Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

On the front line: structural insights into plant–pathogen interactions

Key Points

  • Structural biology studies of proteins involved in plant pathogen–host interactions are crucial to understanding the molecular mechanisms of both pathogen virulence and host defence.

  • Plant pathogens and their hosts deploy molecules to the extracellular space (apoplast), and the structures of these molecules have revealed a relationship with membrane-damaging toxins and a mechanism for how plant receptors recognize microbial signatures.

  • Plant pathogens translocate effector proteins into host cells, and many suppress host immune defences. Structural studies of these effectors have showed how trans-kingdom protein–protein interactions have evolved to target immune regulators and have defined folds that have homology to proteins with known catalytic activities that were not apparent from protein sequence.

  • Protein structure analysis of both bacterial and oomycete effectors has identified conserved repeat folds both within and between certain effectors, which suggests evolution of protein function from a core, stable protein scaffold, probably through duplication and diversification.

  • Oligomerization of intracellular plant immune receptors (nucleotide-binding and Leu-rich repeat-containing (NB-LRR) proteins) is increasingly recognized as being important to trigger signalling in response to pathogens. Structures of the amino-terminal domains of both coiled-coil (CC) and Toll and interleukin-1 receptor (TLR) classes of NB-LRRs have shown how these regions can mediate dimerization.

Abstract

Over the past decade, considerable advances have been made in understanding the molecular mechanisms that underpin the arms race between plant pathogens and their hosts. Alongside genomic, bioinformatic, proteomic, biochemical and cell biological analyses of plant–pathogen interactions, three-dimensional structural studies of virulence proteins deployed by pathogens to promote infection, in some cases complexed with their plant cell targets, have uncovered key insights into the functions of these molecules. Structural information on plant immune receptors, which regulate the response to pathogen attack, is also starting to emerge. Structural studies of bacterial plant pathogen–host systems have been leading the way, but studies of filamentous plant pathogens are gathering pace. In this Review, we summarize the key developments in the structural biology of plant pathogen–host interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of some of the molecular players in plant–pathogen interactions.
Figure 2: Structural basis of the interaction between Pseudomonas syringae T3SEs AvrPtoB and AvrPto and immune kinases.
Figure 3: Structural homology between bacterial effectors and conserved enzymes suggests protein function.
Figure 4: Crystal structures of RXLR effector proteins.
Figure 5: Dimerization in the amino-terminal domains of NB-LRR proteins.

Similar content being viewed by others

References

  1. Pennisi, E. Armed and dangerous. Science 327, 804–805 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Jones, N. Planetary disasters: It could happen one night. Nature 493, 154–156 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Hogenhout, S. A., Van der Hoorn, R. A., Terauchi, R. & Kamoun, S. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant Microbe Interact. 22, 115–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Win, J. et al. Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harb. Symp. Quant. Biol. 77, 235–247 (2012). An excellent review article summarizing key concepts that have emerged from the study of the effectors of plant-associated organisms and discussing future perspectives in the field of effector biology.

    Article  CAS  PubMed  Google Scholar 

  5. Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Rev. Genet. 11, 539–548 (2010). An excellent overview of the plant immune system, with an emphasis on MAMP-triggered and effector-triggered immunity

    Article  CAS  PubMed  Google Scholar 

  6. Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Thomma, B. P., Nurnberger, T. & Joosten, M. H. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23, 4–15 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boller, T. & Felix, G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60, 379–406 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Chisholm, S. T., Coaker, G., Day, B. & Staskawicz, B. J. Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Pemberton, C. L. & Salmond, G. P. The Nep1-like proteins—a growing family of microbial elicitors of plant necrosis. Mol. Plant Pathol. 5, 353–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Ottmann, C. et al. A common toxin fold mediates microbial attack and plant defense. Proc. Natl Acad. Sci. USA 106, 10359–10364 (2009). The three-dimensional structure of an NLP from an oomycete pathogen, which showed structural similarities between NLPs and pore-forming toxins produced by marine organisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gijzen, M. & Nurnberger, T. Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67, 1800–1807 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Qutob, D. et al. Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18, 3721–3744 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cabral, A. et al. Nontoxic Nep1-like proteins of the downy mildew pathogen Hyaloperonospora arabidopsidis: repression of necrosis-inducing activity by a surface-exposed region. Mol. Plant Microbe Interact. 25, 697–708 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Kanneganti, T. D., Huitema, E., Cakir, C. & Kamoun, S. Synergistic interactions of the plant cell death pathways induced by Phytophthora infestans Nepl-like protein PiNPP1.1 and INF1 elicitin. Mol. Plant Microbe Interact. 19, 854–863 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Kufner, I., Ottmann, C., Oecking, C. & Nurnberger, T. Cytolytic toxins as triggers of plant immune response. Plant Signal Behav. 4, 977–979 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kristan, K. C., Viero, G., Dalla Serra, M., Macek, P. & Anderluh, G. Molecular mechanism of pore formation by actinoporins. Toxicon 54, 1125–1134 (2009).

    Article  PubMed  CAS  Google Scholar 

  18. Fellbrich, G. et al. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J. 32, 375–390 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Zaparoli, G. et al. The crystal structure of necrosis- and ethylene-inducing protein 2 from the causal agent of cacao's Witches' Broom disease reveals key elements for its activity. Biochemistry 50, 9901–9910 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Kamoun, S. A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol. 44, 41–60 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Federici, L., Di Matteo, A., Fernandez-Recio, J., Tsernoglou, D. & Cervone, F. Polygalacturonase inhibiting proteins: players in plant innate immunity? Trends Plant Sci. 11, 65–70 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. De Lorenzo, G., D'Ovidio, R. & Cervone, F. The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annu. Rev. Phytopathol. 39, 313–335 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Brutus, A., Sicilia, F., Macone, A., Cervone, F. & De Lorenzo, G. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc. Natl Acad. Sci. USA 107, 9452–9457 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Di Matteo, A. et al. The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine-rich repeat protein involved in plant defense. Proc. Natl Acad. Sci. USA 100, 10124–10128 (2003). This article shows the crystal structure of PGIP2 from the common bean. This was the first structure of a plant LRR protein and remains one of the few cases in which the crystallized protein was purified from plants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Casasoli, M. et al. Integration of evolutionary and desolvation energy analysis identifies functional sites in a plant immunity protein. Proc. Natl Acad. Sci. USA 106, 7666–7671 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leckie, F. et al. The specificity of polygalacturonase-inhibiting protein (PGIP): a single amino acid substitution in the solvent-exposed β-strand/β-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. EMBO J. 18, 2352–2363 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Benedetti, M. et al. Structural resolution of the complex between a fungal polygalacturonase and a plant polygalacturonase-inhibiting protein by small-angle X-ray scattering. Plant Physiol. 157, 599–607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, T. et al. Chitin-induced dimerization activates a plant immune receptor. Science 336, 1160–1164 (2012). This article shows the crystal structure of the extracellular LysM domains of A. thaliana CERK1 in both ligand-free and chitin-bound forms, which provides evidence for ligand-induced dimerization of CERK1. The paper assesses the relevance of this dimerization for signal transduction.

    Article  CAS  PubMed  Google Scholar 

  29. Willmann, R. & Nurnberger, T. How plant lysin motif receptors get activated: Lessons learned from structural biology. Sci. Signal. 5, e28 (2012).

    Article  CAS  Google Scholar 

  30. Miya, A. et al. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl Acad. Sci. USA 104, 19613–19618 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wan, J. et al. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20, 471–481 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Petutschnig, E. K., Jones, A. M., Serazetdinova, L., Lipka, U. & Lipka, V. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J. Biol. Chem. 285, 28902–28911 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iizasa, E., Mitsutomi, M. & Nagano, Y. Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro. J. Biol. Chem. 285, 2996–3004 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Hamel, L. P. & Beaudoin, N. Chitooligosaccharide sensing and downstream signaling: contrasted outcomes in pathogenic and beneficial plant–microbe interactions. Planta 232, 787–806 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Heese, A. et al. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl Acad. Sci. USA 104, 12217–12222 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chinchilla, D. et al. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Nimchuk, Z. et al. Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae. Cell 101, 353–363 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Szurek, B., Marois, E., Bonas, U. & Van den Ackerveken, G. Eukaryotic features of the Xanthomonas type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant J. 26, 523–534 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Caillaud, M. C. et al. Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility. Plant J. 69, 252–265 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Mansfield, J. W. From bacterial avirulence genes to effector functions via the hrp delivery system: an overview of 25 years of progress in our understanding of plant innate immunity. Mol. Plant Pathol. 10, 721–734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cheng, W. et al. Structural analysis of Pseudomonas syringae AvrPtoB bound to host BAK1 reveals two similar kinase-interacting domains in a type III effector. Cell Host Microbe 10, 616–626 (2011). This paper provides the structural characterization of the second kinase-binding domain of AvrPtoB. This domain forms a four-helix bundle that is structurally related to the first AvrProB kinase-binding domain but binds host kinases in a different orientation.

    Article  CAS  PubMed  Google Scholar 

  42. Gimenez-Ibanez, S. et al. AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr. Biol. 19, 423–429 (2009). This work shows that AvrPtoB interferes with BAK1-independent immune pathways. The first helix-bundle domain of AvrPtoB specifically binds the intracellular kinase domain of A. thaliana CERK1.

    Article  CAS  PubMed  Google Scholar 

  43. Xiao, F. et al. The N-terminal region of Pseudomonas type III effector AvrPtoB elicits Pto-dependent immunity and has two distinct virulence determinants. Plant J. 52, 595–614 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeng, L., Velasquez, A. C., Munkvold, K. R., Zhang, J. & Martin, G. B. A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB. Plant J. 69, 92–103 (2012). This is a follow-up of the structural characterization of the two AvrPtoB kinase-binding domains, which identifies a tomato RLK that is specifically inhibited by the first four-helix bundle domain of AvrPtoB.

    Article  CAS  PubMed  Google Scholar 

  45. Shan, L. et al. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4, 17–27 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He, P. et al. Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity. Cell 125, 563–575 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Janjusevic, R., Abramovitch, R. B., Martin, G. B. & Stebbins, C. E. A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311, 222–226 (2006). This is a structure determination of a previously uncharacterized C-terminal domain of AvrPtoB, which shows that it adopts the fold of eukaryotic U-box ubiquitin E3 ligases. E3 ligase activity is required for both effector-triggered susceptibility and interference with NB-LRR-mediated immunity.

    Article  CAS  PubMed  Google Scholar 

  48. Dong, J. et al. Crystal structure of the complex between Pseudomonas effector AvrPtoB and the tomato Pto kinase reveals both a shared and a unique interface compared with AvrPto-Pto. Plant Cell 21, 1846–1859 (2009). This article shows the crystal structure of a complex between the first four-helix bundle of AvrPtoB and Pto, which reveals contact with the P + 1 loop of the kinase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Singer, A. U. et al. Structural analysis of HopPmaL reveals the presence of a second adaptor domain common to the HopAB family of Pseudomonas syringae type III effectors. Biochemistry 51, 1–3 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Xiang, T. et al. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr. Biol. 18, 74–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Xing, W. et al. The structural basis for activation of plant immunity by bacterial effector protein AvrPto. Nature 449, 243–247 (2007). This is one of the first structural characterizations of a plant pathogen effector in complex with a host protein, which establishes that AvrPto makes specific contact with the P + 1 loop of Pto and inhibits its kinase activity.

    Article  CAS  PubMed  Google Scholar 

  52. Xiang, T. et al. BAK1 is not a target of the Pseudomonas syringae effector AvrPto. Mol. Plant Microbe Interact. 24, 100–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Wulf, J., Pascuzzi, P. E., Fahmy, A., Martin, G. B. & Nicholson, L. K. The solution structure of type III effector protein AvrPto reveals conformational and dynamic features important for plant pathogenesis. Structure 12, 1257–1268 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Fu, Z. Q. et al. A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447, 284–288 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Wirthmueller, L. & Banfield, M. J. mADP-RTs: versatile virulence factors from bacterial pathogens of plants and mammals. Front. Plant Sci. 3, 142 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nicaise, V. et al. Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7. EMBO J. 32, 701–712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jeong, B. R. et al. Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity. J. Biol. Chem. 286, 43272–43281 (2011). This paper describes the structural basis for HopU1-mediated mADP-ribosylation of the RNA-binding protein GRP7 on a specific Arg residue that is essential for RNA binding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schoning, J. C. et al. Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation. Plant J. 52, 1119–1130 (2007).

    Article  PubMed  CAS  Google Scholar 

  59. Singer, A. U. et al. Crystal structures of the type III effector protein AvrPphF and its chaperone reveal residues required for plant pathogenesis. Structure 12, 1669–1681 (2004). This is the first report of a crystal structure of an effector protein from a plant pathogen.

    Article  CAS  PubMed  Google Scholar 

  60. Wang, Y. et al. A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases. Plant Cell 22, 2033–2044 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wilton, M. et al. The type III effector HopF2Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence. Proc. Natl Acad. Sci. USA 107, 2349–2354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gohre, V. et al. Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr. Biol. 18, 1824–1832 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, J. et al. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7, 290–301 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Zhu, M., Shao, F., Innes, R. W., Dixon, J. E. & Xu, Z. The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substrate-binding site. Proc. Natl Acad. Sci. USA 101, 302–307 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Shao, F., Merritt, P. M., Bao, Z., Innes, R. W. & Dixon, J. E. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109, 575–588 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Lu, D. et al. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc. Natl Acad. Sci. USA 107, 496–501 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Ade, J., DeYoung, B. J., Golstein, C. & Innes, R. W. Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proc. Natl Acad. Sci. USA 104, 2531–2536 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. DeYoung, B. J., Qi, D., Kim, S. H., Burke, T. P. & Innes, R. W. Activation of a plant nucleotide binding-leucine rich repeat disease resistance protein by a modified self protein. Cell. Microbiol. 14, 1071–1084 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shao, F. et al. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301, 1230–1233 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Singer, A. U. et al. A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLoS Pathog. 9, e1003121 (2013). This is an excellent example of how structural biology can promote elucidation of the molecular functions of plant pathogen effectors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Singer, A. U. et al. Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nature Struct. Mol. Biol. 15, 1293–1301 (2008).

    Article  CAS  Google Scholar 

  72. Quezada, C. M., Hicks, S. W., Galan, J. E. & Stebbins, C. E. A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc. Natl Acad. Sci. USA 106, 4864–4869 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim, J. G. et al. XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in Xanthomonas-infected tomato leaves. Plant Cell 20, 1915–1929 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chosed, R. et al. Structural analysis of Xanthomonas XopD provides insights into substrate specificity of ubiquitin-like protein proteases. J. Biol. Chem. 282, 6773–6782 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Kim, J. G., Stork, W. & Mudgett, M. B. Xanthomonas type III effector XopD sesumoylates tomato transcription factor SlERF4 to suppress ethylene responses and promote pathogen growth. Cell Host Microbe 13, 143–154 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Grant, S. R., Fisher, E. J., Chang, J. H., Mole, B. M. & Dangl, J. L. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu. Rev. Microbiol. 60, 425–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Kim, M. G. et al. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121, 749–759 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, J. et al. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biol. 7, e1000139 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Afzal, A. J., da Cunha, L. & Mackey, D. Separable fragments and membrane tethering of Arabidopsis RIN4 regulate its suppression of PAMP-triggered immunity. Plant Cell 23, 3798–3811 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Luo, Y., Caldwell, K. S., Wroblewski, T., Wright, M. E. & Michelmore, R. W. Proteolysis of a negative regulator of innate immunity is dependent on resistance genes in tomato and Nicotiana benthamiana and induced by multiple bacterial effectors. Plant Cell 21, 2458–2472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wilton, M. et al. The type III effector HopF2Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence. Proc. Natl Acad. Sci. USA 107, 2349–2354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mackey, D., Holt, B. F., 3rd, Wiig, A. & Dangl, J. L. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Axtell, M. J., Chisholm, S. T., Dahlbeck, D. & Staskawicz, B. J. Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease. Mol. Microbiol. 49, 1537–1546 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Axtell, M. J. & Staskawicz, B. J. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112, 369–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Mackey, D., Belkhadir, Y., Alonso, J. M., Ecker, J. R. & Dangl, J. L. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Gao, Z., Chung, E. H., Eitas, T. K. & Dangl, J. L. Plant intracellular innate immune receptor resistance to Pseudomonas syringae pv. maculicola 1 (RPM1) is activated at, and functions on, the plasma membrane. Proc. Natl Acad. Sci. USA 108, 7619–7624 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, J., Elmore, J. M., Lin, Z. J. & Coaker, G. A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor. Cell Host Microbe 9, 137–146 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee, C. C. et al. Crystal structure of the type III effector AvrB from Pseudomonas syringae. Structure 12, 487–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Desveaux, D. et al. Type III effector activation via nucleotide binding, phosphorylation, and host target interaction. PLoS Pathog. 3, e48 (2007). This is the first structural characterization of a plant pathogen effector (AvrB) in complex with the interacting domain of its corresponding plant protein (RIN4).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kim, H. S. et al. The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. Proc. Natl Acad. Sci. USA 102, 6496–6501 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Feng, F. et al. A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases. Nature 485, 114–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Kinch, L. N., Yarbrough, M. L., Orth, K. & Grishin, N. V. Fido, a novel AMPylation domain common to fic, doc, and AvrB. PLoS ONE 4, e5818 (2009). This article reports structural similarity between AvrB, and Fic and doc proteins.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Worby, C. A. et al. The fic domain: regulation of cell signaling by adenylylation. Mol. Cell 34, 93–103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yarbrough, M. L. et al. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323, 269–272 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Kim, Y. J., Lin, N. C. & Martin, G. B. Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell 109, 589–598 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Ntoukakis, V. et al. The tomato Prf complex is a molecular trap for bacterial effectors based on pto transphosphorylation. PLoS Pathog. 9, e1003123 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rosebrock, T. R. et al. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448, 370–374 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ntoukakis, V. et al. Host inhibition of a bacterial virulence effector triggers immunity to infection. Science 324, 784–787 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Zhou, J. M. & Chai, J. Plant pathogenic bacterial type III effectors subdue host responses. Curr. Opin. Microbiol. 11, 179–185 (2008).

    Article  PubMed  CAS  Google Scholar 

  100. van der Hoorn, R. A. & Kamoun, S. From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20, 2009–2017 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Birker, D. et al. A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. Plant J. 60, 602–613 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Narusaka, M. et al. Interfamily transfer of dual NB-LRR genes confers resistance to multiple pathogens. PLoS ONE 8, e55954 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Narusaka, M. et al. RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens. Plant J. 60, 218–226 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Sohn, K. H., Hughes, R. K., Piquerez, S. J., Jones, J. D. & Banfield, M. J. Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of immunity. Proc. Natl Acad. Sci. USA 109, 16371–16376 (2012). In this paper, the crystal structure of AvrRps4 shows that an electronegative surface patch in the structure is important for recognition by the NB-LRR proteins RPS4 and RRS1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sohn, K. H., Zhang, Y. & Jones, J. D. The Pseudomonas syringae effector protein, AvrRPS4, requires in planta processing and the KRVY domain to function. Plant J. 57, 1079–1091 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Bhattacharjee, S., Halane, M. K., Kim, S. H. & Gassmann, W. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 334, 1405–1408 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Heidrich, K. et al. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 334, 1401–1404 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Boch, J. & Bonas, U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol. 48, 419–436 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Kay, S., Hahn, S., Marois, E., Hause, G. & Bonas, U. A. Bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318, 648–651 (2007). This work shows that TAL effectors are transcription factors and that they promote disease by directly binding to specific host gene promoters.

    Article  CAS  PubMed  Google Scholar 

  110. Romer, P. et al. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318, 645–648 (2007). This article describes the molecular basis of TAL effector recognition by plants.

    Article  PubMed  CAS  Google Scholar 

  111. Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Moscou, M. J. & Bogdanove, A. J. A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501 (2009). Together with reference 111, this work explains how the repeat architecture of TAL effectors determines their sequence-specific DNA-binding properties.

    Article  CAS  PubMed  Google Scholar 

  113. Bogdanove, A. J. & Voytas, D. F. TAL effectors: customizable proteins for DNA targeting. Science 333, 1843–1846 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Morbitzer, R., Römer, P., Boch, J. & Lahaye, T. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc. Natl Acad. Sci. USA 107, 21617–21622 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Murakami, M. T. et al. The repeat domain of the type III effector protein PthA shows a TPR-like structure and undergoes conformational changes upon DNA interaction. Proteins 78, 3386–3395 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Deng, D. et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335, 720–723 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mak, A. N., Bradley, P., Bogdanove, A. J. & Stoddard, B. L. TAL effectors: function, structure, engineering and applications. Curr. Opin. Struct. Biol. 23, 93–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Mak, A. N.-S., Bradley, P., Cernadas, R. A., Bogdanove, A. J. & Stoddard, B. L. The crystal structure of TAL effector PthXo1 bound to its DNA Target. Science 335, 716–719 (2012). Together with reference 116, this paper provides the structural basis for the DNA sequence specificity of TAL effectors and for the rational design of TAL proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yin, P. et al. Specific DNA–RNA hybrid recognition by TAL effectors. Cell Rep. 2, 707–713 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Deng, D. et al. Recognition of methylated DNA by TAL effectors. Cell Res. 22, 1502–1504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gao, H., Wu, X., Chai, J. & Han, Z. Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res. 22, 1716–1720 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kemen, E. et al. Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol. Plant Microbe Interact. 18, 1130–1139 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Khang, C. H. et al. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22, 1388–1403 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Panstruga, R. & Dodds, P. N. Terrific protein traffic: the mystery of effector protein delivery by filamentous plant pathogens. Science 324, 748–750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ellis, J. G. & Dodds, P. N. Showdown at the RXLR motif: Serious differences of opinion in how effector proteins from filamentous eukaryotic pathogens enter plant cells. Proc. Natl Acad. Sci. USA 108, 14381–14382 (2011). This paper provides a rational summary of the contrasting opinions in the debate on translocation of oomycete and fungal effectors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tyler, B. M. et al. Microbe-independent entry of oomycete RxLR effectors and fungal RxLR-like effectors into plant and animal cells is specific and reproducible. Mol. Plant Microbe Interact. 26, 611–616 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wawra, S. et al. In vitro translocation experiments with RxLR-reporter fusion proteins of Avr1b from Phytophthora sojae and AVR3a from Phytophthora infestans fail to demonstrate specific autonomous uptake in plant and animal cells. Mol. Plant Microbe Interact. 26, 528–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Boutemy, L. S. et al. Structures of Phytophthora RXLR effector proteins: a conserved but adaptable fold underpins functional diversity. J. Biol. Chem. 286, 35834–35842 (2011). This paper shows crystal structures of two RXLR effectors (Avr3a11 and PexRD2), which adopt a similar helical WY fold despite sharing less than 20% sequence similarity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yaeno, T. et al. Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity. Proc. Natl Acad. Sci. USA 108, 14682–14687 (2011). This article shows the NMR structure of an RXLR effector of the Avr3a family, which provides evidence for phospholipid binding of the C-terminal effector domain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sun, F. et al. Structural basis for interactions of the Phytophthora sojae RxLR effector Avh5 with phosphatidylinositol 3-phosphate and for host cell entry. Mol. Plant Microbe Interact. 26, 330–344 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Bos, J. I. B. et al. The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana. Plant J. 48, 165–176 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Win, J. et al. Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Cell 19, 2349–2369 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chou, S. et al. Hyaloperonospora arabidopsidis ATR1 effector is a repeat protein with distributed recognition surfaces. Proc. Natl Acad. Sci. USA 108, 13323–13328 (2011). In this paper, the crystal structure of ATR1 provides insight into how WY domains are arranged in effectors containing more than one WY repeat.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Leonelli, L. et al. Structural elucidation and functional characterization of the Hyaloperonospora arabidopsidis effector protein ATR13. PLoS Pathog. 7, e1002428 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Win, J. et al. Sequence divergent RXLR effectors share a structural fold conserved across plant pathogenic oomycete species. PLoS Pathog. 8, e1002400 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Stergiopoulos, I. & de Wit, P. J. Fungal effector proteins. Annu. Rev. Phytopathol. 47, 233–263 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Wang, C. I. et al. Crystal structures of flax rust avirulence proteins AvrL567-A and -D reveal details of the structural basis for flax disease resistance specificity. Plant Cell 19, 2898–2912 (2007). The crystal structures of two members of the AvrL567 group of flax rust effector proteins that are recognized by direct binding to their corresponding NB-LRR proteins are shown in this paper.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang, Z. M. et al. Solution structure of the Magnaporthe oryzae avirulence protein AvrPiz-t. J. Biomol. NMR 55, 219–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Dodds, P. N. et al. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl Acad. Sci. USA 103, 8888–8893 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Catanzariti, A. M. et al. The AvrM effector from flax rust has a structured C-terminal domain and interacts directly with the M resistance protein. Mol. Plant Microbe Interact. 23, 49–57 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Krasileva, K. V., Dahlbeck, D. & Staskawicz, B. J. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22, 2444–2458 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Heidrich, K., Blanvillain-Baufume, S. & Parker, J. E. Molecular and spatial constraints on NB-LRR receptor signaling. Curr. Opin. Plant Biol. 15, 385–391 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Collier, S. M. & Moffett, P. NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci. 14, 521–529 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Maekawa, T., Kufer, T. A. & Schulze-Lefert, P. NLR functions in plant and animal immune systems: so far and yet so close. Nature Immunol. 12, 817–826 (2011).

    Article  CAS  Google Scholar 

  145. Maekawa, T. et al. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 9, 187–199 (2011). In this paper, the crystal structure of the N-terminal CC domain of the barley MLA10 immune receptor shows a domain-swapped homodimer, which suggests that dimerization of the CC domain creates the molecular interface for binding of a WRKY-type transcription factor.

    Article  CAS  PubMed  Google Scholar 

  146. Shen, Q. H. et al. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315, 1098–1103 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Chan, S. L., Mukasa, T., Santelli, E., Low, L. Y. & Pascual, J. The crystal structure of a TIR domain from Arabidopsis thaliana reveals a conserved helical region unique to plants. Protein Sci. 19, 155–161 (2010).

    CAS  PubMed  Google Scholar 

  148. Bernoux, M. et al. Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9, 200–211 (2011). In this paper, the crystal structure of the TIR domain from the flax L6 immune receptor shows an interface for homodimerization of TIR domains and that residues contributing to this interface are essential for L6 function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Krasileva, K. V., Dahlbeck, D. & Staskawicz, B. J. Activation of an Arabidopsis resistance protein Is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22, 2444–2458 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mestre, P. & Baulcombe, D. C. Elicitor-mediated oligomerization of the tobacco N disease resistance protein. Plant Cell 18, 491–501 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ausubel, F. M. Are innate immune signaling pathways in plants and animals conserved? Nature Immunol. 6, 973–979 (2005).

    Article  CAS  Google Scholar 

  152. Spoel, S. H. & Dong, X. How do plants achieve immunity? Defence without specialized immune cells. Nature Rev. Immunol. 12, 89–100 (2012).

    Article  CAS  Google Scholar 

  153. Faulkner, C. & Robatzek, S. Plants and pathogens: putting infection strategies and defence mechanisms on the map. Curr. Opin. Plant Biol. 15, 699–707 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Monaghan, J. & Zipfel, C. Plant pattern recognition receptor complexes at the plasma membrane. Curr. Opin. Plant Biol. 15, 349–357 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Whisson, S. C. et al. A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450, 115–118 (2007). This work establishes that the RXLR motif is essential for host cell delivery of the oomycete effector Avr3a.

    Article  CAS  PubMed  Google Scholar 

  156. Coll, N. S., Epple, P. & Dangl, J. L. Programmed cell death in the plant immune system. Cell Death Differ. 18, 1247–1256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Plechanovova, A., Jaffray, E. G., Tatham, M. H., Naismith, J. H. & Hay, R. T. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489, 115–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Garcia-Pino, A. et al. Doc of prophage P1 is inhibited by its antitoxin partner Phd through fold complementation. J. Biol. Chem. 283, 30821–30827 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hu, Z. et al. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341, 172–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Sanchez-Vallet, A. et al. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. eLife 2, e00790 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Schornack and C. Zipfel for comments during the preparation of this manuscript. L.W. acknowledges support from Federation of the European Biochemical Societies (long-term fellowship) and the Biotechnology and Biological Sciences Research Council (BBSRC; grant BB/K009176/1). Work in the M.J.B. laboratory, relevant to the areas discussed, is funded by the BBSRC (grants BB/J004553/1 and BB/I019557/1), the European Research Council (proposal 294608), the John Innes Foundation and the Gatsby Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Banfield.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

PyMol

PowerPoint slides

Glossary

Apoplastic effectors

Effectors that are secreted into and act in the apoplast, a tissue-level compartment outside the plant plasma membrane that includes the cell wall.

Cytoplasmic effectors

Effectors that are secreted and translocated across the plant plasma membrane into the host cytoplasm, where they can target different subcellular compartments.

Necrotrophic

An organism that kills host cells before invasion and gains nutrients from the dead plant tissue.

Hemibiotrophic

An organism that feeds on living tissues for a period and then switches to necrotrophic colonization of dead tissues.

Obligate biotrophic

An organism that can only complete its life cycle on living plant tissue; such organisms actively prevent host cell death and feed on living plant tissue.

Hypersensitive response

(HR). A specific form of programmed cell death, often induced by effector-triggered immunity and correlated with accumulation of antimicrobial compounds and systemic acquired resistance.

Pathovars

Pathogenic variants within a species that are defined by a characteristic host range and/or tissue specificity.

E3 ligases

Enzymes required to attach the molecular tag ubiquitin to proteins. This tag modifies protein function or targets the protein for proteosomal degradation.

Salicylic acid

Also known as salicylate, this is a central plant hormone signal that induces local and systemic defence responses in plants, collectively known as systemic acquired resistance.

Ethylene

A gaseous, unsaturated hydrocarbon that acts as a plant hormone to promote growth and development and as an inhibiting stress factor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirthmueller, L., Maqbool, A. & Banfield, M. On the front line: structural insights into plant–pathogen interactions. Nat Rev Microbiol 11, 761–776 (2013). https://doi.org/10.1038/nrmicro3118

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3118

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology