Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sexual development in Plasmodium parasites: knowing when it's time to commit

Key Points

  • Malaria is responsible for almost 600,000 deaths each year; a major challenge in eradicating this disease has been the lack of drugs targeting malaria parasites at a transmissible stage of the life cycle.

  • Conversion of asexual blood-stage malaria parasites to sexual gametocytes is essential for transmission from the human host to the mosquito vector. This process occurs in only a small proportion of cells.

  • Although several studies have investigated the transcriptional changes that occur during sexual development and attempted to identify genes that may be involved, the molecular basis of sexual conversion has been elusive.

  • Recent work has identified an apicomplexan-specific transcription factor as a key regulator of commitment to gametocyte development.

  • Epigenetic and post-transcriptional mechanisms are also crucial in regulating sexual development.

  • The molecular events that integrate the signals that trigger commitment remain unknown and deserve further investigation.

Abstract

Malaria is a devastating infectious disease that is caused by blood-borne apicomplexan parasites of the genus Plasmodium. These pathogens have a complex lifecycle, which includes development in the anopheline mosquito vector and in the liver and red blood cells of mammalian hosts, a process which takes days to weeks, depending on the Plasmodium species. Productive transmission between the mammalian host and the mosquito requires transitioning between asexual and sexual forms of the parasite. Blood- stage parasites replicate cyclically and are mostly asexual, although a small fraction of these convert into male and female sexual forms (gametocytes) in each reproductive cycle. Despite many years of investigation, the molecular processes that elicit sexual differentiation have remained largely unknown. In this Review, we highlight several important recent discoveries that have identified epigenetic factors and specific transcriptional regulators of gametocyte commitment and development, providing crucial insights into this obligate cellular differentiation process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The life cycle of Plasmodium falciparum.
Figure 2: The stages of gametocyte development in Plasmodium falciparum.
Figure 3: Proposed model for the regulation of sexual commitment in Plasmodium falciparum.

Similar content being viewed by others

References

  1. World Health Organization. World Malaria Report 2014. WHO [online], (2014).

  2. Miller, L. H., Baruch, D. I., Marsh, K. & Doumbo, O. K. The pathogenic basis of malaria. Nature 415, 673–679 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Bannister, L. & Mitchell, G. The ins, outs and roundabouts of malaria. Trends Parasitol. 19, 209–213 (2003).

    Article  PubMed  Google Scholar 

  4. Taylor, L. H. & Read, A. F. Why so few transmission stages? Reproductive restraint by malaria parasites. Parasitol. Today 13, 135–140 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Billker, O. et al. Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature 392, 289–292 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Janse, C. J. et al. DNA synthesis in gametocytes of Plasmodium falciparum. Parasitology 96, 1–7 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Sinden, R. E. The cell biology of sexual development in Plasmodium. Parasitology 86, 7–28 (1983).

    Article  PubMed  Google Scholar 

  8. Sinden, R. E. Plasmodium differentiation in the mosquito. Parassitologia 41, 139–148 (1999).

    CAS  PubMed  Google Scholar 

  9. Peatey, C. L. et al. Effect of antimalarial drugs on Plasmodium falciparum gametocytes. J. Infect. Dis. 200, 1518–1521 (2009).

    Article  PubMed  Google Scholar 

  10. Tangpukdee, N. et al. Gametocyte clearance in uncomplicated and severe Plasmodium falciparum malaria after artesunate-mefloquine treatment in Thailand. Kor. J. Parasitol. 46, 65–70 (2008).

    Article  Google Scholar 

  11. Shekalaghe, S. et al. Primaquine clears submicroscopic Plasmodium falciparum gametocytes that persist after treatment with sulphadoxine-pyrimethamine and artesunate. PLoS ONE 2, e1023 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bousema, T. et al. Revisiting the circulation time of Plasmodium falciparum gametocytes: molecular detection methods to estimate the duration of gametocyte carriage and the effect of gametocytocidal drugs. Malar. J. 9, 136 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. White, N. J. Primaquine to prevent transmission of falciparum malaria. Lancet Infect. Dis. 13, 175–181 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Sinden, R. E., Carter, R., Drakeley, C. & Leroy, D. The biology of sexual development of Plasmodium: the design and implementation of transmission-blocking strategies. Malar. J. 11, 70 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu, Z., Miao, J. & Cui, L. Gametocytogenesis in malaria parasite: commitment, development and regulation. Future Microbiol. 6, 1351–1369 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baker, D. A. Malaria gametocytogenesis. Mol. Biochem. Parasitol. 172, 57–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bousema, T. & Drakeley, C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin. Microbiol. Rev. 24, 377–410 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Alano, P. Plasmodium falciparum gametocytes: still many secrets of a hidden life. Mol. Microbiol. 66, 291–302 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Sinden, R. E. Malaria, sexual development and transmission: retrospect and prospect. Parasitology 136, 1427–1434 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Dantzler, K. W., Ravel, D. B., Brancucci, N. M. & Marti, M. Ensuring transmission through dynamic host environments: host-pathogen interactions in Plasmodium sexual development. Curr. Opin Microbiol. 26, 17–23 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bruce, M. C., Alano, P., Duthie, S. & Carter, R. Commitment of the malaria parasite Plasmodium falciparum to sexual and asexual development. Parasitology 100, 191–200 (1990). This study shows that every merozoite in a schizont is committed either to becoming a gametocyte or to continuing asexual development, establishing that commitment occurs prior to schizogony.

    Article  PubMed  Google Scholar 

  22. Dixon, M. W., Thompson, J., Gardiner, D. L. & Trenholme, K. R. Sex in Plasmodium: a sign of commitment. Trends Parasitol. 24, 168–175 (2008).

    Article  PubMed  Google Scholar 

  23. Smith, T. G., Lourenco, P., Carter, R., Walliker, D. & Ranford-Cartwright, L. C. Commitment to sexual differentiation in the human malaria parasite, Plasmodium falciparum. Parasitology 121, 127–133 (2000).

    Article  PubMed  Google Scholar 

  24. Alano, P. The sound of sexual commitment breaks the silencing of malaria parasites. Trends Parasitol. 30, 509–510 (2014).

    Article  PubMed  Google Scholar 

  25. Carter, L. M. et al. Stress and sex in malaria parasites: why does commitment vary? Evol. Med. Public Health 2013, 135–147 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pollitt, L. C. et al. Competition and the evolution of reproductive restraint in malaria parasites. Am. Nat. 177, 358–367 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. von Seidlein, L., Drakeley, C., Greenwood, B., Walraven, G. & Targett, G. Risk factors for gametocyte carriage in Gambian children. Am. J. Trop. Med. Hyg. 65, 523–527 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Dunyo, S. et al. Gametocytaemia after drug treatment of asymptomatic Plasmodium falciparum. PLoS Clin. Trials 1, e20 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carter, R. & Miller, L. H. Evidence for environmental modulation of gametocytogenesis in Plasmodium falciparum in continuous culture. Bull. World Health Organ. 57 (Suppl. 1), 37–52 (1979).

    PubMed  PubMed Central  Google Scholar 

  30. Williams, J. L. Stimulation of Plasmodium falciparum gametocytogenesis by conditioned medium from parasite cultures. Am. J. Trop. Med. Hyg. 60, 7–13 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Buckling, A., Ranford-Cartwright, L. C., Miles, A. & Read, A. F. Chloroquine increases Plasmodium falciparum gametocytogenesis in vitro. Parasitology 118, 339–346 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Dyer, M. & Day, K. P. Regulation of the rate of asexual growth and commitment to sexual development by diffusible factors from in vitro cultures of Plasmodium falciparum. Am. J. Trop. Med. Hyg. 68, 403–409 (2003).

    Article  PubMed  Google Scholar 

  33. Regev-Rudzki, N. et al. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 153, 1120–1133 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Mantel, P. Y. et al. Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host Microbe 13, 521–534 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fivelman, Q. L. et al. Improved synchronous production of Plasmodium falciparum gametocytes in vitro. Mol. Biochem. Parasitol. 154, 119–123 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Roncales, M., Vidal-Mas, J., Leroy, D. & Herreros, E. Comparison and optimization of different methods for the in vitro production of Plasmodium falciparum gametocytes. J. Parasitol. Res. 2012, 927148 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mons, B., Janse, C. J., Boorsma, E. G. & Van der Kaay, H. J. Synchronized erythrocytic schizogony and gametocytogenesis of Plasmodium berghei in vivo and in vitro. Parasitology 91, 423–430 (1985).

    Article  PubMed  Google Scholar 

  38. Pradel, G. Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies. Parasitology 134, 1911–1929 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Joice, R. et al. Plasmodium falciparum transmission stages accumulate in the human bone marrow. Sci. Transl. Med. 6, 244re5 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Farfour, E., Charlotte, F., Settegrana, C., Miyara, M. & Buffet, P. The extravascular compartment of the bone marrow: a niche for Plasmodium falciparum gametocyte maturation? Malar. J. 11, 285 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Aguilar, R. et al. Molecular evidence for the localization of Plasmodium falciparum immature gametocytes in bone marrow. Blood 123, 959–966 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alano, P. et al. Plasmodium falciparum: parasites defective in early stages of gametocytogenesis. Exp. Parasitol. 81, 227–235 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Day, K. P. et al. Genes necessary for expression of a virulence determinant and for transmission of Plasmodium falciparum are located on a 0.3-megabase region of chromosome 9. Proc. Natl Acad. Sci. USA 90, 8292–8296 (1993). This study links for the first time the loss of a specific chromosome region to the loss of gametocytogenesis in parasite cultures grown in vitro.

    Article  CAS  PubMed  Google Scholar 

  44. Guinet, F. et al. A developmental defect in Plasmodium falciparum male gametogenesis. J. Cell Biol. 135, 269–278 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Pologe, L. G. Aberrant transcription and the failure of Plasmodium falciparum to differentiate into gametocytes. Mol. Biochem. Parasitol. 68, 35–43 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Eksi, S. et al. Identification of a subtelomeric gene family expressed during the asexual-sexual stage transition in Plasmodium falciparum. Mol. Biochem. Parasitol. 143, 90–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Sinha, A. et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature 507, 253–257 (2014). This article identifies the DNA-binding protein PbAP2-G as a master regulator of commitment. The study shows that PbAP2-G is absolutely required for gametocytogenesis and identifies a second DNA-binding protein (PbAP2-G2) as important in subsequent gametocyte development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gissot, M. et al. Transcriptome of 3D7 and its gametocyte-less derivative F12 Plasmodium falciparum clones during erythrocytic development using a gene-specific microarray assigned to gene regulation, cell cycle and transcription factors. Gene 341, 267–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Silvestrini, F. et al. Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum. Mol. Biochem. Parasitol. 143, 100–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Kafsack, B. F. et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 507, 248–252 (2014). This paper identifies the ApiAP2 DNA-binding protein PfAP2-G as a master regulator of commitment and shows that it is absolutely required for gametocytogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gardiner, D. L. et al. Implication of a Plasmodium falciparum gene in the switch between asexual reproduction and gametocytogenesis. Mol. Biochem. Parasitol. 140, 153–160 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Eksi, S. et al. Plasmodium falciparum gametocyte development 1 (Pfgdv1) and gametocytogenesis early gene identification and commitment to sexual development. PLoS Pathog. 8, e1002964 (2012). This work shows that the nuclear protein PfGDV1 is required for gametocytogenesis and identifies a group of genes expressed in early gametocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Silvestrini, F. et al. Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum. Mol. Cell Proteomics 9, 1437–1448 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ikadai, H. et al. Transposon mutagenesis identifies genes essential for Plasmodium falciparum gametocytogenesis. Proc. Natl Acad. Sci. USA 110, E1676–E1684 (2013). This article identifies 16 genes that may be involved in commitment or gametocyte development using piggyBac transposon mutagenesis.

    Article  CAS  PubMed  Google Scholar 

  55. Morahan, B. J. et al. Functional analysis of the exported type IV HSP40 protein PfGECO in Plasmodium falciparum gametocytes. Eukaryot. Cell 10, 1492–1503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pradel, G. et al. A multidomain adhesion protein family expressed in Plasmodium falciparum is essential for transmission to the mosquito. J. Exp. Med. 199, 1533–1544 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bruce, M. C., Carter, R. N., Nakamura, K., Aikawa, M. & Carter, R. Cellular location and temporal expression of the Plasmodium falciparum sexual stage antigen Pfs16. Mol. Biochem. Parasitol. 65, 11–22 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Kongkasuriyachai, D., Fujioka, H. & Kumar, N. Functional analysis of Plasmodium falciparum parasitophorous vacuole membrane protein (Pfs16) during gametocytogenesis and gametogenesis by targeted gene disruption. Mol. Biochem. Parasitol. 133, 275–285 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Olivieri, A. et al. The Plasmodium falciparum protein Pfg27 is dispensable for gametocyte and gamete production, but contributes to cell integrity during gametocytogenesis. Mol. Microbiol. 73, 180–193 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Lobo, C. A., Fujioka, H., Aikawa, M. & Kumar, N. Disruption of the Pfg27 locus by homologous recombination leads to loss of the sexual phenotype in P. falciparum. Mol. Cell 3, 793–798 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Sharma, A., Sharma, I., Kogkasuriyachai, D. & Kumar, N. Structure of a gametocyte protein essential for sexual development in Plasmodium falciparum. Nat. Struct. Biol. 10, 197–203 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Camarda, G. et al. Regulated oligomerisation and molecular interactions of the early gametocyte protein Pfg27 in Plasmodium falciparum sexual differentiation. Int. J. Parasitol. 40, 663–673 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Tran, P. N. et al. A female gametocyte-specific ABC transporter plays a role in lipid metabolism in the malaria parasite. Nat. Commun. 5, 4773 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Alano, P., Premawansa, S., Bruce, M. C. & Carter, R. A stage specific gene expressed at the onset of gametocytogenesis in Plasmodium falciparum. Mol. Biochem. Parasitol. 46, 81–88 (1991).

    Article  CAS  PubMed  Google Scholar 

  65. Buchholz, K. et al. A high-throughput screen targeting malaria transmission stages opens new avenues for drug development. J. Infect. Dis. 203, 1445–1453 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Young, J. A. et al. The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol. Biochem. Parasitol. 143, 67–79 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Cui, L., Rzomp, K. A., Fan, Q., Martin, S. K. & Williams, J. Plasmodium falciparum: differential display analysis of gene expression during gametocytogenesis. Exp. Parasitol. 99, 244–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Lopez-Barragan, M. J. et al. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genomics 12, 587 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Baum, J. et al. Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites. Nucleic Acids Res. 37, 3788–3798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Balaji, S., Babu, M. M., Iyer, L. M. & Aravind, L. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res. 33, 3994–4006 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Iwanaga, S., Kaneko, I., Kato, T. & Yuda, M. Identification of an AP2-family protein that is critical for malaria liver stage development. PLoS ONE 7, e47557 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yuda, M. et al. Identification of a transcription factor in the mosquito-invasive stage of malaria parasites. Mol. Microbiol. 71, 1402–1414 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Yuda, M., Iwanaga, S., Shigenobu, S., Kato, T. & Kaneko, I. Transcription factor AP2-Sp and its target genes in malarial sporozoites. Mol. Microbiol. 75, 854–863 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Mackinnon, M. J. et al. Comparative transcriptional and genomic analysis of Plasmodium falciparum field isolates. PLoS Pathog. 5, e1000644 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Campbell, T. L., De Silva, E. K., Olszewski, K. L., Elemento, O. & Llinás, M. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite. PLoS Pathog. 6, e1001165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cortes, A., Crowley, V. M., Vaquero, A. & Voss, T. S. A view on the role of epigenetics in the biology of malaria parasites. PLoS Pathog. 8, e1002943 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rovira-Graells, N. et al. Transcriptional variation in the malaria parasite Plasmodium falciparum. Genome Res. 22, 925–938 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Brancucci, N. M. et al. Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell Host Microbe 16, 165–176 (2014). This study describes a dramatic increase in gametocytogenesis in response to depletion of the epigenetic regulator PfHP1, which is attributed to derepression of the pfap2-g locus.

    Article  CAS  PubMed  Google Scholar 

  79. Flueck, C. et al. Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. PLoS Pathog. 5, e1000569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Coleman, B. I. et al. A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host Microbe 16, 177–186 (2014). Depletion of the histone deacetylase PfHda2 is shown to lead to an increase in gametocytogenesis owing to derepression of the pfap2-g locus. References 78 and 80 provide the first direct evidence linking epigenetic regulation and gametocyte commitment and establish the importance of epigenetic regulation in gametocyte commitment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pace, T. et al. Set regulation in asexual and sexual Plasmodium parasites reveals a novel mechanism of stage-specific expression. Mol. Microbiol. 60, 870–882 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Gill, J. et al. Structure, localization and histone binding properties of nuclear-associated nucleosome assembly protein from Plasmodium falciparum. Malar. J. 9, 90 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chandra, B. R., Olivieri, A., Silvestrini, F., Alano, P. & Sharma, A. Biochemical characterization of the two nucleosome assembly proteins from Plasmodium falciparum. Mol. Biochem. Parasitol. 142, 237–247 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Cui, L., Lindner, S. & Miao, J. Translational regulation during stage transitions in malaria parasites. Ann. NY Acad. Sci. 1342, 1–9 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Hall, N. et al. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307, 82–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Tarique, M., Ahmad, M., Ansari, A. & Tuteja, R. Plasmodium falciparum DOZI, an RNA helicase interacts with eIF4E. Gene 522, 46–59 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Mair, G. R. et al. Regulation of sexual development of Plasmodium by translational repression. Science 313, 667–669 (2006). This work shows that the DEAD box helicase PbDOZI is required for translational repression in female gametocytes and that disruption of the gene encoding this protein results in defective ookinete development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mair, G. R. et al. Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development. PLoS Pathog. 6, e1000767 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Guerreiro, A. et al. Genome-wide RIP-Chip analysis of translational repressor-bound mRNAs in the Plasmodium gametocyte. Genome Biol. 15, 493 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Coulson, R. M., Hall, N. & Ouzounis, C. A. Comparative genomics of transcriptional control in the human malaria parasite Plasmodium falciparum. Genome Res. 14, 1548–1554 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cui, L., Fan, Q. & Li, J. The malaria parasite Plasmodium falciparum encodes members of the Puf RNA-binding protein family with conserved RNA binding activity. Nucleic Acids Res. 30, 4607–4617 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Miao, J. et al. Puf mediates translation repression of transmission-blocking vaccine candidates in malaria parasites. PLoS Pathog. 9, e1003268 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fan, Q., Li, J., Kariuki, M. & Cui, L. Characterization of PfPuf2, member of the Puf family RNA-binding proteins from the malaria parasite Plasmodium falciparum. DNA Cell Biol. 23, 753–760 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Muller, K., Matuschewski, K. & Silvie, O. The Puf-family RNA-binding protein Puf2 controls sporozoite conversion to liver stages in the malaria parasite. PLoS ONE 6, e19860 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gomes-Santos, C. S. et al. Transition of Plasmodium sporozoites into liver stage-like forms is regulated by the RNA binding protein Pumilio. PLoS Pathog. 7, e1002046 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Miao, J., Li, J., Fan, Q., Li, X. & Cui, L. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J. Cell Sci. 123, 1039–1049 (2010). This study shows that disruption of the RNA-binding protein PfPuf2 results in an increase in gameto-cytogenesis and a biased male/female sex ratio.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lindner, S. E. et al. Perturbations of Plasmodium Puf2 expression and RNA-seq of Puf2-deficient sporozoites reveal a critical role in maintaining RNA homeostasis and parasite transmissibility. Cell. Microbiol. 15, 1266–1283 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Lopez-Rubio, J. J., Mancio-Silva, L. & Scherf, A. Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 5, 179–190 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Avraham, I., Schreier, J. & Dzikowski, R. Insulator-like pairing elements regulate silencing and mutually exclusive expression in the malaria parasite Plasmodium falciparum. Proc. Natl Acad. Sci. USA 109, E3678–E3686 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Hayward, R. E., Tiwari, B., Piper, K. P., Baruch, D. I. & Day, K. P. Virulence and transmission success of the malarial parasite Plasmodium falciparum. Proc. Natl Acad. Sci. USA 96, 4563–4568 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Sharp, S. et al. Programmed transcription of the var gene family, but not of stevor, in Plasmodium falciparum gametocytes. Eukaryot. Cell 5, 1206–1214 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tiburcio, M. et al. Early gametocytes of the malaria parasite Plasmodium falciparum specifically remodel the adhesive properties of infected erythrocyte surface. Cell. Microbiol. 15, 647–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Petter, M., Bonow, I. & Klinkert, M. Q. Diverse expression patterns of subgroups of the rif multigene family during Plasmodium falciparum gametocytogenesis. PLoS ONE 3, e3779 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, C. W. et al. Identification of a major rif transcript common to gametocytes and sporozoites of Plasmodium falciparum. Malar. J. 9, 147 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Goel, S. et al. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nat. Med. 21, 314–317 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Wang, Z. et al. A flow cytometry-based quantitative drug sensitivity assay for all Plasmodium falciparum gametocyte stages. PLoS ONE 9, e93825 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Reininger, L., Garcia, M., Tomlins, A., Muller, S. & Doerig, C. The Plasmodium falciparum, Nima-related kinase Pfnek-4: a marker for asexual parasites committed to sexual differentiation. Malar. J. 11, 250 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Dixon, M. W., Peatey, C. L., Gardiner, D. L. & Trenholme, K. R. A green fluorescent protein-based assay for determining gametocyte production in Plasmodium falciparum. Mol. Biochem. Parasitol. 163, 123–126 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Eksi, S., Suri, A. & Williamson, K. C. Sex- and stage-specific reporter gene expression in Plasmodium falciparum. Mol. Biochem. Parasitol. 160, 148–151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Peatey, C. L., Leroy, D., Gardiner, D. L. & Trenholme, K. R. Anti-malarial drugs: how effective are they against Plasmodium falciparum gametocytes? Malar. J. 11, 34 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Delves, M. J. et al. Male and female Plasmodium falciparum mature gametocytes show different responses to antimalarial drugs. Antimicrob. Agents Chemother. 57, 3268–3274 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ruecker, A. et al. A male and female gametocyte functional viability assay to identify biologically relevant malaria transmission-blocking drugs. Antimicrob. Agents Chemother. 58, 7292–7302 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Peatey, C. L., Spicer, T. P., Hodder, P. S., Trenholme, K. R. & Gardiner, D. L. A high-throughput assay for the identification of drugs against late-stage Plasmodium falciparum gametocytes. Mol. Biochem. Parasitol. 180, 127–131 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Sun, W. et al. Chemical signatures and new drug targets for gametocytocidal drug development. Sci. Rep. 4, 3743 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Duffy, S. & Avery, V. M. Identification of inhibitors of Plasmodium falciparum gametocyte development. Malar. J. 12, 408 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sanders, N. G., Sullivan, D. J., Mlambo, G., Dimopoulos, G. & Tripathi, A. K. Gametocytocidal screen identifies novel chemical classes with Plasmodium falciparum transmission blocking activity. PLoS ONE 9, e105817 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Karl, S. et al. A sub-microscopic gametocyte reservoir can sustain malaria transmission. PLoS ONE 6, e20805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wampfler, R. et al. Strategies for detection of Plasmodium species gametocytes. PLoS ONE 8, e76316 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Schneider, P. et al. Quantification of Plasmodium falciparum gametocytes in differential stages of development by quantitative nucleic acid sequence-based amplification. Mol. Biochem. Parasitol. 137, 35–41 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Silvestrini, F., Alano, P. & Williams, J. L. Commitment to the production of male and female gametocytes in the human malaria parasite Plasmodium falciparum. Parasitology 121, 465–471 (2000). References 23 and 120 show that all merozoites in a schizont are committed to becoming either male or female gametocytes, demonstrating that sex determination occurs at, or shortly after, commitment to gametocytogenesis.

    Article  PubMed  Google Scholar 

  121. Furuya, T. et al. Disruption of a Plasmodium falciparum gene linked to male sexual development causes early arrest in gametocytogenesis. Proc. Natl Acad. Sci. USA 102, 16813–16818 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Dietz, K. J., Vogel, M. O. & Viehhauser, A. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma 245, 3–14 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Riechmann, J. L. & Meyerowitz, E. M. The AP2/EREBP family of plant transcription factors. Biol. Chem. 379, 633–646 (1998).

    CAS  PubMed  Google Scholar 

  124. Painter, H. J., Campbell, T. L. & Llinás, M. The Apicomplexan AP2 family: integral factors regulating Plasmodium development. Mol. Biochem. Parasitol. 176, 1–7 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Walker, R. et al. The Toxoplasma nuclear factor TgAP2XI-4 controls bradyzoite gene expression and cyst formation. Mol. Microbiol. 87, 641–655 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Radke, J. B. et al. ApiAP2 transcription factor restricts development of the Toxoplasma tissue cyst. Proc. Natl Acad. Sci. USA 110, 6871–6876 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Walker, R. et al. Toxoplasma transcription factor TgAP2XI-5 regulates the expression of genes involved in parasite virulence and host invasion. J. Biol. Chem. 288, 31127–31138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Szatanek, T. et al. Cactin is essential for G1 progression in Toxoplasma gondii. Mol. Microbiol. 84, 566–577 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Behnke, M. S. et al. Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. PLoS ONE 5, e12354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Croken, M. M. et al. Distinct strains of Toxoplasma gondii feature divergent transcriptomes regardless of developmental stage. PLoS ONE 9, e111297 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Oberstaller, J., Pumpalova, Y., Schieler, A., Llinás, M. & Kissinger, J. C. The Cryptosporidium parvum ApiAP2 gene family: insights into the evolution of apicomplexan AP2 regulatory systems. Nucleic Acids Res. 42, 8271–8284 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Flueck, C. et al. A major role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome end biology. PLoS Pathog. 6, e1000784 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang, Q. et al. A critical role of perinuclear filamentous actin in spatial repositioning and mutually exclusive expression of virulence genes in malaria parasites. Cell Host Microbe 10, 451–463 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Date, S. V. & Stoeckert, C. J. Jr. Computational modeling of the Plasmodium falciparum interactome reveals protein function on a genome-wide scale. Genome Res. 16, 542–549 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. LaCount, D. J. et al. A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438, 103–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, J. et al. Lysine acetyltransferase GCN5b interacts with AP2 factors and is required for Toxoplasma gondii proliferation. PLoS Pathog. 10, e1003830 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hughes, K. R., Philip, N., Starnes, G. L., Taylor, S. & Waters, A. P. From cradle to grave: RNA biology in malaria parasites. Wiley Interdiscip. Rev. RNA 1, 287–303 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Duffy, M. F., Selvarajah, S. A., Josling, G. A. & Petter, M. Epigenetic regulation of the Plasmodium falciparum genome. Brief. Funct. Genomics 13, 203–216 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Smith, J. D. et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82, 101–110 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Biggs, B. A. et al. Antigenic variation in Plasmodium falciparum. Proc. Natl Acad. Sci. USA 88, 9171–9174 (1991).

    Article  CAS  PubMed  Google Scholar 

  142. Scherf, A. et al. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J. 17, 5418–5426 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Dzikowski, R., Frank, M. & Deitsch, K. Mutually exclusive expression of virulence genes by malaria parasites is regulated independently of antigen production. PLoS Pathog. 2, e22 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Voss, T. S., Bozdech, Z. & Bartfai, R. Epigenetic memory takes center stage in the survival strategy of malaria parasites. Curr. Opin Microbiol. 20, 88–95 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Berger, S. L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of epigenetics. Genes Dev. 23, 781 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Perez-Toledo, K. et al. Plasmodium falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes. Nucleic Acids Res. 37, 2596–2606 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lopez-Rubio, J. J. et al. 5′ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites. Mol. Microbiol. 66, 1296–1305 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Cabral, F. J., Fotoran, W. L. & Wunderlich, G. Dynamic activation and repression of the Plasmodium falciparum rif gene family and their relation to chromatin modification. PLoS ONE 7, e29881 (2012).

  149. Howitt, C. A. et al. Clonally variant gene families in Plasmodium falciparum share a common activation factor. Mol. Microbiol. 73, 1171–1185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cortés, A. et al. Epigenetic silencing of Plasmodium falciparum genes linked to erythrocyte invasion. PLoS Pathog. 3, e107 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dixon, M. W., Dearnley, M. K., Hanssen, E., Gilberger, T. & Tilley, L. Shape-shifting gametocytes: how and why does P. falciparum go banana-shaped? Trends Parasitol. 28, 471–478 (2012).

    Article  PubMed  Google Scholar 

  152. Bobenchik, A. M. et al. Plasmodium falciparum phosphoethanolamine methyltransferase is essential for malaria transmission. Proc. Natl Acad. Sci. USA 110, 18262–18267 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Ramya, T. N., Surolia, N. & Surolia, A. 15-deoxyspergualin modulates Plasmodium falciparum heat shock protein function. Biochem. Biophys. Res. Commun. 348, 585–592 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Martin, D. et al. Characterization of Plasmodium falciparum CDP-diacylglycerol synthase, a proteolytically cleaved enzyme. Mol. Biochem. Parasitol. 110, 93–105 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to all whose work could not be cited owing to space limitations. The authors acknowledge funding from the US National Institutes of Health (grant R01 AI076276) and support from The Pennsylvania State University. G.A.J. is supported by the Sir Keith Murdoch Fellowship from the American Australian Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Llinás.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

DATABASES

PlasmaDB

PowerPoint slides

Glossary

Trophozoite

A highly metabolically active asexual form of the malaria parasite that forms during the intra-erythrocytic developmental cycle following the ring stage.

Schizont

A multinucleated, asexual form of the malaria parasite that forms during the intra-erythrocytic developmental cycle after several rounds of replication. Mature schizonts contain many merozoites, which are released when the red blood cell ruptures.

Ring-stage parasite

An asexual form of the malaria parasite that forms very soon after invasion of the red blood cell by a merozoite during the intra-erythrocytic developmental cycle.

Merozoite

Cell released either from intra-erythrocytic schizonts or from infected hepatocytes that can invade red blood cells.

Schizogony

The process by which many merozoites are produced through asexual reproduction.

Xanthurenic acid

A metabolite found in the mosquito mid-gut that induces gametogenesis in Plasmodium spp..

Exflagellation

The process by which flagellated male gametes are produced and released from a male gametocyte (for Plasmodium spp., in the mosquito mid-gut).

Oocysts

Structures formed by ookinetes (for Plasmodium spp., in the mosquito mid-gut) from which sporozoites are released.

Sporozoites

Cells that are released from oocysts. Plasmodium spp. sporozoites reside in the salivary glands of the mosquito. These are released into the bloodstream of the human host on infection and then invade liver cells.

Haemocoel

The body cavity of the mosquito.

Glucose-6-phosphate dehydrogenase

An enzyme involved in the pentose phosphate pathway. In humans, genetic deficiency of this enzyme leads to an increased risk of haemolysis, particularly in response to certain triggers.

Extracellular vesicles

Small vesicles that are released by cells from all three domains of life; in malaria infections, extracellular vesicles are released by infected red blood cells and are thought to have a role in cell–cell communication.

Parasitophorous vacuole

A vacuole that surrounds an intracellular parasite (in the case of the malaria parasite, within the red blood cell).

Gametocytaemia

The fraction of red blood cells that contain gametocytes.

Limiting dilution cloning

A method used to obtain parasite lines derived from a single parasite. The parental cell line is heavily diluted and grown in individual wells so that on average no more than one parasite is present per well.

Subtelomeric genes

Genes located in close proximity to the telomere.

Differential display analysis

A PCR-based method for identifying differentially expressed genes between two samples.

Chromatin immunoprecipitation followed by sequencing

A genome-wide approach that uses next-generation sequencing to identify DNA sequences directly or indirectly bound by a protein (such as a transcription factor or modified histone).

Euchromatin

Loosely packaged chromatin that is transcriptionally permissive — this is the predominant state of the chromatin in Plasmodium falciparum.

Heterochromatin

Tightly packaged chromatin that is associated with silencing marks such as histone H3 trimethylated on lysine 9 (H3K9me3). Genes in these regions are generally silenced.

Chromatin

DNA packaged with proteins (particularly histones, but also other proteins).

RNA fluorescence in situ hybridization

A technique used to visualize the location of a specific mRNA in the cell by using nucleic acid probes complementary to the target that are coupled to a fluorescent molecule.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Josling, G., Llinás, M. Sexual development in Plasmodium parasites: knowing when it's time to commit. Nat Rev Microbiol 13, 573–587 (2015). https://doi.org/10.1038/nrmicro3519

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3519

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology