Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of mutational robustness in RNA virus evolution

Key Points

  • RNA viruses have extremely high mutation rates that are orders of magnitude greater than those of DNA-based organisms. Although some of these mutations are beneficial, the vast majority are detrimental to fitness.

  • Mutational robustness describes the preservation of phenotype in the face of ongoing mutation. Evolutionary theory suggests that high mutation rates drive the selection of mutational robustness.

  • The relative mutational robustness of an RNA virus can be measured by experiments assessing the accumulation of mutations, the effects of random mutations or mutagen sensitivity.

  • Factors such as a large population size and the ability to infect at high multiplicity can lead to increased robustness.

  • In silico modelling and experimental evolution suggest that viral RNA structures are genotypically diverse but preserve a native fold. Codon usage might also confer mutational robustness at the level of the viral genome.

  • Cellular chaperones might confer mutational robustness to RNA viruses by stabilizing mutant proteins and preventing their misfolding or aggregation.

  • Mutational robustness might favour viral evolvability and increase the ability of a virus to survive in the dynamic host environment. Evolved robustness could complicate efforts to control viral infections through drug-induced increases in the viral mutation rate.

Abstract

RNA viruses face dynamic environments and are masters at adaptation. During their short 'lifespans', they must surmount multiple physical, anatomical and immunological challenges. Central to their adaptative capacity is the enormous genetic diversity that characterizes RNA virus populations. Although genetic diversity increases the rate of adaptive evolution, low replication fidelity can present a risk because excess mutations can lead to population extinction. In this Review, we discuss the strategies used by RNA viruses to deal with the increased mutational load and consider how this mutational robustness might influence viral evolution and pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Viral populations as mutant networks.
Figure 2: High mutation rates and survival of the flattest.
Figure 3: Using synonymous mutation to place populations in distinct fitness landscapes.
Figure 4: Dynamics of viral networks under selection in the host.

Similar content being viewed by others

References

  1. Holland, J. et al. Rapid evolution of RNA genomes. Science 215, 1577–1585 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Sanjuán, R., Nebot, M. R., Chirico, N., Mansky, L. M. & Belshaw, R. Viral mutation rates. J. Virol. 84, 9733–9748 (2010). A recent and comprehensive review of viral mutation rates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pfeiffer, J. K. & Kirkegaard, K. Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice. PLoS Pathog. 1, e11 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vignuzzi, M., Stone, J. K., Arnold, J. J., Cameron, C. E. & Andino, R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344–348 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Coffey, L. L., Beeharry, Y., Bordería, A. V., Blanc, H. & Vignuzzi, M. Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proc. Natl Acad. Sci. USA 108, 16038–16043 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sanjuán, R., Moya, A. & Elena, S. F. The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc. Natl Acad. Sci. USA 101, 8396–8401 (2004). The first study to rigorously examine mutational fitness effects in an RNA virus and demonstrate that the vast majority of mutations are detrimental to replicative fitness.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sanjuán, R. Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis studies. Philos. Trans. R. Soc. B 365, 1975–1982 (2010).

    Article  CAS  Google Scholar 

  8. Lee, C. H. et al. Negative effects of chemical mutagenesis on the adaptive behavior of vesicular stomatitis virus. J. Virol. 71, 3636–3640 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Crotty, S. et al. The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nature Med. 6, 1375–1379 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Eckerle, L. D. et al. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog. 6, e1000896 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Graham, R. L. et al. A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nature Med. 18, 1820–1826 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Gnädig, N. F. et al. Coxsackievirus B3 mutator strains are attenuated in vivo. Proc. Natl Acad. Sci. USA 109, e2294–e2303 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. de Visser, J. A. G. M. et al. Perspective: evolution and detection of genetic robustness. Evolution 57, 1959–1972 (2003). A review by leaders in the field summarizing theoretical and experimental work on genetic robustness.

    PubMed  Google Scholar 

  14. Lauring, A. S., Acevedo, A., Cooper, S. B. & Andino, R. Codon usage determines the mutational robustness, evolutionary capacity, and virulence of an RNA virus. Cell Host Microbe 12, 623–632 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Domingo-Calap, P., Cuevas, J. M. & Sanjuán, R. The fitness effects of random mutations in single-stranded DNA and RNA bacteriophages. PLoS Genet. 5, e1000742 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cuevas, J. M., Domingo-Calap, P. & Sanjuán, R. The fitness effects of synonymous mutations in DNA and RNA viruses. Mol. Biol. Evol. 29, 17–20 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Arnold, J. J., Vignuzzi, M., Stone, J. K., Andino, R. & Cameron, C. E. Remote site control of an active site fidelity checkpoint in a viral RNA-dependent RNA polymerase. J. Biol. Chem. 280, 25706–25716 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Graci, J. D. et al. Mutational robustness of an RNA virus influences sensitivity to lethal mutagenesis. J. Virol. 86, 2869–2873 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Elena, S. F. RNA virus genetic robustness: possible causes and some consequences. Curr. Opin. Virol. 2, 525–530 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Wright, C. F. et al. Beyond the consensus: dissecting within-host viral population diversity of foot-and-mouth disease virus by using next-generation genome sequencing. J. Virol. 85, 2266–2275 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Froissart, R. et al. Co-infection weakens selection against epistatic mutations in RNA viruses. Genetics 168, 9–19 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Montville, R., Froissart, R., Remold, S. K., Tenaillon, O. & Turner, P. E. Evolution of mutational robustness in an RNA virus. PLoS Biol. 3, e381 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Simon-Loriere, E. & Holmes, E. C. Why do RNA viruses recombine? Nature Rev. Microbiol. 9, 617–626 (2011).

    Article  CAS  Google Scholar 

  24. Wilke, C. O., Wang, J. L., Ofria, C., Lenski, R. E. & Adami, C. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412, 331–333 (2001). The initial demonstration of the 'survival of the flattest' effect using digital organisms.

    Article  CAS  PubMed  Google Scholar 

  25. Codoñer, F. M., Darós, J.-A., Solé, R. V. & Elena, S. F. The fittest versus the flattest: experimental confirmation of the quasispecies effect with subviral pathogens. PLoS Pathog. 2, e136 (2006). An examination of the survival of the fittest versus the survival of the flattest effects in plant viroids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sanjuán, R., Cuevas, J. M., Furió, V., Holmes, E. C. & Moya, A. Selection for robustness in mutagenized RNA viruses. PLoS Genet. 3, e93 (2007). The demonstration of the survival of the flattest effect at elevated mutation rates in an RNA virus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mueller, S., Papamichail, D., Coleman, J. R., Skiena, S. & Wimmer, E. Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J. Virol. 80, 9687–9696 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coleman, J. R. et al. Virus attenuation by genome-scale changes in codon pair bias. Science 320, 1784–1787 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huynen, M. A., Stadler, P. F. & Fontana, W. Smoothness within ruggedness: the role of neutrality in adaptation. Proc. Natl Acad. Sci. USA 93, 397–401 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fontana, W. & Schuster, P. Continuity in evolution: on the nature of transitions. Science 280, 1451–1455 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. van Nimwegen, E. Influenza escapes immunity along neutral networks. Science 314, 1884–1886 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Hayden, E. J., Ferrada, E. & Wagner, A. Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme. Nature 474, 92–95 (2011). A landmark paper that shows how robust populations can accumulate cryptic genetic variation that is neutral in one environment but facilitates rapid adaptation in another.

    Article  CAS  PubMed  Google Scholar 

  33. Wagner, A. & Stadler, P. F. Viral RNA and evolved mutational robustness. J. Exp. Zool. 285, 119–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Sanjuán, R., Forment, J. & Elena, S. F. In silico predicted robustness of viroid RNA secondary structures. II. Interaction between mutation pairs. Mol. Biol. Evol. 23, 2123–2130 (2006).

    Article  PubMed  Google Scholar 

  35. Sanjuán, R., Forment, J. & Elena, S. F. In silico predicted robustness of viroids RNA secondary structures. I. The effect of single mutations. Mol. Biol. Evol. 23, 1427–1436 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Stephens, C. R. & Waelbroeck, H. Codon bias and mutability in HIV sequences. J. Mol. Evol. 48, 390–397 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Plotkin, J. B. & Dushoff, J. Codon bias and frequency-dependent selection on the hemagglutinin epitopes of influenza A virus. Proc. Natl Acad. Sci. USA 100, 7152–7157 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meyers, L. A., Ancel, F. D. & Lachmann, M. Evolution of genetic potential. PLoS Comput. Biol. 1, 236–243 (2005).

    CAS  PubMed  Google Scholar 

  39. Fares, M. A., Ruiz-González, M. X., Moya, A., Elena, S. F. & Barrio, E. Endosymbiotic bacteria: GroEL buffers against deleterious mutations. Nature 417, 398 (2002). Pioneering work that explores how cellular chaperones could buffer mutational effects.

    Article  CAS  PubMed  Google Scholar 

  40. Mayer, M. P. Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev. Physiol. Biochem. Pharmacol. 153, 1–46 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Geller, R., Vignuzzi, M., Andino, R. & Frydman, J. Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes Dev. 21, 195–205 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alfano, C. & McMacken, R. Heat shock protein-mediated disassembly of nucleoprotein structures is required for the initiation of bacteriophage λ DNA replication. J. Biol. Chem. 264, 10709–10718 (1989).

    CAS  PubMed  Google Scholar 

  43. Cripe, T. P., Delos, S. E., Estes, P. A. & Garcea, R. L. In vivo and in vitro association of hsc70 with polyomavirus capsid proteins. J. Virol. 69, 7807–7813 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fang, D. et al. Heat shock cognate protein 70 is a cell fusion-enhancing factor but not an entry factor for human T-cell lymphotropic virus type I. Biochem. Biophys. Res. Commun. 261, 357–363 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Gallie, D. R., Fortner, D., Peng, J. & Puthoff, D. ATP-dependent hexameric assembly of the heat shock protein Hsp101 involves multiple interaction domains and a functional C-proximal nucleotide-binding domain. J. Biol. Chem. 277, 39617–39626 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Guerrero, C. A. et al. Heat shock cognate protein 70 is involved in rotavirus cell entry. J. Virol. 76, 4096–4102 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kampmueller, K. M. & Miller, D. J. The cellular chaperone heat shock protein 90 facilitates Flock House virus RNA replication in Drosophila cells. J. Virol. 79, 6827–6837 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, J. S. et al. Human Hsp70 and Hsp40 chaperone proteins facilitate human papillomavirus-11 E1 protein binding to the origin and stimulate cell-free DNA replication. J. Biol. Chem. 273, 30704–30712 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Niewiarowska, J., D'Halluin, J. C. & Belin, M. T. Adenovirus capsid proteins interact with HSP70 proteins after penetration in human or rodent cells. Exp. Cell Res. 201, 408–416 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Park, S. G., Lee, S. M. & Jung, G. Antisense oligodeoxynucleotides targeted against molecular chaperonin Hsp60 block human hepatitis B virus replication. J. Biol. Chem. 278, 39851–39857 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Satyanarayana, T., Gowda, S., Ayllón, M. A. & Dawson, W. O. Closterovirus bipolar virion: evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5′ region. Proc. Natl Acad. Sci. USA 101, 799–804 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Agranovsky, A. A. et al. Beet yellows closterovirus HSP70-like protein mediates the cell-to-cell movement of a potexvirus transport-deficient mutant and a hordeivirus-based chimeric virus. J. Gen. Virol. 79, 889–895 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Crowder, S. & Kirkegaard, K. Trans-dominant inhibition of RNA viral replication can slow growth of drug-resistant viruses. Nature Genet. 37, 701–709 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Jockusch, H., Wiegand, C., Mersch, B. & Rajes, D. Mutants of tobacco mosaic virus with temperature-sensitive coat proteins induce heat shock response in tobacco leaves. Mol. Plant Microbe Interact. 14, 914–917 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Fisher A. R. The Genetical Theory Of Natural Selection (Claredon, 1930).

    Book  Google Scholar 

  56. Wagner, A. Robustness and evolvability: a paradox resolved. Proc. Biol. Sci. 275, 91–100 (2008). An examination of the relationship between robustness and evolvability through analyses of RNA structures.

    Article  PubMed  Google Scholar 

  57. Draghi, J. A., Parsons, T. L., Wagner, G. P. & Plotkin, J. B. Mutational robustness can facilitate adaptation. Nature 463, 353–355 (2010). A theoretical study that defines situations in which robustness will favour evolvability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. Proc. Natl Acad. Sci. USA 103, 5869–5874 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McBride, R. C., Ogbunugafor, C. B. & Turner, P. E. Robustness promotes evolvability of thermotolerance in an RNA virus. BMC Evol. Biol. 8, 231 (2008). One of the first papers to explore the relationship between robustness and evolvability in an RNA phage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Koelle, K., Cobey, S., Grenfell, B. & Pascual, M. Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans. Science 314, 1898–1903 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Gould, S. J. & Vrba, E. S. Exaptation—a missing term in the science of form. Paleobiology 4–15 (1982).

  62. Cuevas, J. M., Moya, A. & Sanjuán, R. A genetic background with low mutational robustness is associated with increased adaptability to a novel host in an RNA virus. J. Evol. Biol. 22, 2041–2048 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Biebricher, C. K. & Eigen, M. The error threshold. Virus Res. 107, 117–127 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Eigen, M. Error catastrophe and antiviral strategy. Proc. Natl Acad. Sci. USA 99, 13374–13376 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Holland, J. J., Domingo, E., de la Torre, J. C. & Steinhauer, D. A. Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J. Virol. 64, 3960–3962 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Crotty, S., Cameron, C. E. & Andino, R. RNA virus error catastrophe: direct molecular test by using ribavirin. Proc. Natl Acad. Sci. USA 98, 6895–6900 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Malim, M. H. APOBEC proteins and intrinsic resistance to HIV-1 infection. Philos. Trans. R. Soc. B 364, 675–687 (2009).

    Article  CAS  Google Scholar 

  68. Mangeat, B. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, H. et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424, 94–98 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bull, J. J., Sanjuán, R. & Wilke, C. O. Theory of lethal mutagenesis for viruses. J. Virol. 81, 2930–2939 (2007). A study into the theory of error catastrophe, its relationship to lethal mutagenesis and the potential for evolved robustness during antiviral therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Anderson, J. P., Daifuku, R. & Loeb, L. A. Viral error catastrophe by mutagenic nucleosides. Annu. Rev. Microbiol. 58, 183–205 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. McCormick, J. B. et al. Lassa fever. Effective therapy with ribavirin. N. Engl. J. Med. 314, 20–26 (1986).

    Article  CAS  PubMed  Google Scholar 

  73. Ruiz-Jarabo, C. M., Ly, C., Domingo, E. & de la Torre, J. C. Lethal mutagenesis of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). Virology 308, 37–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Severson, W. E., Schmaljohn, C. S., Javadian, A. & Jonsson, C. B. Ribavirin causes error catastrophe during Hantaan virus replication. J. Virol. 77, 481–488 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Loeb, L. A. et al. Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc. Natl Acad. Sci. USA 96, 1492–1497 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sierra, S., Dávila, M., Lowenstein, P. R. & Domingo, E. Response of foot-and-mouth disease virus to increased mutagenesis: influence of viral load and fitness in loss of infectivity. J. Virol. 74, 8316–8323 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pfeiffer, J. K. & Kirkegaard, K. A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc. Natl Acad. Sci. USA 100, 7289–7294 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. null) et al. Foot-and-mouth disease virus mutant with decreased sensitivity to ribavirin: implications for error catastrophe. J. Virol. 81, 2012–2024 (2007).

  79. O'Dea, E. B., Keller, T. E. & Wilke, C. O. Does mutational robustness inhibit extinction by lethal mutagenesis in viral populations? PLoS Comput. Biol. 6, e1000811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vignuzzi, M., Wendt, E. & Andino, R. Engineering attenuated virus vaccines by controlling replication fidelity. Nature Med. 14, 154–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Bull, J. J., Molineux, I. J. & Wilke, C. O. Slow fitness recovery in a codon-modified viral genome. Mol. Biol. Evol. 29, 2997–3004 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Burns, C. C. et al. Genetic inactivation of poliovirus infectivity by increasing the frequencies of CpG and UpA dinucleotides within and across synonymous capsid region codons. J. Virol. 83, 9957–9969 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Burns, C. C. et al. Modulation of poliovirus replicative fitness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J. Virol. 80, 3259–3272 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Domingo, E. & Holland, J. J. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51, 151–178 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Eigen, M. Viral quasispecies. Sci. Am. 269, 42–49 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971).

    Article  CAS  PubMed  Google Scholar 

  87. Holland, J. J., la Torre, de, J. C. & Steinhauer, D. A. RNA virus populations as quasispecies. Curr. Top. Microbiol. Immunol. 176, 1–20 (1992).

    CAS  PubMed  Google Scholar 

  88. Drake, J. W., Charlesworth, B., Charlesworth, D. & Crow, J. F. Rates of spontaneous mutation. Genetics 148, 1667–1686 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Drake, J. W. & Holland, J. J. Mutation rates among RNA viruses. Proc. Natl Acad. Sci. USA 96, 13910–13913 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nachman, M. W. & Crowell, S. L. Estimate of the mutation rate per nucleotide in humans. Genetics 156, 297–304 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Roach, J. C. et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328, 636–639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Elena, S. F. & Sanjuán, R. Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J. Virol. 79, 11555–11558 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adam S. Lauring or Raul Andino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Fitness

The ability of an entity to survive and reproduce. In experimental virology, replicative efficiency is often used as a surrogate for fitness. In this Review, we define viral fitness as the capacity of a virus to generate infectious progeny.

Evolvability

The capacity of a virus or organism with a particular genotype to gain fitness over time after evolving in a given environment.

Epistatic interaction

An interaction between mutations such that their combined effect on fitness is different to that expected from their effects in isolation.

Mutational fitness effect

The effects of mutations on fitness; often described in a model that combines both the strength and distribution of these effects.

Bottleneck

In genetics: a dramatic reduction in the number of individuals that can reproduce. Bottlenecks reduce genetic variation and are not necessarily selective events.

Negative selection

The removal of deleterious alleles from a population by natural selection. Also called purifying selection.

Effective population size

The size of an idealized population that would experience genetic drift in the same way as the actual population. The effective population size (Ne) is often smaller than the total population size.

Multiplicity of infection

In virology, the ratio of infectious particles to target cells.

Complementation

In the context of this Review: the process by which a defective virus can take advantage of functional nucleic acid sequences or proteins from another virus that is infecting the same cell. As a result, the defective virus does not experience loss of fitness from its mutation (or mutations).

Viral sex

The process by which genetic information is exchanged between two different strands of viral nucleic acid. In RNA viruses, this occurs most commonly through switching the replicative template (recombination) or through the exchange of genomic segments (reassortment).

Fitness landscapes

Spatial models that link fitness values to individual sequences.

Sequence space

All possible mutations and combinations of mutations present in a given DNA or amino acid sequence.

Digital organisms

Self-replicating computer programs that mutate and evolve, often in competition with each other for CPU (central processing unit) cycles.

Synonymous mutations

Codon mutations that do not alter the amino acid specificity of the codons. By contrast, non-synonymous mutations do change the encoded amino acid.

Volatile codons

Codons with a propensity to mutate non-synonymously, as opposed to synonymously.

Codon bias

A difference in the observed frequencies of synonymous codons in a given set of sequences.

Codon pair bias

A difference in the observed frequencies of 6-nucleotide codon pairs in a given set of sequences.

Phylodynamic study

A study that develops a quantitative model, incorporating both a pathogen phylogeny and epidemiological or immunological data, to describe an infectious disease.

Error catastrophe

The loss of meaningful genetic information when a population is pushed beyond its maximum mutation rate. In theoretical models, the error catastrophe has been compared to a chemical phase transition, and a true error catastrophe has not been observed experimentally.

Lethal mutagenesis

The process whereby the number of viable individuals, or viruses, in a population is reduced through increases in the mutation rate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauring, A., Frydman, J. & Andino, R. The role of mutational robustness in RNA virus evolution. Nat Rev Microbiol 11, 327–336 (2013). https://doi.org/10.1038/nrmicro3003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3003

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing