Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Clostridia in cancer therapy

Abstract

During the past decade, the search for an effective system for the selective delivery of high therapeutic doses of anti-cancer agents to tumours has explored a variety of ingenious and increasingly complex biological systems. These systems are most often based on gene therapy and use viral vectors as the delivery vehicle. Invariably, such systems have been found wanting with respect to a lack of tumour specificity, poor levels of transgene expression and inefficient distribution of the vector throughout the tumour mass. By contrast, the ability of intravenously injected clostridial spores to infiltrate, then selectively germinate in, the hypoxic regions of solid tumours seems to be a totally natural phenomenon, which requires no fundamental alterations and is exquisitely specific.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clostridial-directed enzyme–prodrug therapy (CDEPT).

Similar content being viewed by others

References

  1. Bagshawe, K. D. Antibody directed enzymes revive anti-cancer prodrug concept. Br. J. Cancer 56, 531–532 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dobbelstein, M. Viruses in therapy — royal road or dead end? Virus Res. 92, 219–221 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. St George, J. A. Gene therapy progress and prospects: adenoviral vectors. Gene Ther. 10, 1135–1141 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Krasnykh, V. et al. Advanced generation adenoviral vectors possess augmented gene transfer efficiency based upon coxsackie adenovirus receptor-independent cellular entry capacity. Cancer Res. 60, 6784–6787 (2000).

    CAS  PubMed  Google Scholar 

  5. Alemany, R., Balague, C. & Curiel, D. T. Replicative adenoviruses in cancer therapy. Nature Biotechnol. 18, 723–727 (2000).

    Article  CAS  Google Scholar 

  6. Connolly, J. B. Conditionally replicating viruses in cancer therapy. Gene Ther. 10, 712–715 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Reddy, J. A. et al. Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene Ther. 9, 1542–1550 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Ogris, M. et al. Tumor-targeted gene therapy: strategies for the preparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes. J. Control. Release 91, 173–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. De Palma, M., Venneri, M. A. & Naldini, L. In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum. Gene Ther. 14, 1193–1206 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Greco, O. et al. Novel chimeric gene promoters responsive to hypoxia and ionizing radiation. Gene Ther. 20, 1403–1411 (2002).

    Article  Google Scholar 

  11. Smrekar, B. et al. Tissue-dependent factors affect gene delivery to tumors in vivo. Gene Ther. 10, 1079–1088 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Semenez, G. L. Hypoxia-inducible factor 1: master regulator of 02 homeostasis. Curr. Opin. Genet. Dev. 8, 588–594 (1998).

    Article  Google Scholar 

  13. Binley, K. et al. Hypoxia-mediated tumour targeting. Gene Ther. 10, 540–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nature Rev. Cancer 1, 38–47 (2002).

    Article  Google Scholar 

  15. Minton, N. P., Brown, J. M., Lambin, P. & Anné, J. in Clostridia — Biotechnology and Medical Applications. (eds Bahl, H. & Dürre, P.) 251–270 (Wiley, Weinheim, 2001).

    Google Scholar 

  16. Parker, R. C., Plumber, H. C., Siebenmann, C. O. & Chapman, M. G. Effect of histolyticus infection and toxin on transplantable mouse tumours. Proc. Soc. Exp. Biol. Med. 66, 461–465 (1947).

    Article  CAS  PubMed  Google Scholar 

  17. Malmgren, R. A. & Flanigan, C. C. Localization of the vegetative form of Clostridium tetani in mouse tumours following intravenous spore administration. Cancer Res. 15, 473–478 (1955).

    CAS  PubMed  Google Scholar 

  18. Theys, J. et al. Stable Escherichia coli–Clostridium acetobutylicum shuttle vector for secretion of murine tumor necrosis factor α. Appl. Environ. Microbiol. 65, 4295–4300 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Theys, J. et al. Clostridium as a tumor-specific delivery system of therapeutic proteins. Cancer Detect. Prevent. 25, 548–557 (2001).

    CAS  PubMed  Google Scholar 

  20. Francis, R. J. et al. A phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumours. Br. J. Cancer 87, 600–607 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Spooner, R. A. et al. A novel vascular endothelial growth factor-directed therapy that selectively activates cytotoxic prodrugs. Br. J. Cancer 88, 1622–1630 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Niculescu-Duvaz, I., Spooner, R., Marais, R. & Springer, C. J. Gene-directed enzyme prodrug therapy. Bioconjug. Chem. 9, 4–22 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Green, N. K. et al. Immune enhancement of nitroreductase-induced cytotoxicity: studies using a bicistronic adenovirus vector. Int. J. Cancer 104, 104–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Okabe, S., Arai, T., Yamashita, H. & Sugihara, K. Adenovirus-mediated prodrug-enzyme therapy for CEA-producing colorectal cancer cells. J. Cancer Res. Clin. Oncol. 129, 367–373 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Xu, G. & McLeod, H. L. Strategies for enzyme/prodrug cancer therapy. Clin. Cancer Res. 7, 3314–3324 (2001).

    CAS  PubMed  Google Scholar 

  26. Minton, N. P. et al. Chemotherapeutic tumour targeting using clostridial spores. FEMS Microbiol. Rev. 17, 357–364 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Polak, A., Eschenhof, A., Fernex., M. & Scholer, H. J. Metabolic studies with 5-fluorocytosine-6–14C in mouse, rat, rabbit, dog and man. Chemotherapy 22, 137–153 (1976).

    Article  CAS  PubMed  Google Scholar 

  28. Anlezark, G. M. et al. The bioactivation of 5-(aziridin-1-y1)-2,4-dinitrobenzamide (CB1954). I. Purification and properties of a nitroreductase enzyme from Escherichia coli: a potential enzyme for antibody–directed enzyme prodrug therapy (ADEPT). Biochem. Pharmacol. 44, 2289–2295 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Mauchline, M. L., Davis, T. O. & Minton, N. P. in Manual of Industrial Microbiology and Biotechnology, 2nd Edition (eds Demain, A. L. & Davies, J. E.) 475–490 (Washington DC, ASM Press, 1999).

    Google Scholar 

  30. Lemmon, M. J. et al. Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment. Gene Ther. 4, 791–796 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Lambin, P. et al. Colonisation of the Clostridium in the body is restricted to hypoxic and necrotic areas of tumours. Anaerobe 4, 183–188 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Fox, M. E. et al. Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered Clostridia. Gene Ther. 3, 173–178 (1996).

    CAS  PubMed  Google Scholar 

  33. Theys, J. et al. Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium acetobutylicum. Cancer Gene Ther. 8, 294–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, S. C., Minton, N. P., Giaccia, A. J. & Brown, M. J. Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Ther. 9, 291–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Dang, L. H., Bettegowda, C., Huso, D. L., Kinzler, K. W. & Vogelstein, B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. Natl Acad. Sci. USA 98, 15155–15160 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nuyts, S. et al. The use of radiation-induced bacterial promoters in anaerobic conditions: a means to control gene expression in clostridium-mediated therapy for cancer. Radiat. Res. 155, 716–723 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Nuyts, S. et al. Radio-responsive recA promoter significantly increases TNFα production in recombinant clostridia after 2 Gy irradiation. Gene Ther. 8, 1197–1201 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Nuyts, S. et al. Insertion or deletion of the Cheo box modifies radiation inducibility of Clostridium promoters. Appl. Environ. Microbiol. 67, 4464–4470 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jorgensen, H. & Overgaard, J. Combretastatins novel vascular targeting drugs for improving anti-cancer therapy. Combretastatins and conventional therapy. Adv. Exp. Med. Biol. 476, 311–323 (2000).

    Article  Google Scholar 

  40. Theys, J. et al. Improvement of Clostridium tumour targeting vectors evaluated in rat rhabdomyosarcomas. FEMS Immunol. Med. Microbiol. 30, 37–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, S. C. et al. Tumour-specific enzyme/prodrug gene therapy using genetically engineered C. sporogenes as a delivery system combined with vascular-targeting agents. Fourth International Conference on the Molecular Biology and Pathogenesis of the Clostridia, Woods Hole, Massachusetts (2003).

  42. Fujimori, M., Amano, J. & Taniguchi, S. The genus Bifidobacterium for cancer gene therapy. Curr. Opin. Drug Discov. Devel. 5, 200–203 (2002).

    CAS  PubMed  Google Scholar 

  43. Grove, J. I. et al. Generation of Escherichia coli nitroreductase mutants conferring improved cell sensitization to the prodrug CB1954. Cancer Res. 63, 5532–5537 (2003).

    CAS  PubMed  Google Scholar 

  44. Anlezark, G. M. et al. The Bacillus amyloliquefaciens orthologue of B. subtilis ywrO encodes a nitroreductase enzyme which activates the prodrug CB 1954. Microbiology 148, 297–306 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Spencer, D. I. R. et al. A strategy for mapping and neutralizing conformational immunogenic sites on protein therapeutics. Proteomics 3, 271–279 (2002).

    Article  Google Scholar 

  46. Pawelek, J. M., Low, K. B. & Bermudes, D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57, 4537–4544 (1997).

    CAS  PubMed  Google Scholar 

  47. Low, K. B. et al. Lipid A mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nature Biotechnol. 17, 37–41 (1999).

    Article  CAS  Google Scholar 

  48. Toso, J. F. et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20, 142–152 (2002).

    Article  PubMed  Google Scholar 

  49. Zheng, L. M. et al. Tumor amplified protein expression therapy: Salmonella as a tumor-selective protein delivery vector. Oncol. Res. 12, 127–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Cunningham, C. & Nemunaitis, J. A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL–017. Hum. Gene Ther. 12, 1594–1596 (2001).

    CAS  PubMed  Google Scholar 

  51. Yazawa, K., Fujimori, M., Amano, J., Kano, Y. & Taniguchi, S. Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer Gene Ther. 7, 269–274 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Li, X. et al. Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther. 10, 105–111 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Nicola Minion for typing this manuscript, Ben Minton for the initial artwork and the financial support of the European Union.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

LocusLink

TNF-α

Swiss Prot

cytosine deaminase

nitroreductase

FURTHER INFORMATION

Nigel P. Minton's laboratory

European Union Clostridia Project

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minton, N. Clostridia in cancer therapy. Nat Rev Microbiol 1, 237–242 (2003). https://doi.org/10.1038/nrmicro777

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro777

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing