Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enemy attraction: bacterial agonists for leukocyte chemotaxis receptors

Key Points

  • Recognition of invading bacteria is a crucial task for the human innate immune system to initiate the first line of defence against infections. For this purpose various receptors have evolved, each with different specificities for conserved microbial molecules. One important function of these receptors is to promote the migration of immune cells to the centre of infection along a gradient of microbial- or host-derived chemoattractants. This mechanism is called chemotaxis and is a crucial prerequisite for the elimination of pathogens.

  • Certain bacterial peptides can function as potent leukocyte attractants. Owing to the characteristics of bacterial translation, bacterial proteins are synthesized with a formylated methionine at the amino terminus. This feature is exploited by the human innate immune system because formylated peptides are identified as chemokines for leukocytes.

  • The chemoattractant receptor repertoire is limited and comprises members of the family of G protein-coupled receptors (GPCRs). Among them, the human formyl peptide receptor 1 (FPR1) is specialized to detect formylated peptides. Among the two orthologues of FPR1, only FPR2 has been confirmed to detect microbial peptides; FPR2 also detects endogenous ligands.

  • Recently, particular interest in FPR2 has arisen owing to the description of bacterial FPR2 ligands. These include the phenol-soluble modulin (PSM) peptides, which are cytotoxic at high concentrations and are secreted by Staphylococcus aureus and other staphylococci. FPR2 was further shown to respond differently to pathogenic and non-pathogenic staphylococcal strains according to the production of PSMs.

  • In addition to staphylococci, other bacteria such as Helicobacter pylori or enterococci activate FPR2. However, only in some instances has the nature of the agonists been identified.

  • Short-chain fatty acids are products of the energy metabolism of fermenting bacteria. They are recognized by the GPCRs GPR41 and GPR43 to mediate neutrophil chemotaxis and contribute to intestinal epithelial homeostasis.

  • Bacteria have evolved strategies to evade the host response by synthesizing molecules that block chemokine receptors. The recognition of bacterial chemotactic molecules may be beneficial for the host or, in some instances, also for pathogens taking advantage of inflammation. Moreover, chemotactic molecules are not only crucial for infection, they are also secreted by commensal bacteria and regulate epithelial homeostasis in the gut.

  • In conclusion, the field of research on microbial leukocyte chemoattractants offers interesting avenues for elucidating the complex interplay of pathogens and commensals with the immune system. Recognition of bacterial infection by the host innate immune system leads to chemotactic leukocyte influx.

Abstract

The innate immune system recognizes conserved microorganism-associated molecular patterns (MAMPs), some of which are sensed by G protein-coupled receptors (GPCRs), and this leads to chemotactic leukocyte influx. Recent studies have indicated that these processes are crucial for host defence and rely on a larger set of chemotactic MAMPs and corresponding GPCRs than was previously thought. Agonists, such as bacterial formyl peptides, enterococcal pheromone peptides, staphylococcal peptide toxins, bacterial fermentation products and the Helicobacter pylori peptide HP(2–20), stimulate specific GPCRs. The importance of leukocyte chemotaxis in host defence is highlighted by the fact that some bacterial pathogens produce chemotaxis inhibitors. How the various chemoattractants, receptors and antagonists shape antibacterial host defence represents an important topic for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recruitment of polymorphonuclear neutrophils from the bloodstream.
Figure 2: Induction of leukocyte chemotaxis.
Figure 3: Activation of GPCRs on neutrophils.

Similar content being viewed by others

References

  1. Broz, P. & Monack, D. M. Newly described pattern recognition receptors team up against intracellular pathogens. Nature Rev. Immunol. 13, 551–565 (2013).

    CAS  Google Scholar 

  2. Park, J. & Floch, M. H. Prebiotics, probiotics, and dietary fiber in gastrointestinal disease. Gastroenterol. Clin. North Amer. 36, 47–63, v (2007).

    Google Scholar 

  3. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wentworth, C. C., Jones, R. M., Kwon, Y. M., Nusrat, A. & Neish, A. S. Commensal-epithelial signaling mediated via formyl peptide receptors. Am. J. Pathol. 177, 2782–2790 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. O'Neill, L. A., Golenbock, D. & Bowie, A. G. The history of Toll-like receptors — redefining innate immunity. Nature Rev. Immunol. 13, 453–460 (2013).

    CAS  Google Scholar 

  6. Klos, A., Wende, E., Wareham, K. J. & Monk, P. N. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol. Rev. 65, 500–543 (2013).

    PubMed  Google Scholar 

  7. Honda, Z., Ishii, S. & Shimizu, T. Platelet-activating factor receptor. J. Biochem. 131, 773–779 (2002).

    CAS  PubMed  Google Scholar 

  8. Di Gennaro, A. & Haeggstrom, J. Z. The leukotrienes: immune-modulating lipid mediators of disease. Adv. Immunol. 116, 51–92 (2012).

    CAS  PubMed  Google Scholar 

  9. Jin, T. Gradient sensing during chemotaxis. Curr. Opin. Cell Biol. 25, 532–537 (2013).

    CAS  PubMed  Google Scholar 

  10. Sun, L. & Ye, R. D. Role of G protein-coupled receptors in inflammation. Acta Pharmacol. Sin. 33, 342–350 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rosenbaum, D. M., Rasmussen, S. G. & Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 459, 356–363 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Venkatakrishnan, A. J. et al. Molecular signatures of G-protein-coupled receptors. Nature 494, 185–194 (2013).

    CAS  PubMed  Google Scholar 

  13. Le, Y., Murphy, P. M. & Wang, J. M. Formyl-peptide receptors revisited. Trends Immunol. 23, 541–548 (2002).

    CAS  PubMed  Google Scholar 

  14. Ye, R. D. et al. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol. Rev. 61, 119–161 (2009). This publication provides a comprehensive overview on FPRs and FPR agonists and antagonists.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kretschmer, D. et al. Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell Host Microbe 7, 463–473 (2010). This publication was the first to describe secreted bacterial FPR2 ligands and their role in S. aureus infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Le Poul, E. et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003).

    CAS  PubMed  Google Scholar 

  17. Brown, A. J. et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003). This study identifies GPR41 and GPR43 as receptors for SCFAs.

    CAS  PubMed  Google Scholar 

  18. Arterburn, J. B., Oprea, T. I., Prossnitz, E. R., Edwards, B. S. & Sklar, L. A. Discovery of selective probes and antagonists for G-protein-coupled receptors FPR/FPRL1 and GPR30. Curr. Top. Med. Chem. 9, 1227–1236 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fu, H. et al. Ligand recognition and activation of formyl peptide receptors in neutrophils. J. Leukocyte Biol. 79, 247–256 (2006).

    CAS  PubMed  Google Scholar 

  20. Migeotte, I., Communi, D. & Parmentier, M. Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev. 17, 501–519 (2006).

    CAS  PubMed  Google Scholar 

  21. Babbin, B. A. et al. Formyl peptide receptor-1 activation enhances intestinal epithelial cell restitution through phosphatidylinositol 3-kinase-dependent activation of Rac1 and Cdc42. J. Immunol. 179, 8112–8121 (2007).

    CAS  PubMed  Google Scholar 

  22. Gronert, K., Gewirtz, A., Madara, J. L. & Serhan, C. N. Identification of a human enterocyte lipoxin A4 receptor that is regulated by interleukin (IL)-13 and interferon γ and inhibits tumor necrosis factor α-induced IL-8 release. J. Exp. Med. 187, 1285–1294 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tazoe, H. et al. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J. Physiol. Pharmacol. 59 (Suppl. 2), 251–262 (2008).

    PubMed  Google Scholar 

  24. Riviere, S., Challet, L., Fluegge, D., Spehr, M. & Rodriguez, I. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459, 574–577 (2009).

    CAS  PubMed  Google Scholar 

  25. Bao, L. et al. Mapping of genes for the human C5a receptor (C5AR), human FMLP receptor (FPR), and two FMLP receptor homologue orphan receptors (FPRH1, FPRH2) to chromosome 19. Genomics 13, 437–440 (1992).

    CAS  PubMed  Google Scholar 

  26. Murphy, P. M. et al. A structural homologue of the N-formyl peptide receptor. Characterization and chromosome mapping of a peptide chemoattractant receptor family. J. Biol. Chem. 267, 7637–7643 (1992).

    CAS  PubMed  Google Scholar 

  27. Sawzdargo, M. et al. A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1. Biochem. Biophys. Res. Commun. 239, 543–547 (1997).

    CAS  PubMed  Google Scholar 

  28. Gao, J. L., Lee, E. J. & Murphy, P. M. Impaired antibacterial host defense in mice lacking the N-formylpeptide receptor. J. Exp. Med. 189, 657–662 (1999). This publication confirms a crucial role for FPR1 in bacterial infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, M. et al. Formylpeptide receptors are critical for rapid neutrophil mobilization in host defense against Listeria monocytogenes. Scientif. Rep. 2, 786 (2012).

    Google Scholar 

  30. Oldekamp, S. et al. Lack of formyl peptide receptor 1 and 2 leads to more severe inflammation and higher mortality in mice with of pneumococcal meningitis. Immunology 143, 447–461 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Y. et al. Evaluation of human leukocyte N-formylpeptide receptor (FPR1) SNPs in aggressive periodontitis patients. Genes Immun. 4, 22–29 (2003).

    PubMed  Google Scholar 

  32. Seifert, R. & Wenzel-Seifert, K. Defective Gi protein coupling in two formyl peptide receptor mutants associated with localized juvenile periodontitis. J. Biol. Chem. 276, 42043–42049 (2001).

    CAS  PubMed  Google Scholar 

  33. Almkvist, J., Faldt, J., Dahlgren, C., Leffler, H. & Karlsson, A. Lipopolysaccharide-induced gelatinase granule mobilization primes neutrophils for activation by galectin-3 and formylmethionyl–Leu–Phe. Infect. Immun. 69, 832–837 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bylund, J., Karlsson, A., Boulay, F. & Dahlgren, C. Lipopolysaccharide-induced granule mobilization and priming of the neutrophil response to Helicobacter pylori peptide HP(2–20), which activates formyl peptide receptor-like 1. Infect. Immun. 70, 2908–2914 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bokoch, G. M. Chemoattractant signaling and leukocyte activation. Blood 86, 1649–1660 (1995).

    CAS  PubMed  Google Scholar 

  36. Wenzel-Seifert, K., Arthur, J. M., Liu, H. Y. & Seifert, R. Quantitative analysis of formyl peptide receptor coupling to Giα1, Giα2, and Giα3 . J. Biol. Chem. 274, 33259–33266 (1999).

    CAS  PubMed  Google Scholar 

  37. Tsu, R. C., Lai, H. W., Allen, R. A. & Wong, Y. H. Differential coupling of the formyl peptide receptor to adenylate cyclase and phospholipase C by the pertussis toxin-insensitive Gz protein. Biochem. J. 309, 331–339 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gierschik, P., Sidiropoulos, D. & Jakobs, K. H. Two distinct Gi-proteins mediate formyl peptide receptor signal transduction in human leukemia (HL-60) cells. J. Biol. Chem. 264, 21470–21473 (1989).

    CAS  PubMed  Google Scholar 

  39. Camps, M. et al. Isozyme-selective stimulation of phospholipase C-β 2 by G protein β γ-subunits. Nature 360, 684–686 (1992).

    CAS  PubMed  Google Scholar 

  40. Stoyanov, B. et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269, 690–693 (1995).

    CAS  PubMed  Google Scholar 

  41. Emkey, R. & Rankl, N. B. Screening G protein-coupled receptors: measurement of intracellular calcium using the fluorometric imaging plate reader. Methods Mol. Biol. 565, 145–158 (2009).

    CAS  PubMed  Google Scholar 

  42. Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).

    CAS  PubMed  Google Scholar 

  43. Gambardella, L. & Vermeren, S. Molecular players in neutrophil chemotaxis—focus on PI3K and small GTPases. J. Leukocyte Biol. 94, 603–612 (2013).

    CAS  PubMed  Google Scholar 

  44. Brahmbhatt, A. A. & Klemke, R. L. ERK and RhoA differentially regulate pseudopodia growth and retraction during chemotaxis. J. Biol. Chem. 278, 13016–13025 (2003).

    CAS  PubMed  Google Scholar 

  45. Kim, D. & Haynes, C. L. The role of p38 MAPK in neutrophil functions: single cell chemotaxis and surface marker expression. Analyst 138, 6826–6833 (2013).

    CAS  PubMed  Google Scholar 

  46. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    CAS  PubMed  Google Scholar 

  47. Cheresh, D. A., Leng, J. & Klemke, R. L. Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells. J. Cell Biol. 146, 1107–1116 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kikkawa, U., Matsuzaki, H. & Yamamoto, T. Protein kinase Cδ (PKCδ): activation mechanisms and functions. J. Biochem. 132, 831–839 (2002).

    CAS  PubMed  Google Scholar 

  49. Babior, B. M. NADPH oxidase: an update. Blood 93, 1464–1476 (1999).

    CAS  PubMed  Google Scholar 

  50. Chaves, M. M., Costa, D. C., de Oliveira, B. F., Rocha, M. I. & Nogueira-Machado, J. A. Role PKA and p38 MAPK on ROS production in neutrophil age-related: lack of IL-10 effect in older subjects. Mech. Ageing Dev. 130, 588–591 (2009).

    CAS  PubMed  Google Scholar 

  51. Balazovich, K. J., Suchard, S. J., Remick, D. G. & Boxer, L. A. Tumor necrosis factor-α and FMLP receptors are functionally linked during FMLP-stimulated activation of adherent human neutrophils. Blood 88, 690–696 (1996).

    CAS  PubMed  Google Scholar 

  52. Forsman, H. et al. Reactivation of desensitized formyl peptide receptors by platelet activating factor: a novel receptor cross talk mechanism regulating neutrophil superoxide anion production. PLoS ONE 8, e60169 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Reiter, E. & Lefkowitz, R. J. GRKs and β-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol. Metab. 17, 159–165 (2006).

    CAS  PubMed  Google Scholar 

  54. Tomhave, E. D. et al. Cross-desensitization of receptors for peptide chemoattractants. Characterization of a new form of leukocyte regulation. J. Immunol. 153, 3267–3275 (1994).

    CAS  PubMed  Google Scholar 

  55. Boswell, R. N., Austen, K. F. & Goetzl, E. J. A chemotactic receptor for val(ala)–gly–ser–glu on human. Immunol. Commun. 5, 469–479 (1976). This publication was the first to identify FPR1 as a chemotactic receptor.

    CAS  PubMed  Google Scholar 

  56. Leeds, J. A. & Dean, C. R. Peptide deformylase as an antibacterial target: a critical assessment. Curr. Opin. Pharmacol. 6, 445–452 (2006).

    CAS  PubMed  Google Scholar 

  57. Bandow, J. E. et al. The role of peptide deformylase in protein biosynthesis: a proteomic study. Proteomics 3, 299–306 (2003).

    CAS  PubMed  Google Scholar 

  58. Marasco, W. A. et al. Purification and identification of formyl–methionyl–leucyl–phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J. Biol. Chem. 259, 5430–5439 (1984). This study reports the first isolation of a formylated bacterial peptide with leukocate chemoattractant activity.

    CAS  PubMed  Google Scholar 

  59. Rot, A., Henderson, L. E., Copeland, T. D. & Leonard, E. J. A series of six ligands for the human formyl peptide receptor: tetrapeptides with high chemotactic potency and efficacy. Proc. Natl Acad. Sci. USA 84, 7967–7971 (1987).

    CAS  PubMed  Google Scholar 

  60. Rabiet, M. J., Huet, E. & Boulay, F. Human mitochondria-derived N-formylated peptides are novel agonists equally active on FPR and FPRL1, while Listeria monocytogenes-derived peptides preferentially activate FPR. Eur. J. Immunol. 35, 2486–2495 (2005).

    CAS  PubMed  Google Scholar 

  61. He, H. Q., Troksa, E. L., Caltabiano, G., Pardo, L. & Ye, R. D. Structural determinants for the interaction of formyl peptide receptor 2 with peptide ligands. J. Biol. Chem. 289, 2295–2306 (2014).

    CAS  PubMed  Google Scholar 

  62. Raoof, M., Zhang, Q., Itagaki, K. & Hauser, C. J. Mitochondrial peptides are potent immune activators that activate human neutrophils via FPR-1. J. Trauma 68, 1328–1332 (2010).

    CAS  PubMed  Google Scholar 

  63. Wenceslau, C. F. et al. Mitochondrial-derived N-formyl peptides: novel links between trauma, vascular collapse and sepsis. Med. Hypotheses 81, 532–535 (2013).

    CAS  PubMed  Google Scholar 

  64. Gavins, F. N. et al. Leukocyte recruitment in the brain in sepsis: involvement of the annexin 1-FPR2/ALX anti-inflammatory system. FASEB J. 26, 4977–4989 (2012).

    CAS  PubMed  Google Scholar 

  65. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Showell, H. J. et al. The structure–activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal secretion for neutrophils. J. Exp. Med. 143, 1154–1169 (1976).

    CAS  PubMed  Google Scholar 

  67. Schiffmann, E., Corcoran, B. A. & Wahl, S. M. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc. Natl Acad. Sci. USA 72, 1059–1062 (1975). This publication reports the discovery of synthetic formylated peptides with chemoattractant activity.

    CAS  PubMed  Google Scholar 

  68. Mills, J. S. et al. Identification of a ligand binding site in the human neutrophil formyl peptide receptor using a site-specific fluorescent photoaffinity label and mass spectrometry. J. Biol. Chem. 273, 10428–10435 (1998).

    CAS  PubMed  Google Scholar 

  69. Southgate, E. L. et al. Identification of formyl peptides from Listeria monocytogenes and Staphylococcus aureus as potent chemoattractants for mouse neutrophils. J. Immunol. 181, 1429–1437 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Durr, M. C. et al. Neutrophil chemotaxis by pathogen-associated molecular patterns — formylated peptides are crucial but not the sole neutrophil attractants produced by Staphylococcus aureus. Cell. Microbiol. 8, 207–217 (2006). This study demonstrates that formylated peptides are dominant bacterial chemoattractants for neutrophils.

    PubMed  Google Scholar 

  71. Mader, D., Rabiet, M. J., Boulay, F. & Peschel, A. Formyl peptide receptor-mediated proinflammatory consequences of peptide deformylase inhibition in Staphylococcus aureus. Microbes Infect. 12, 415–419 (2010).

    CAS  PubMed  Google Scholar 

  72. Fu, H., Dahlgren, C. & Bylund, J. Subinhibitory concentrations of the deformylase inhibitor actinonin increase bacterial release of neutrophil-activating peptides: a new approach to antimicrobial chemotherapy. Antimicrob. Agents Chemother. 47, 2545–2550 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Leibig, M. et al. Pyruvate formate lyase acts as a formate supplier for metabolic processes during anaerobiosis in Staphylococcus aureus. J. Bacteriol. 193, 952–962 (2011).

    CAS  PubMed  Google Scholar 

  74. Rautenberg, M., Joo, H. S., Otto, M. & Peschel, A. Neutrophil responses to staphylococcal pathogens and commensals via the formyl peptide receptor 2 relates to phenol-soluble modulin release and virulence. FASEB J. 25, 1254–1263 (2011). This paper describes that FPR2 activation corresponds to virulence of staphylococcal strains.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Queck, S. Y. et al. Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLoS Pathog. 5, e1000533 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. Wang, R. et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nature Med. 13, 1510–1514 (2007). This study identifies PSM peptides as important S. aureus leukotoxins and chemoattractants.

    CAS  PubMed  Google Scholar 

  77. Peschel, A. & Otto, M. Phenol-soluble modulins and staphylococcal infection. Nature Rev. Microbiol. 11, 667–673 (2013). This review provides a comprehensive overview on PSM structure and function.

    CAS  Google Scholar 

  78. Chatterjee, S. S. et al. Essential Staphylococcus aureus toxin export system. Nature Med. 19, 364–367 (2013).

    CAS  PubMed  Google Scholar 

  79. Forsman, H., Christenson, K., Bylund, J. & Dahlgren, C. Receptor-dependent and -independent immunomodulatory effects of phenol-soluble modulin peptides from Staphylococcus aureus on human neutrophils are abrogated through peptide inactivation by reactive oxygen species. Infect. Immun. 80, 1987–1995 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Cogen, A. L. et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J. Invest. Dermatol. 130, 192–200 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gonzalez, D. J. et al. Novel phenol-soluble modulin derivatives in community-associated methicillin-resistant Staphylococcus aureus identified through imaging mass spectrometry. J. Biol. Chem. 287, 13889–13898 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Schreiner, J. et al. Staphylococcus aureus phenol-soluble modulin peptides modulate dendritic cell functions and increase in vitro priming of regulatory T cells. J. Immunol. 190, 3417–3426 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nakamura, Y. et al. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature 503, 397–401 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang, E. M., Kim, S. H., Kim, N. H. & Park, H. S. The genetic association of the FPRL1 promoter polymorphism with chronic urticaria in a Korean population. Ann. Allergy Asthma Immunol. 105, 96–97 (2010).

    CAS  PubMed  Google Scholar 

  85. Kim, H. J. et al. Association analysis of formyl peptide receptor 2 (FPR2) polymorphisms and aspirin exacerbated respiratory diseases. J. Hum. Genet. 57, 247–253 (2012).

    CAS  PubMed  Google Scholar 

  86. Chen, K. et al. A critical role for the G protein-coupled receptor mFPR2 in airway inflammation and immune responses. J. Immunol. 184, 3331–3335 (2010).

    CAS  PubMed  Google Scholar 

  87. Arias, C. A. & Murray, B. E. The rise of the Enterococcus: beyond vancomycin resistance. Nature Rev. Microbiol. 10, 266–278 (2012).

    CAS  Google Scholar 

  88. Dunny, G. M. Enterococcal sex pheromones: signaling, social behavior, and evolution. Annu. Rev. Genet. 47, 457–482 (2013).

    CAS  PubMed  Google Scholar 

  89. Ike, Y., Tanimoto, K., Tomita, H., Takeuchi, K. & Fujimoto, S. Efficient transfer of the pheromone-independent Enterococcus faecium plasmid pMG1 (Gmr) (65.1 kilobases) to Enterococcus strains during broth mating. J. Bacteriol. 180, 4886–4892 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Flannagan, S. E. & Clewell, D. B. Identification and characterization of genes encoding sex pheromone cAM373 activity in Enterococcus faecalis and Staphylococcus aureus. Mol. Microbiol. 44, 803–817 (2002).

    CAS  PubMed  Google Scholar 

  91. Sannomiya, P. et al. Characterization of a class of nonformylated Enterococcus faecalis-derived neutrophil chemotactic peptides: the sex pheromones. Proc. Natl Acad. Sci. USA 87, 66–70 (1990). This study reports on the neutrophil-attractant activity of enterococcal pheromone peptides.

    CAS  PubMed  Google Scholar 

  92. Ember, J. A. & Hugli, T. E. Characterization of the human neutrophil response to sex pheromones from Streptococcus faecalis. Am. J. Pathol. 134, 797–805 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Craig, P. M., Territo, M. C., Karnes, W. E. & Walsh, J. H. Helicobacter pylori secretes a chemotactic factor for monocytes and neutrophils. Gut 33, 1020–1023 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Polk, D. B. & Peek, R. M. Jr. Helicobacter pylori: gastric cancer and beyond. Nature Rev. Cancer 10, 403–414 (2010).

    CAS  Google Scholar 

  95. Mustapha, P. et al. Chemokines and antimicrobial peptides have a cag-dependent early response to Helicobacter pylori infection in primary human gastric epithelial cells. Infect. Immun. 82, 2881–2889 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Betten, A. et al. A proinflammatory peptide from Helicobacter pylori activates monocytes to induce lymphocyte dysfunction and apoptosis. J. Clin. Invest. 108, 1221–1228 (2001). This paper describes the activation of FPR2 by a H. pylori peptide.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. de Paulis, A. et al. Basophils infiltrate human gastric mucosa at sites of Helicobacter pylori infection, and exhibit chemotaxis in response to H. pylori-derived peptide HP(2–20). J. Immunol. 172, 7734–7743 (2004).

    CAS  PubMed  Google Scholar 

  98. Fujita, Y. et al. A novel mechanism of autolysis in Helicobacter pylori: possible involvement of peptidergic substances. Helicobacter 10, 567–576 (2005).

    CAS  PubMed  Google Scholar 

  99. Phadnis, S. H. et al. Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect. Immun. 64, 905–912 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Uberti, A. F. et al. Pro-inflammatory properties and neutrophil activation by Helicobacter pylori urease. Toxicon 69, 240–249 (2013).

    CAS  PubMed  Google Scholar 

  101. Dundon, W. G. et al. The neutrophil-activating protein of Helicobacter pylori. Int. J. Med. Microbiol. 291, 545–550 (2002).

    CAS  PubMed  Google Scholar 

  102. Hoverstad, T., Fausa, O., Bjorneklett, A. & Bohmer, T. Short-chain fatty acids in the normal human feces. Scand. J. Gastroenterol. 19, 375–381 (1984).

    CAS  PubMed  Google Scholar 

  103. Hong, Y. H. et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146, 5092–5099 (2005).

    CAS  PubMed  Google Scholar 

  104. Vinolo, M. A. et al. Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites. Clin. Sci. 117, 331–338 (2009).

    CAS  PubMed  Google Scholar 

  105. Hirasawa, A., Hara, T., Katsuma, S., Adachi, T. & Tsujimoto, G. Free fatty acid receptors and drug discovery. Biol. Pharm. Bull. 31, 1847–1851 (2008).

    CAS  PubMed  Google Scholar 

  106. Cox, M. A. et al. Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E(2) and cytokines. World J. Gastroenterol. 15, 5549–5557 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nature Med. 20, 159–166 (2014). This publication describes the systemic impact of SCFAs on immune functions.

    CAS  PubMed  Google Scholar 

  108. Sina, C. et al. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J. Immunol. 183, 7514–7522 (2009).

    CAS  PubMed  Google Scholar 

  109. Cundell, D. R. et al. Inhibition of human neutrophil migration in vitro by low-molecular-mass products of nontypeable Haemophilus influenzae. Infect. Immun. 61, 2419–2424 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Grenfell, B. Boosting understanding of pertussis outbreaks. Proc. Natl Acad. Sci. USA 108, 7279–7280 (2011).

    CAS  PubMed  Google Scholar 

  111. Dalpiaz, A. et al. Studies on human neutrophil biological functions by means of formyl-peptide receptor agonists and antagonists. Curr. Drug Targets Immune Endocr. Metabol. Disord. 3, 33–42 (2003).

    CAS  PubMed  Google Scholar 

  112. Simon, M. I., Strathmann, M. P. & Gautam, N. Diversity of G proteins in signal transduction. Science 252, 802–808 (1991).

    CAS  PubMed  Google Scholar 

  113. Howlett, A. C., Qualy, J. M. & Khachatrian, L. L. Involvement of Gi in the inhibition of adenylate cyclase by cannabimimetic drugs. Mol. Pharmacol. 29, 307–313 (1986).

    CAS  PubMed  Google Scholar 

  114. Somerville, G. A. et al. Synthesis and deformylation of Staphylococcus aureus δ-toxin are linked to tricarboxylic acid cycle activity. J. Bacteriol. 185, 6686–6694 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. de Haas, C. J. et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 199, 687–695 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. van Wamel, W. J., Rooijakkers, S. H., Ruyken, M., van Kessel, K. P. & van Strijp, J. A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on β-hemolysin-converting bacteriophages. J. Bacteriol. 188, 1310–1315 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Haas, P. J. et al. N-terminal residues of the chemotaxis inhibitory protein of Staphylococcus aureus are essential for blocking formylated peptide receptor but not C5a receptor. J. Immunol. 173, 5704–5711 (2004).

    CAS  PubMed  Google Scholar 

  118. Prat, C., Bestebroer, J., de Haas, C. J., van Strijp, J. A. & van Kessel, K. P. A new staphylococcal anti-inflammatory protein that antagonizes the formyl peptide receptor-like 1. J. Immunol. 177, 8017–8026 (2006). This study presents the FPR2 inhibitory S. aureus protein FLIPr.

    CAS  PubMed  Google Scholar 

  119. Jongerius, I. et al. Staphylococcal complement evasion by various convertase-blocking molecules. J. Exp. Med. 204, 2461–2471 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Palazzolo-Ballance, A. M. et al. Neutrophil microbicides induce a pathogen survival response in community-associated methicillin-resistant Staphylococcus aureus. J. Immunol. 180, 500–509 (2008).

    CAS  PubMed  Google Scholar 

  121. Queck, S. Y. et al. RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol. Cell 32, 150–158 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Stemerding, A. M. et al. Staphylococcus aureus formyl peptide receptor-like 1 inhibitor (FLIPr) and its homologue FLIPr-like are potent FcγR antagonists that inhibit IgG-mediated effector functions. J. Immunol. 191, 353–362 (2013).

    CAS  PubMed  Google Scholar 

  123. Perretti, M. et al. Endogenous lipid- and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nature Med. 8, 1296–1302 (2002).

    CAS  PubMed  Google Scholar 

  124. Dioszeghy, V. et al. 12/15-Lipoxygenase regulates the inflammatory response to bacterial products in vivo. J. Immunol. 181, 6514–6524 (2008).

    CAS  PubMed  Google Scholar 

  125. Bhowmick, R. et al. Systemic disease during Streptococcus pneumoniae acute lung infection requires 12-lipoxygenase-dependent inflammation. J. Immunol. 191, 5115–5123 (2013).

    CAS  PubMed  Google Scholar 

  126. Rooijakkers, S. H. et al. Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus. Cell. Microbiol. 8, 1282–1293 (2006).

    CAS  PubMed  Google Scholar 

  127. Kretschmer, D., Nikola, N., Durr, M., Otto, M. & Peschel, A. The virulence regulator Agr controls the staphylococcal capacity to activate human neutrophils via the formyl peptide receptor 2. J. Innate Immun. 4, 201–212 (2012).

    CAS  PubMed  Google Scholar 

  128. Surewaard, B. G. et al. Inactivation of staphylococcal phenol soluble modulins by serum lipoprotein particles. PLoS Pathog. 8, e1002606 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Grosz, M. et al. Cytoplasmic replication of Staphylococcus aureus upon phagosomal escape triggered by phenol-soluble modulin α. Cell. Microbiol. 16, 451–465 (2014).

    CAS  PubMed  Google Scholar 

  130. Surewaard, B. G. et al. Staphylococcal α-phenol soluble modulins contribute to neutrophil lysis after phagocytosis. Cell. Microbiol. 15, 1427–1437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Cheng, A. G., DeDent, A. C., Schneewind, O. & Missiakas, D. A play in four acts: Staphylococcus aureus abscess formation. Trends Microbiol. 19, 225–232 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, M., Zhou, H., Cheng, N., Qian, F. & Ye, R. D. Serum amyloid A1 isoforms display different efficacy at Toll-like receptor 2 and formyl peptide receptor 2. Immunobiology 219, 916–923 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Cheung, G. Y. et al. Insight into structure–function relationship in phenol-soluble modulins using an alanine screen of the phenol-soluble modulin (PSM) α3 peptide. FASEB J. 28, 153–161 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Bloes, D. A., Otto, M., Peschel, A. & Kretschmer, D. Enterococcus faecium stimulates human neutrophils via the formyl-peptide receptor 2. PLoS ONE 7, e39910 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mellado, M., Serrano, A., Martinez, C. & Rodriguez-Frade, J. M. G protein-coupled receptor dimerization and signaling. Methods Mol. Biol. 332, 141–157 (2006).

    CAS  PubMed  Google Scholar 

  136. Cooray, S. N. et al. Ligand-specific conformational change of the G-protein-coupled receptor ALX/FPR2 determines proresolving functional responses. Proc. Natl Acad. Sci. USA 110, 18232–18237 (2013).

    CAS  PubMed  Google Scholar 

  137. Anderson, W. F. et al. Initiation of protein synthesis in prokaryotic and eukaryotic systems. Summary of EMBO Workshop. FEBS Lett. 48, 1–6 (1974).

    CAS  PubMed  Google Scholar 

  138. Adams, J. M. & Capecchi, M. R. N-formylmethionyl-sRNA as the initiator of protein synthesis. Proc. Natl Acad. Sci. USA 55, 147–155 (1966).

    CAS  PubMed  Google Scholar 

  139. Guillon, J. M., Mechulam, Y., Schmitter, J. M., Blanquet, S. & Fayat, G. Disruption of the gene for Met-tRNA(fMet) formyltransferase severely impairs growth of Escherichia coli. J. Bacteriol. 174, 4294–4301 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Margolis, P. S. et al. Peptide deformylase in Staphylococcus aureus: resistance to inhibition is mediated by mutations in the formyltransferase gene. Antimicrob. Agents Chemother. 44, 1825–1831 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Mader, D. et al. Role of N-terminal protein formylation in central metabolic processes in Staphylococcus aureus. BMC Microbiol. 13, 7 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Falconer, S. B. & Brown, E. D. New screens and targets in antibacterial drug discovery. Curr. Opin. Microbiol. 12, 497–504 (2009).

    CAS  PubMed  Google Scholar 

  143. Babbin, B. A. et al. Annexin I regulates SKCO-15 cell invasion by signaling through formyl peptide receptors. J. Biol. Chem. 281, 19588–19599 (2006).

    CAS  PubMed  Google Scholar 

  144. Bindels, L. B., Dewulf, E. M. & Delzenne, N. M. GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol. Sci. 34, 226–232 (2013).

    CAS  PubMed  Google Scholar 

  145. Littman, D. R. & Pamer, E. G. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10, 311–323 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Targan, S. R. & Karp, L. C. Defects in mucosal immunity leading to ulcerative colitis. Immunol. Rev. 206, 296–305 (2005).

    CAS  PubMed  Google Scholar 

  147. Molloy, M. J. et al. Intraluminal containment of commensal outgrowth in the gut during infection-induced dysbiosis. Cell Host Microbe 14, 318–328 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Zeng, H. et al. Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella. J. Immunol. 171, 3668–3674 (2003).

    CAS  PubMed  Google Scholar 

  149. Neish, A. S. et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science 289, 1560–1563 (2000).

    CAS  PubMed  Google Scholar 

  150. Leoni, G. et al. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair. J. Clin. Invest. 123, 443–454 (2013).

    CAS  PubMed  Google Scholar 

  151. Suzuki, T., Yoshida, S. & Hara, H. Physiological concentrations of short-chain fatty acids immediately suppress colonic epithelial permeability. Br. J. Nutr. 100, 297–305 (2008).

    CAS  PubMed  Google Scholar 

  152. Chen, K. et al. Formylpeptide receptor-2 contributes to colonic epithelial homeostasis, inflammation, and tumorigenesis. J. Clin. Invest. 123, 1694–1704 (2013). This study describes the impact of FPR2 on intestinal epithelial function.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Tang, Y., Chen, Y., Jiang, H., Robbins, G. T. & Nie, D. G-protein-coupled receptor for short-chain fatty acids suppresses colon cancer. Int. J. Cancer 128, 847–856 (2011).

    CAS  PubMed  Google Scholar 

  154. Bindels, L. B. et al. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br. J. Cancer 107, 1337–1344 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Cheng, T. Y. et al. Formyl peptide receptor 1 expression is associated with tumor progression and survival in gastric cancer. Anticancer Res. 34, 2223–2229 (2014).

    CAS  PubMed  Google Scholar 

  156. Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for helpful discussions with their collaborators and colleagues. The authors' research is funded by the German Research Council grants SFB685 and PE805/5-1 to A.P. and TRR34 to A.P. and D.K., and by the Fortüne programme of the Medical Faculty Tübingen to D.K..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Peschel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

HeliQuest

PowerPoint slides

Glossary

Complement

An innate immune defence system of > 25 proteins that recognizes foreign objects and targets them for destruction or phagocytosis.

Leukotrienes

A class of eicosanoids that are derived from arachidonic acid and have pro-inflammatory activities.

Phenol-soluble modulins

(PSMs). Staphylococcal secreted peptides with a length of 20–44 amino acids that are potent bacterial agonists for formyl peptide receptor 2 (at nanomolar concentrations) and cytolytic toxins (at micromolar concentrations).

Vomeronasal sensory neurons

An olfactory sensory sytem that detects chemical stimuli such as pheromones, which are produced during mating by many animals.

Hydrophobic moment

A measure of the amphiphilicity of a protein helix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloes, D., Kretschmer, D. & Peschel, A. Enemy attraction: bacterial agonists for leukocyte chemotaxis receptors. Nat Rev Microbiol 13, 95–104 (2015). https://doi.org/10.1038/nrmicro3390

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3390

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing