and α-tubulin tyrosination in initiating retrograde transport in neurons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Splinter, D. et al. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Mol. Biol. Cell 23, 4226–4241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McKenney, R. J., Huynh, W., Tanenbaum, M. E., Bhabha, G. & Vale, R. D. Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science 345, 337–341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Urnavicius, L. et al. The structure of the dynactin complex and its interaction with dynein. Science 347, 1441–1446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schroeder, C. M. & Vale, R. D. Assembly and activation of dynein-dynactin by the cargo adaptor protein Hook3. J. Cell Biol. 214, 309–318 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Olenick, M. A., Tokito, M., Boczkowska, M., Dominguez, R. & Holzbaur, E. L. Hook adaptors induce unidirectional processive motility by enhancing the dynein–dynactin interaction. J. Biol. Chem. 291, 18239–18251 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Toropova, K. et al. Lis1 regulates dynein by sterically blocking its mechanochemical cycle. eLife http://dx.doi.org/10.7554/eLife.03372 (2014).

  33. Klinman, E. & Holzbaur, E. L. Stress-induced CDK5 activation disrupts axonal transport via Lis1/Ndel1/Dynein. Cell Rep. 12, 462–473 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hendricks, A. G. et al. Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport. Curr. Biol. 20, 697–702 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Encalada, S. E., Szpankowski, L., Xia, C. H. & Goldstein, L. S. Stable kinesin and dynein assemblies drive the axonal transport of mammalian prion protein vesicles. Cell 144, 551–565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maday, S., Wallace, K. E. & Holzbaur, E. L. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol. 196, 407–417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hancock, W. O. Bidirectional cargo transport: moving beyond tug of war. Nat. Rev. Mol. Cell Biol. 15, 615–628 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fu, M. M. & Holzbaur, E. L. JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J. Cell Biol. 202, 495–508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cavalli, V., Kujala, P., Klumperman, J. & Goldstein, L. S. Sunday Driver links axonal transport to damage signaling. J. Cell Biol. 168, 775–787 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abe, N. et al. Sunday driver interacts with two distinct classes of axonal organelles. J. Biol. Chem. 284, 34628–34639 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stowers, R. S., Megeath, L. J., Gorska-Andrzejak, J., Meinertzhagen, I. A. & Schwarz, T. L. Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 36, 1063–1077 (2002). A genetic screen for mutants that disrupt mitochondrial localization to nerve terminals in D. melanogaster identified the kinesin motor adaptor protein Milton (homologous to TRAK1 and TRAK2).

    Article  CAS  PubMed  Google Scholar 

  42. van Spronsen, M. et al. TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77, 485–502 (2013). This study showed how TRAK/Milton mitochondrial motor adaptors differentially interact with kinesin and dynein to drive cargo into the axon or dendrites.

    Article  CAS  PubMed  Google Scholar 

  43. Fu, M. M. & Holzbaur, E. L. Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol. 24, 564–574 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fu, M.-M., Nirschl, J. J. & Holzbaur, E. L. F. LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes. Dev. Cell 29, 577–590 (2014). This study showed that the motor adaptor JIP1 regulates the motility of autophagosomes and that this motility is spatially regulated along the axon.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, X. & Schwarz, T. L. The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell 136, 163–174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chalfie, M. & Thomson, J. N. Organization of neuronal microtubules in the nematode Caenorhabditis elegans. J. Cell Biol. 82, 278–289 (1979).

    Article  CAS  PubMed  Google Scholar 

  47. Bray, D. & Bunge, M. B. Serial analysis of microtubules in cultured rat sensory axons. J. Neurocytol 10, 589–605 (1981).

    Article  CAS  PubMed  Google Scholar 

  48. Yu, W. & Baas, P. W. Changes in microtubule number and length during axon differentiation. J. Neurosci. 14, 2818–2829 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bender, K. J. & Trussell, L. O. The physiology of the axon initial segment. Annu. Rev. Neurosci. 35, 249–265 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Maday, S. & Holzbaur, E. L. Compartment-specific regulation of autophagy in primary neurons. J. Neurosci. 36, 5933–5945 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Song, A. H. et al. A selective filter for cytoplasmic transport at the axon initial segment. Cell 136, 1148–1160 (2009). This study found that an ankyrin-G- and actin-dependent mechanism in the AIS limited the diffusion or transport of somatodendritic cargo into the axon.

    Article  CAS  PubMed  Google Scholar 

  52. Albrecht, D. et al. Nanoscopic compartmentalization of membrane protein motion at the axon initial segment. J. Cell Biol. 215, 37–46 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Leterrier, C. et al. Nanoscale architecture of the axon initial segment reveals an organized and robust scaffold. Cell Rep. 13, 2781–2793 (2015). This study characterized the organization of ankyrin-G and βIV spectrin in the submembrane complex of the AIS, as well as the stability of this complex to perturbations by using super-resolution microscopy.

    Article  CAS  PubMed  Google Scholar 

  54. Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013). This study discovered and characterized periodic actin-spectrin ring structures in axons using super-resolution microscopy.

    Article  CAS  PubMed  Google Scholar 

  55. Zhong, G. et al. Developmental mechanism of the periodic membrane skeleton in axons. eLife http://dx.doi.org/10.7554/eLife.04581 (2014).

  56. Qu, Y., Hahn, I., Webb, S. E., Pearce, S. P. & Prokop, A. Periodic actin structures in neuronal axons are required to maintain microtubules. Mol. Biol. Cell 28, 296–308 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. D'Este, E., Kamin, D., Gottfert, F., El-Hady, A. & Hell, S. W. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep. 10, 1246–1251 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Ganguly, A. et al. A dynamic formin-dependent deep F-actin network in axons. J. Cell Biol. 210, 401–417 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Watanabe, K. et al. Networks of polarized actin filaments in the axon initial segment provide a mechanism for sorting axonal and dendritic proteins. Cell Rep. 2, 1546–1553 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Arnold, D. B. & Gallo, G. Structure meets function: actin filaments and myosin motors in the axon. J. Neurochem. 129, 213–220 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Palay, S. L., Sotelo, C., Peters, A. & Orkand, P. M. The axon hillock and the initial segment. J. Cell Biol. 38, 193–201 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jones, S. L., Korobova, F. & Svitkina, T. Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments. J. Cell Biol. 205, 67–81 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Leterrier, C. et al. End-binding proteins EB3 and EB1 link microtubules to ankyrin G in the axon initial segment. Proc. Natl Acad. Sci. USA 108, 8826–8831 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Freal, A. et al. Cooperative interactions between 480 kDa ankyrin-G and EB proteins assemble the axon initial segment. J. Neurosci. 36, 4421–4433 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. van Beuningen, S. F. et al. TRIM46 controls neuronal polarity and axon specification by driving the formation of parallel microtubule arrays. Neuron 88, 1208–1226 (2015). This study localized TRIM46 to the proximal axon, where it forms parallel microtubule bundles and contributes to the plus-end-out polarity of axonal microtubules.

    Article  CAS  PubMed  Google Scholar 

  66. Kuijpers, M. et al. Dynein regulator NDEL1 controls polarized cargo transport at the axon initial segment. Neuron 89, 461–471 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Guo, X., Farias, G. G., Mattera, R. & Bonifacino, J. S. Rab5 and its effector FHF contribute to neuronal polarity through dynein-dependent retrieval of somatodendritic proteins from the axon. Proc. Natl Acad. Sci. USA 113, E5318–E5327 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Farias, G. G., Guardia, C. M., Britt, D. J., Guo, X. & Bonifacino, J. S. Sorting of dendritic and axonal vesicles at the pre-axonal exclusion zone. Cell Rep. 13, 1221–1232 (2015). This study identified a region in the axon hillock, proximal to the AIS, where many somatodendritic vesicles reverse direction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bearce, E. A., Erdogan, B. & Lowery, L. A. TIPsy tour guides: how microtubule plus-end tracking proteins (+TIPs) facilitate axon guidance. Frontiers Cell. Neurosci. 9, 241 (2015).

    Article  CAS  Google Scholar 

  70. Voelzmann, A., Hahn, I., Pearce, S. P., Sanchez-Soriano, N. & Prokop, A. A conceptual view at microtubule plus end dynamics in neuronal axons. Brain Res. Bull. 126, 226–237 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bradke, F., Fawcett, J. W. & Spira, M. E. Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nat. Rev. Neurosci. 13, 183–193 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Moughamian, A. J., Osborn, G. E., Lazarus, J. E., Maday, S. & Holzbaur, E. L. Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport. J. Neurosci. 33, 13190–13203 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Plucinska, G. et al. In vivo imaging of disease-related mitochondrial dynamics in a vertebrate model system. J. Neurosci. 32, 16203–16212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rizzoli, S. O. Synaptic vesicle recycling: steps and principles. EMBO J. 33, 788–822 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gibbs, K. L., Greensmith, L. & Schiavo, G. Regulation of axonal transport by protein kinases. Trends Biochem. Sci. 40, 597–610 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Neisch, A. L., Neufeld, T. P. & Hays, T. S. A STRIPAK complex mediates axonal transport of autophagosomes and dense core vesicles through PP2A regulation. J. Cell Biol. 216, 441–461 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, T. et al. Flux of signalling endosomes undergoing axonal retrograde transport is encoded by presynaptic activity and TrkB. Nat. Commun. 7, 12976 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bodaleo, F. J. & Gonzalez-Billault, C. The presynaptic microtubule cytoskeleton in physiological and pathological conditions: lessons from Drosophila fragile X syndrome and hereditary spastic paraplegias. Front. Mol. Neurosci. 9, 60 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Twelvetrees, A. E. et al. The dynamic localization of cytoplasmic dynein in neurons is driven by kinesin-1. Neuron 90, 1000–1015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Moughamian, A. J. & Holzbaur, E. L. Dynactin is required for transport initiation from the distal axon. Neuron 74, 331–343 (2012). This study and reference 84 demonstrate that the N-terminal CAP-Gly domain of p150Glued is required for efficient initiation of retrograde transport from the distal axon terminal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Peris, L. et al. Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J. Cell Biol. 174, 839–849 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Weisbrich, A. et al. Structure-function relationship of CAP-Gly domains. Nat. Struct. Mol. Biol. 14, 959–967 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Bieling, P. et al. CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites. J. Cell Biol. 183, 1223–1233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lloyd, T. E. et al. The p150(Glued) CAP-Gly domain regulates initiation of retrograde transport at synaptic termini. Neuron 74, 344–360 (2012). This study and reference 80 demonstrate that the N-terminal CAP-Gly domain of p150Glued is required for efficient initiation of retrograde transport from the distal axon terminal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee, H. S. et al. Phosphorylation controls autoinhibition of cytoplasmic linker protein-170. Mol. Biol. Cell 21, 2661–2673 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. McKenney, R. J., Huynh, W., Vale, R. D. & Sirajuddin, M. Tyrosination of α-tubulin controls the initiation of processive dynein-dynactin motility. EMBO J. 35, 1175–1185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chia, J. X., Efimova, N. & Svitkina, T. M. Neurite outgrowth is driven by actin polymerization even in the presence of actin polymerization inhibitors. Mol. Biol. Cell 27, 3695–3704 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  88. Sankaranarayanan, S., Atluri, P. P. & Ryan, T. A. Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat. Neurosci. 6, 127–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Cingolani, L. A. & Goda, Y. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci. 9, 344–356 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Harrington, A. W. et al. Recruitment of actin modifiers to TrkA endosomes governs retrograde NGF signaling and survival. Cell 146, 421–434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bar, J., Kobler, O., van Bommel, B. & Mikhaylova, M. Periodic F-actin structures shape the neck of dendritic spines. Scientif. Rep. 6, 37136 (2016).

    Article  CAS  Google Scholar 

  92. Kapitein, L. C. et al. NMDA receptor activation suppresses microtubule growth and spine entry. J. Neurosci. 31, 8194–8209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wong, R. O. & Ghosh, A. Activity-dependent regulation of dendritic growth and patterning. Nat. Rev. Neurosci. 3, 803–812 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Lin, S., Liu, M., Mozgova, O. I., Yu, W. & Baas, P. W. Mitotic motors coregulate microtubule patterns in axons and dendrites. J. Neurosci. 32, 14033–14049 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kahn, O. I., Sharma, V., Gonzalez-Billault, C. & Baas, P. W. Effects of kinesin-5 inhibition on dendritic architecture and microtubule organization. Mol. Biol. Cell 26, 66–77 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zheng, Y. et al. Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat. Cell Biol. 10, 1172–1180 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ori-McKenney, K. M., Jan, L. Y. & Jan, Y. N. Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron 76, 921–930 (2012). This study demonstrated that Golgi outposts mediate acentrosomal microtubule nucleation and that this is critical for dendrite morphogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sanchez-Huertas, C. et al. Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity. Nat. Commun. 7, 12187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nguyen, M. M. et al. γ-Tubulin controls neuronal microtubule polarity independently of Golgi outposts. Mol. Biol. Cell 25, 2039–2050 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Efimov, A. et al. Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev. Cell 12, 917–930 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kapitein, L. C. et al. Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr. Biol. 20, 290–299 (2010). Pharmacologic targeting of kinesin to artificial cargo primarily drives cargo to the axon, whereas dynein-targeted cargo translocates to dendrites.

    Article  CAS  PubMed  Google Scholar 

  102. Jenkins, B., Decker, H., Bentley, M., Luisi, J. & Banker, G. A novel split kinesin assay identifies motor proteins that interact with distinct vesicle populations. J. Cell Biol. 198, 749–761 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Huang, C. F. & Banker, G. The translocation selectivity of the kinesins that mediate neuronal organelle transport. Traffic 13, 549–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ghiretti, A. E. et al. Activity-dependent regulation of distinct transport and cytoskeletal remodeling functions of the dendritic kinesin KIF21B. Neuron 92, 857–872 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kapitein, L. C. & Hoogenraad, C. C. Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol. Cell Neurosci. 46, 9–20 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Hammond, J. W. et al. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol. Biol. Cell 21, 572–583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nakata, T. & Hirokawa, N. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J. Cell Biol. 162, 1045–1055 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Konishi, Y. & Setou, M. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat. Neurosci. 12, 559–567 (2009). This study identified a motif in the kinesin-1 family motor domain that reduces binding to tyrosinated tubulin and showed that region-specific neuronal microtubule PTMs can give rise to regional differences in motor distribution.

    Article  CAS  PubMed  Google Scholar 

  109. Reed, N. A. et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol. 16, 2166–2172 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Dehmelt, L. & Halpain, S. The MAP2/Tau family of microtubule-associated proteins. Genome Biol. 6, 204 (2005).

    Article  PubMed  Google Scholar 

  111. Lipka, J., Kapitein, L. C., Jaworski, J. & Hoogenraad, C. C. Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites. EMBO J. 35, 302–318 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Guillaud, L., Wong, R. & Hirokawa, N. Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release. Nat. Cell Biol. 10, 19–29 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Hoogenraad, C. C., Milstein, A. D., Ethell, I. M., Henkemeyer, M. & Sheng, M. GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking. Nat. Neurosci. 8, 906–915 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Neupert, C. et al. Regulated dynamic trafficking of neurexins inside and outside of synaptic terminals. J. Neurosci. 35, 13629–13647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hoerndli, F. J. et al. Neuronal activity and CaMKII regulate kinesin-mediated transport of synaptic AMPARs. Neuron 86, 457–474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ichinose, S., Ogawa, T. & Hirokawa, N. Mechanism of activity-dependent cargo loading via the phosphorylation of KIF3A by PKA and CaMKIIa. Neuron 87, 1022–1035 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Ruane, P. T. et al. Tumour suppressor adenomatous polyposis coli (APC) localisation is regulated by both kinesin-1 and kinesin-2. Scientif. Rep. 6, 27456 (2016).

    Article  CAS  Google Scholar 

  118. Liot, G. et al. Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites. J. Neurosci. 33, 6298–6309 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sabatini, B. L., Maravall, M. & Svoboda, K. Ca2+ signaling in dendritic spines. Curr. Opin. Neurobiol. 11, 349–356 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Korobova, F. & Svitkina, T. Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol. Biol. Cell 21, 165–176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Honkura, N., Matsuzaki, M., Noguchi, J., Ellis-Davies, G. C. & Kasai, H. The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57, 719–729 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Racz, B. & Weinberg, R. J. Organization of the Arp2/3 complex in hippocampal spines. J. Neurosci. 28, 5654–5659 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Neuhoff, H. et al. The actin-binding protein profilin I is localized at synaptic sites in an activity-regulated manner. Eur. J. Neurosci. 21, 15–25 (2005).

    Article  PubMed  Google Scholar 

  124. Hotulainen, P. et al. Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J. Cell Biol. 185, 323–339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tashiro, A., Minden, A. & Yuste, R. Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb. Cortex 10, 927–938 (2000).

    CAS  PubMed  Google Scholar 

  126. Fischer, M., Kaech, S., Wagner, U., Brinkhaus, H. & Matus, A. Glutamate receptors regulate actin-based plasticity in dendritic spines. Nat. Neurosci. 3, 887–894 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Star, E. N., Kwiatkowski, D. J. & Murthy, V. N. Rapid turnover of actin in dendritic spines and its regulation by activity. Nat. Neurosci. 5, 239–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Okamoto, K., Nagai, T., Miyawaki, A. & Hayashi, Y. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci. 7, 1104–1112 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Gu, J. et al. ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat. Neurosci. 13, 1208–1215 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Allison, D. W., Gelfand, V. I., Spector, I. & Craig, A. M. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci. 18, 2423–2436 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Koskinen, M., Bertling, E., Hotulainen, R., Tanhuanpaa, K. & Hotulainen, P. Myosin IIb controls actin dynamics underlying the dendritic spine maturation. Mol. Cell Neurosci. 61, 56–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Hodges, J. L., Newell-Litwa, K., Asmussen, H., Vicente-Manzanares, M. & Horwitz, A. R. Myosin IIb activity and phosphorylation status determines dendritic spine and post-synaptic density morphology. PLoS ONE 6, e24149 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rubio, M. D., Johnson, R., Miller, C. A., Huganir, R. L. & Rumbaugh, G. Regulation of synapse structure and function by distinct myosin II motors. J. Neurosci. 31, 1448–1460 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Osterweil, E., Wells, D. G. & Mooseker, M. S. A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J. Cell Biol. 168, 329–338 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lise, M. F. et al. Involvement of myosin Vb in glutamate receptor trafficking. J. Biol. Chem. 281, 3669–3678 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, Z. et al. Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 135, 535–548 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Correia, S. S. et al. Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation. Nat. Neurosci. 11, 457–466 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Gu, J., Firestein, B. L. & Zheng, J. Q. Microtubules in dendritic spine development. J. Neurosci. 28, 12120–12124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Jaworski, J. et al. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron 61, 85–100 (2009). This study found that EB3 on growing microtubule plus ends invades dendritic spines and interacts with p140Cap in the postsynaptic density to modulate spine morphology.

    Article  CAS  PubMed  Google Scholar 

  140. Hu, X., Viesselmann, C., Nam, S., Merriam, E. & Dent, E. W. Activity-dependent dynamic microtubule invasion of dendritic spines. J. Neurosci. 28, 13094–13105 (2008). This study showed that dynamic microtubules invade dendritic spines in mature CNS neurons and that spine invasion can be associated with changes in spine morphology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Merriam, E. B. et al. Dynamic microtubules promote synaptic NMDA receptor-dependent spine enlargement. PLoS ONE 6, e27688 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Merriam, E. B. et al. Synaptic regulation of microtubule dynamics in dendritic spines by calcium, F-actin, and drebrin. J. Neurosci. 33, 16471–16482 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. McVicker, D. P. et al. Transport of a kinesin-cargo pair along microtubules into dendritic spines undergoing synaptic plasticity. Nat. Commun. 7, 12741 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Matsuda, W. et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 29, 444–453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Farrer, M. J. et al. DCTN1 mutations in Perry syndrome. Nat. Genet. 41, 163–165 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sleigh, J. N., Vagnoni, A., Twelvetrees, A. E. & Schiavo, G. Methodological advances in imaging intravital axonal transport. F1000Res 6, 200 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Nogales, E. Structural insight into microtubule function. Annu. Rev. Biophys. Biomol. Struct. 30, 397–420 (2001).

    Article  CAS  PubMed  Google Scholar 

  148. Stone, M. C., Roegiers, F. & Rolls, M. M. Microtubules have opposite orientation in axons and dendrites of Drosophila neurons. Mol. Biol. Cell 19, 4122–4129 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mandelkow, E. & Mandelkow, E. M. Microtubules and microtubule-associated proteins. Curr. Opin. Cell Biol. 7, 72–81 (1995).

    Article  CAS  PubMed  Google Scholar 

  150. van de Willige, D., Hoogenraad, C. C. & Akhmanova, A. Microtubule plus-end tracking proteins in neuronal development. Cell. Mol. Life Sci. 73, 2053–2077 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature 378, 578–583 (1995).

    Article  CAS  PubMed  Google Scholar 

  152. Janke, C. The tubulin code: molecular components, readout mechanisms, and functions. J. Cell Biol. 206, 461–472 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chakraborti, S., Natarajan, K., Curiel, J., Janke, C. & Liu, J. The emerging role of the tubulin code: From the tubulin molecule to neuronal function and disease. Cytoskeleton (Hoboken) 73, 521–550 (2016).

    Article  CAS  Google Scholar 

  154. Pollard, T. D. Actin and actin-binding proteins. Cold Spring Harb. Perspect. Biol. 8, a018226 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Franker, M. A. et al. Three-step model for polarized sorting of KIF17 into dendrites. Curr. Biol. 26, 1705–1712 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Hirokawa, N., Sato-Yoshitake, R., Yoshida, T. & Kawashima, T. Brain dynein (MAP1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo. J. Cell Biol. 111, 1027–1037 (1990).

    Article  CAS  PubMed  Google Scholar 

  157. Ayloo, S., Guedes-Dias, P., Ghiretti, A. E. & Holzbaur, E. L. Dynein efficiently navigates the dendritic cytoskeleton to drive the retrograde trafficking of BDNF/TrkB signaling endosomes. Mol. Biol. Cell http://dx.doi.org/10.1091/mbc.E17-01-0068 (2017).

  158. Waterman-Storer, C. M., Karki, S. & Holzbaur, E. L. The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1). Proc. Natl Acad. Sci. USA 92, 1634–1638 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hoogenraad, C. C. & Akhmanova, A. Bicaudal D family of motor adaptors: linking dynein motility to cargo binding. Trends Cell Biol. 26, 327–340 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. He, J. et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc. Natl Acad. Sci. USA 113, 6029–6034 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors all contributed to researching data for the article, discussing its content, and writing and reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Erika L. F. Holzbaur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Anterograde transport

Motor-driven transport away from the cell body, towards either the axon terminal or the distal dendrites.

Retrograde transport

Motor-driven transport towards the cell body, from either the axon terminal or distal dendrites.

Dynamic instability

The process through which microtubule ends dynamically switch between growing (polymerization) and shrinking (depolymerization) phases through the processes of catastrophe and recovery.

Kinesin superfamily

Kinesin motors are organized into 14 families (kinesin-1 to kinesin-14) based on sequence homology, and individual kinesin proteins within these families are referred to by a KIF naming convention. Thus, a given kinesin may be referred to by its family name or protein name.

Adaptors

Interacting proteins that link multiple components to form a supramolecular complex; motor adaptor proteins may promote or inhibit motility and/or the motor–cargo interaction.

Effectors

Interacting proteins that promote the function and/or downstream signalling of a given target protein; motor adaptor proteins that facilitate the activity of a given motor protein are referred to as effectors.

Processive motility

A process driven by one or more motors in which multiple steps in the same direction are taken in a continuous manner without dissociation from the motor track.

F-Actin

Globular actin monomers (G-actin) polymerize to form filamentous F-actin.

Silicon rhodamine actin

(SiR actin). A conjugate of the far-red fluorophore silicon rhodamine (SiR) and the F-actin-binding and stabilizing toxin jasplakinolide, which allows for live-cell imaging using conventional or super-resolution microscopy.

Nucleation

The process of initiating de novo filament polymerization, usually with the help of nucleator proteins including, but not limited to, actin-related protein 2 (ARP2), ARP3 and formins for actin and γ-tubulin ring complex (γ-TuRC) for microtubules. This process is distinct from templated growth, in which a small seed of an existing filament serves as a point for filament elongation.

Phalloidin

A fungal toxin that binds to F-actin; fluorescently tagged phalloidin derivatives are used to visualize F-actin in fixed preparations.

Cytoskeletal dynamics

A broad term that describes the continuous process of cytoskeletal filament assembly and disassembly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nirschl, J., Ghiretti, A. & Holzbaur, E. The impact of cytoskeletal organization on the local regulation of neuronal transport. Nat Rev Neurosci 18, 585–597 (2017). https://doi.org/10.1038/nrn.2017.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing