Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Bacterial gene import and mesophilic adaptation in archaea

Abstract

It is widely believed that the archaeal ancestor was hyperthermophilic, but during archaeal evolution, several lineages — including haloarchaea and their sister methanogens, the Thaumarchaeota, and the uncultured Marine Group II and Marine Group III Euryarchaeota (MGII/III) — independently adapted to lower temperatures. Recent phylogenomic studies suggest that the ancestors of these lineages were recipients of massive horizontal gene transfer from bacteria. Many of the acquired genes, which are often involved in metabolism and cell envelope biogenesis, were convergently acquired by distant mesophilic archaea. In this Opinion article, we explore the intriguing hypothesis that the import of these bacterial genes was crucial for the adaptation of archaea to mesophilic lifestyles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth temperature and horizontal gene transfer from bacteria to the archaeal lineages.
Figure 2: Proportion of bacterial genes transferred to the ancestors of archaeal taxa as a function of average optimum growth temperature and genome size.
Figure 3: Imported bacterial genes shared by distant lineages of mesophilic archaea.
Figure 4: Maximum likelihood phylogenetic trees showing cases of convergent bacterial gene acquisition by mesophilic archaea.

Similar content being viewed by others

References

  1. Stetter, K. O. Hyperthermophilic prokaryotes. FEMS Microbiol. Rev. 18, 149–158 (1996).

    Article  CAS  Google Scholar 

  2. Galtier, N., Tourasse, N. & Gouy, M. A nonhyperthermophilic common ancestor to extant life forms. Science 283, 220–221 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. López-García, P. DNA supercoiling and temperature adaptation: a clue to early diversification of life? J. Mol. Evol. 49, 439–452 (1999).

    Article  PubMed  Google Scholar 

  4. Brochier, C. & Philippe, H. Phylogeny: a non-hyperthermophilic ancestor for Bacteria. Nature 417, 244 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Boussau, B., Blanquart, S., Necsulea, A., Lartillot, N. & Gouy, M. Parallel adaptations to high temperatures in the Archaean eon. Nature 456, 942–945 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Akanuma, S. et al. Experimental evidence for the thermophilicity of ancestral life. Proc. Natl Acad. Sci. USA 110, 11067–11072 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Groussin, M., Boussau, B., Charles, S., Blanquart, S. & Gouy, M. The molecular signal for the adaptation to cold temperature during early life on Earth. Biol. Lett. 9, 20130608 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Brochier-Armanet, C., Boussau, B., Gribaldo, S. & Forterre, P. Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat. Rev. Microbiol. 6, 245–252 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Fuhrman, J. A., McCallum, K. & Davis, A. A. Novel major archaebacterial group from marine plankton. Nature 356, 148–149 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. DeLong, E. F. Archaea in coastal marine environments. Proc. Natl Acad. Sci. USA 89, 5685–5689 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fuhrman, J. A. & Davis, A. A. Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar. Ecol. Prog. Ser. 150, 275–285 (1997).

    Article  Google Scholar 

  14. Kubo, K. et al. Archaea of the miscellaneous crenarchaeotal group are abundant, diverse and widespread in marine sediments. ISME J. 6, 1949–1965 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lloyd, K. G. et al. Predominant archaea in marine sediments degrade detrital proteins. Nature 496, 215–218 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Guy, L. & Ettema, T. J. The archaeal 'TACK' superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Williams, T. A., Foster, P. G., Nye, T. M., Cox, C. J. & Embley, T. M. A congruent phylogenomic signal places eukaryotes within the Archaea. Proc. Biol. Sci. 279, 4870–4879 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wolf, Y. I., Makarova, K. S., Yutin, N. & Koonin, E. V. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer. Biol. Direct 7, 46 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petitjean, C., Deschamps, P., López-García, P. & Moreira, D. Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota. Genome Biol. Evol. 7, 191–204 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Albers, S. V., van de Vossenberg, J. L., Driessen, A. J. & Konings, W. N. Adaptations of the archaeal cell membrane to heat stress. Front. Biosci. 5, D813–D820 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Feller, G. Life at low temperatures: is disorder the driving force? Extremophiles 11, 211–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Koga, Y. Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea 2012, 789652 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McInerney, J. O. More than tree dimensions: inter-lineage evolution's ecological importance. Trends Ecol. Evol. 28, 624–625 (2013).

    Article  PubMed  Google Scholar 

  24. Keeling, P. J. & Palmer, J. D. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9, 605–618 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Lawrence, J. G. & Hendrickson, H. Lateral gene transfer: when will adolescence end? Mol. Microbiol. 50, 739–749 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Dagan, T. & Martin, W. The tree of one percent. Genome Biol. 7, 118 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abby, S. S., Tannier, E., Gouy, M. & Daubin, V. Lateral gene transfer as a support for the tree of life. Proc. Natl Acad. Sci. USA 109, 4962–4967 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deschamps, P., Zivanovic, Y., Moreira, D., Rodriguez-Valera, F. & López-García, P. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic Thaumarchaeota and Euryarchaeota. Genome Biol. Evol. 6, 1549–1563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nelson-Sathi, S. et al. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517, 77–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Gogarten, J. P. & Townsend, J. P. Horizontal gene transfer, genome innovation and evolution. Nat. Rev. Microbiol. 3, 679–687 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Andam, C. P. & Gogarten, J. P. Biased gene transfer in microbial evolution. Nat. Rev. Microbiol. 9, 543–555 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Aravind, L., Tatusov, R. L., Wolf, Y. I., Walker, D. R. & Koonin, E. V. Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet. 14, 442–444 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Nelson, K. E. et al. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Zhaxybayeva, O. et al. On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc. Natl Acad. Sci. USA 106, 5865–5870 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Forterre, P. A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein. Trends Genet. 18, 236–237 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Brochier-Armanet, C. & Forterre, P. Widespread distribution of Archaeal reverse gyrase in thermophilic Bacteria suggests a complex history of vertical inheritance and lateral gene transfers. Archaea 2, 83–93 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Dworkin, M., Falkow, S., Rosenberg, S., Schleifer, K. H. & Stackebrandt, E. (eds) The Prokaryotes. Volume 3: Archaea. Bacteria: Firmicutes, Actinomycetes. (Springer, 2006).

    Google Scholar 

  39. Madigan, M. T. et al. (eds) Brock Biology of Microorganisms. 14th edn (Benjamin Cummings, 2014).

    Google Scholar 

  40. Brock, T. D., Brock, K. M., Belly, R. T. & Weiss, R. L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol. 84, 54–68 (1972).

    Article  CAS  PubMed  Google Scholar 

  41. Borrel, G. et al. Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol. Evol. 5, 1769–1780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Borrel, G. et al. Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 15, 679 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507–510 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean's interior. Science 311, 496–503 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Martin-Cuadrado, A. B. et al. Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions. ISME J. 2, 865–886 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Schleper, C., Jurgens, G. & Jonuscheit, M. Genomic studies of uncultivated archaea. Nat. Rev. Microbiol. 3, 479–488 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Nicol, G. W. & Schleper, C. Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol. 14, 207–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Pester, M., Schleper, C. & Wagner, M. The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr. Opin. Microbiol. 14, 300–306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. de la Torre, J. R., Walker, C. B., Ingalls, A. E., Konneke, M. & Stahl, D. A. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ. Microbiol. 10, 810–818 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Kato, S., Itoh, T. & Yamagishi, A. Archaeal diversity in a terrestrial acidic spring field revealed by a novel PCR primer targeting archaeal 16S rRNA genes. FEMS Microbiol. Lett. 319, 34–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Ragon, M., Van Driessche, A. E., García-Ruíz, J. M., Moreira, D. & López-García, P. Microbial diversity in the deep-subsurface hydrothermal aquifer feeding the giant gypsum crystal-bearing Naica Mine, Mexico. Front. Microbiol. 4, 37 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 39, 3204–3223 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Elkins, J. G. et al. A korarchaeal genome reveals insights into the evolution of the Archaea. Proc. Natl Acad. Sci. USA 105, 8102–8107 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ghai, R. et al. Metagenome of the Mediterranean deep chlorophyll maximum studied by direct and fosmid library 454 pyrosequencing. ISME J. 4, 1154–1166 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Frigaard, N. U., Martinez, A., Mincer, T. J. & DeLong, E. F. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439, 847–850 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Iverson, V. et al. Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science 335, 587–590 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Martin-Cuadrado, A. B. et al. A new class of marine Euryarchaeota group II from the mediterranean deep chlorophyll maximum. ISME J. http://dx.doi.org/10.1038/ismej.2014.249 (2014).

  59. Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Philippe, H., Zhou, Y., Brinkmann, H., Rodrigue, N. & Delsuc, F. Heterotachy and long-branch attraction in phylogenetics. BMC Evol. Biol. 5, 50 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brochier, C., Gribaldo, S., Zivanovic, Y., Confalonieri, F. & Forterre, P. Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? Genome Biol. 6, R42 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Williams, T. A. & Embley, T. M. Archaeal “dark matter” and the origin of eukaryotes. Genome Biol. Evol. 6, 474–481 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Boucher, Y. et al. Lateral gene transfer and the origins of prokaryotic groups. Annu. Rev. Genet. 37, 283–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Rhodes, M. E., Spear, J. R., Oren, A. & House, C. H. Differences in lateral gene transfer in hypersaline versus thermal environments. BMC Evol. Biol. 11, 199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nelson-Sathi, S. et al. Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. Proc. Natl Acad. Sci. USA 109, 20537–20542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lurie-Weinberger, M. N., Peeri, M., Tuller, T. & Gophna, U. Extensive inter-domain lateral gene transfer in the evolution of the human commensal Methanosphaera stadtmanae. Front. Genet. 3, 182 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lurie-Weinberger, M. N., Peeri, M. & Gophna, U. Contribution of lateral gene transfer to the gene repertoire of a gut-adapted methanogen. Genomics 99, 52–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. López-García, P., Brochier, C., Moreira, D. & Rodríguez-Valera, F. Comparative analysis of a genome fragment of an uncultivated mesopelagic crenarchaeote reveals multiple horizontal gene transfers. Environ. Microbiol. 6, 19–34 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Brochier-Armanet, C. et al. Complete-fosmid and fosmid-end sequences reveal frequent horizontal gene transfers in marine uncultured planktonic archaea. ISME J. 5, 1291–1302 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kanhere, A. & Vingron, M. Horizontal gene transfers in prokaryotes show differential preferences for metabolic and translational genes. BMC Evol. Biol. 9, 9 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Raymann, K., Forterre, P., Brochier-Armanet, C. & Gribaldo, S. Global phylogenomic analysis disentangles the complex evolutionary history of DNA replication in archaea. Genome Biol. Evol. 6, 192–212 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang, J. C. DNA topoisomerases. Annu. Rev. Biochem. 65, 635–692 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Musgrave, D., Forterre, P. & Slesarev, A. Negative constrained DNA supercoiling in archaeal nucleosomes. Mol. Microbiol. 35, 341–349 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Philippe, H., Budin, K. & Moreira, D. Horizontal transfers confuse the prokaryotic phylogeny based on the HSP70 protein family. Mol. Microbiol. 31, 1007–1009 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Groussin, M. & Gouy, M. Adaptation to environmental temperature is a major determinant of molecular evolutionary rates in archaea. Mol. Biol. Evol. 28, 2661–2674 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Petitjean, C., Moreira, D., López-García, P. & Brochier-Armanet, C. Horizontal gene transfer of a chloroplast DnaJ–Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea. BMC Evol. Biol. 12, 226 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ermolenko, D. N. & Makhatadze, G. I. Bacterial cold-shock proteins. Cell. Mol. Life Sci. 59, 1902–1913 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Lincoln, S. A. et al. Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean. Proc. Natl Acad. Sci. USA 111, 9858–9863 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lombard, J., López-García, P. & Moreira, D. An ACP-independent fatty acid synthesis pathway in archaea: implications for the origin of phospholipids. Mol. Biol. Evol. 29, 3261–3265 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Dibrova, D. V., Galperin, M. Y. & Mulkidjanian, A. Y. Phylogenomic reconstruction of archaeal fatty acid metabolism. Environ. Microbiol. 16, 907–918 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Albers, S. V., Van de Vossenberg, J. L., Driessen, A. J. & Konings, W. N. Bioenergetics and solute uptake under extreme conditions. Extremophiles 5, 285–294 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Natl Acad. Sci. USA 104, 11436–11440 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Koonin, E. V., Makarova, K. S. & Aravind, L. Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55, 709–742 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Konings, W. N. Microbial transport: adaptations to natural environments. Antonie Van Leeuwenhoek 90, 325–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. López-García, P. in Thermophiles: the Keys to Molecular Evolution and the Origin of Life? (eds Wiegel, J. & Adams, M. W. W.) 201–216 (Taylor & Francis Ltd., 1998).

    Google Scholar 

  86. Valentine, D. L. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat. Rev. Microbiol. 5, 316–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Haney, P. J. et al. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc. Natl Acad. Sci. USA 96, 3578–3583 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Reed, C. J., Lewis, H., Trejo, E., Winston, V. & Evilia, C. Protein adaptations in archaeal extremophiles. Archaea 2013, 373275 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zeldovich, K. B., Berezovsky, I. N. & Shakhnovich, E. I. Protein and DNA sequence determinants of thermophilic adaptation. PLoS Comput. Biol. 3, e5 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pogozheva, I. D., Tristram-Nagle, S., Mosberg, H. I. & Lomize, A. L. Structural adaptations of proteins to different biological membranes. Biochim. Biophys. Acta 1828, 2592–2608 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the three anonymous reviewers for their constructive criticism. This work was supported by the French Centre National de la Recherche Scientifique (CNRS), the French Agence National de la Recherche (grant ANR-08-GENM-024-001) and the European Research Council (ERC Grant Agreement 322669).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purificación López-García.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Ecologie Systematique Evolution

PowerPoint slides

Supplementary information

Supplementary information S1 (figure)

Functional COG classification of imported bacterial genes. (PDF 417 kb)

Supplementary information S2 (figure)

Functional KEGG classification of imported bacterial genes. (PDF 295 kb)

Supplementary information S3 (figure)

Phylogenetic tree of CspA homologues. (PDF 201 kb)

Supplementary information S4 (table)

Optimal growth temperatures for different archaeal taxa. (PDF 193 kb)

Supplementary information S5 (box)

Reconstruction of phylogenetic trees (PDF 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-García, P., Zivanovic, Y., Deschamps, P. et al. Bacterial gene import and mesophilic adaptation in archaea. Nat Rev Microbiol 13, 447–456 (2015). https://doi.org/10.1038/nrmicro3485

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3485

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing